Zborcené plochy. Mgr. Jan Šafařík. Konzultace č. 3. učebna Z240. přednášková skupina P-BK1VS1

Rozměr: px
Začít zobrazení ze stránky:

Download "Zborcené plochy. Mgr. Jan Šafařík. Konzultace č. 3. učebna Z240. přednášková skupina P-BK1VS1"

Transkript

1 Zborcené plochy Mgr. Jan Šafařík Konzultace č. 3 přednášková skupina P-BK1VS1 učebna Z240

2 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt VUT v Brně: Deskriptivní geometrie, verze 4.0 pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Soubor CD-ROMů Deskriptivní geometrie, Fakulta stavební VUT v Brně, ISBN Bulantová, Jana - Prudilová, Květoslava - Roušar, Josef - Šafařík, Jan - Zrůstová, Lucie: Sbírka zkouškových příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Fakulta stavební VUT v Brně, Bulantová, Jana - Prudilová, Květoslava - Puchýřová, Jana - Roušar, Josef - Roušarová, Veronika - Slaběňáková, Jana - Šafařík, Jan - Šafářová, Hana, Zrůstová, Lucie: Sbírka řešených příkladů z deskriptivní geometrie pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Fakulta stavební VUT v Brně, Bulantová, J. - Prudilová, K. - Puchýřová, J. - Zrůstová, L.: Úlohy o zborcených plochách, Fakulta stavební VUT v Brně,

3 Literatura Doporučená literatura: Jiří Doležal: Základy geometrie a Geometrie, Holáň, Štěpán - Holáňová, Libuše: Cvičení z deskriptivní geometrie III. - Plochy stavebně technické praxe, Fakulta stavební VUT, Brno Vala, Josef: Deskriptivní geometrie II, Fakulta stavební VUT, Brno Bulantová, Jana - Hon, Pavel - Prudilová, Květoslava - Puchýřová, Jana - Roušar, Josef - Roušarová, Veronika - Slaběňáková, Jana - Šafařík, Jan - Šafářová, Hana, Zrůstová, Lucie: Deskriptivní geometrie pro I. ročník kombinovaného studia, Fakulta stavební VUT v Brně, Moll, Ivo - Prudilová, Květoslava - Puchýřová, Jana - Slaběňáková, Jana - Roušar, Josef - Slatinský, Emil - Slepička, Petr - Šafářová, Hana - Šafařík, Jan - Šmídová, Veronika - Švec, Miloslav - Tomečková, Jana: Deskriptivní geometrie, verze pro I. ročník Stavební fakulty Vysokého učení technického v Brně, FAST VUT Brno,

4 Literatura Další zdroje: Blaženková, Šárka: Plochy technické praxe, Diplomová práce, Přírodovědecká fakulta, Masarykova univerzita, Brno 2006 Černý, Jaroslav Kočandrlová, Milada: Obrazová podpora skript Černý, Kočandrlová: Konstruktivní geometrie, Doležal, Jiří : Základy geometrie a Geometrie, Juklová, Lenka: Přednášky z Ploch technické praxe - 8. semestr - KAG/GPTP8, Kadeřávek František: Plochy stavebně-inženýrské praxe, Druhé přepracované a rozšířené vydání připravily Václav Havel a František Harant, nakladatelství Československé akademie věd, Praha Piska, Rudolf - Medek, Václav: Deskriptivní geometrie II, SNTL/ALFA, Praha Surynková, Petra: Plochy stavební praxe, Bakalářská práce, Matematicko-fyzikální fakulta, Univerzita Karlova, Praha 2006 Vanadiová, Lucie: Využití matematických ploch k zastřešení, Diplomová práce, Přírodovědecká fakulta, Masarykova univerzita, Brno

5 Zborcené plochy Zborcená plocha je dána třemi různými (obecně prostorovými) řídícími křivkami 1, 2, 3, které neleží na téže rozvinutelné ploše Značíme ( 1, 2, 3 ) Přímka protínající všechny tři řídící přímky se nazývá tvořící přímka 5

6 Zborcené plochy Konstrukce tvořící přímky: Zvolme bod A 1. Tvořící přímku n procházející bodem A získáme jako průnik kuželové plochy 2 s vrcholem A a řídící křivkou 2 a kuželové plochy 3 s vrcholem A a řídící křivkou 3. 6

7 Zborcené plochy Je-li tvořící přímka m dotyková povrchová přímka obou kuželových ploch, pak se nazývá torzální přímka a vrchol kuželů se nazývá kuspidální bod. Podél torsální přímky existuje jediná tečná rovina zborcené plochy, tzv. torzální rovina. Křivka na zborcené ploše se nazývá dvojná {trojná, }, jestliže každým bodem této křivky (s konečným počtem vyjímek) prochází dvě {tři, } tvořící přímky (které nemusí byt torzální). Kuspidální body se vyskytují na dvojných {trojných, } křivkách zborcené plochy. Torzální přímka prochází kuspidálním bodem. Tečná rovina v nevlastním bodě netorzální přímky n zborcené plochy se nazývá asymptotická. 7

8 Zborcené plochy Stupeň plochy: Buď zborcená plocha dána algebraickými křivkami 1 stupně 1 n, 2 stupně 2 n a 3 stupně 3 n. Nemají-li řídící křivky žádný společný bod, pak je stupně 2 1n 2n 3n Mají-li křivky i, j pro 1ij3 společný s ij bodů, pak je stupně 2 1n 2n 3n s 12 3n s 13 2n s 23 1n 8

9 Zborcené plochy Užití zborcených ploch Jejich soustava tvořících přímek je vhodná pro kladení bednění nebo výztuží betonu, které umožňuje značné zmenžení tloušťky klenby vznik skořepinových ploch Odolnost vůči tlakům vznikajícím ve stavbě, i při jejím provozním chodu bez zpevňujících zařízení Ze statického hlediska jsou zborcené plochy samonosné 9

10 Zborcené plochy 2. stupně (zborcené kvadriky) Jednodílný hyperboloid Hyperbolický paraboloid 10

11 Zborcené plochy 2. stupně (zborcené kvadriky) Buď dány tři řídící přímky mimoběžky 1 a, 2 a, 3 a. Tvořící přímky vytvoří zborcenou plochu Φ( 1 a, 2 a, 3 a) stupně =2, tj. kvadriku Tvořící přímky plochy, například 1 b, 2 b, 3 b, 4 b, jsou navzájem mimoběžné, neboť kdyby například 1 b a 2 b byly ruznoběžné, pak alespoň dvě z přímek 1 a, 2 a, 3 a ( 1 b, 2 b), ale to je spor s předpokladem mimoběžnosti přímek 1 a, 2 a, 3 a. Tvořící přímky - mimoběžky i b plochy se nazývají např. přímky I. regulu plochy. Zvolme nyní tři mimoběžky I. regulu, například 1 b, 2 b, 3 b jako řídící přímky plochy, pak přímky 1 a, 2 a, 3 a spolu s dalšími mimoběžkami i a tvoří přímky II. regulu plochy. 11

12 Zborcené plochy 2. stupně (zborcené kvadriky) Z konstrukce je patrné, že: Každá přímka I. regulu protíná všechny přímky II. regulu a naopak Přímky téhož regulu jsou navzájem mimoběžné Tečná rovina plochy v bodě M je určena přímkami obou regulů, bodem M procházejících 12

13 Jednodílný hyperboloid 13

14 Jednodílný hyperboloid Jestliže přímky téhož regulu nejsou rovnoběžné s rovinou, pak se plocha nazývá jednodílný hyperboloid (obecně nerotační). Základní vlastnosti Bod přímky p nejblíže ose vytváří při rotaci hrdlovou kružnici (kružnice plochy s nejmenším poloměrem). Střed hrdlové kružnice nazýváme středem hyperboloidu. Dva systémy mimoběžných přímek na ploše reguly. Plocha dvojí křivosti. Nerozvinutelná plocha. 14

15 Jednodílný hyperboloid Asymptotická kuželová plocha Kuželová plocha, jejíž vrchol je střed hyperboloidu. Každá tvořící přímka asymptotické kuželové plochy je rovnoběžná s některou tvořící přímkou hyperboloidu. Má-li asymptotická kuželová plocha obrys, jsou její obrysové přímky asymptotami obrysu hyperboloidu. Obrysem hyperboloidu je hyperbola. 15

16 Jednodílný hyperboloid Řezy na jednodílném hyperboloidu přímky kružnice, elipsa 16

17 Jednodílný hyperboloid Řezy na jednodílném hyperboloidu parabola hyperbola 17

18 Jednodílný hyperboloid arch. Oscar Niemeyer, 1970, Cathedral of Brasília (Catedral Metropolitana Nossa Senhora Aparecida) 18

19 Jednodílný hyperboloid The James S. McDonnell Planetarium, St. Louis, Missouri, U.S.A. 19

20 Jednodílný hyperboloid Chladící věže jaderných elektráren 20

21 Hyperbolický paraboloid 21

22 Hyperbolický paraboloid Jestliže existuje rovina (), se kterou jsou přímky nečárkovaného (čárkovaného) regulu rovnoběžné, dostaneme plochu zvanou hyperbolický paraboloid. Základní pojmy Zborcený čtyřúhelník Řídicí rovina Systém (regulus) přímek Sedlový bod, sedlová plocha Vrchol hyperbolického paraboloidu Osa hyperbolického paraboloidu Směr osy hyperbolického paraboloidu Zborcená přímková kvadratická plocha Plocha dvojí křivosti 22

23 Hyperbolický paraboloid Základní pojmy Zborcený čtyřúhelník čtyřúhelník, jehož vrcholy neleží v téže rovině Osa hyperbolického paraboloidu přímka, která je rovnoběžná s průsečnicí řídících rovin obou regulů Vrchol V hyperbolického paraboloidu osa hyperbolického paraboloidu prochází bodem V, tzv. vrcholem HP. Tečná rovina ve vrcholu V je kolmá k ose HP. Tečná rovina protíná hyperbolický paraboloid ve dvou přímkách, které se protínají v jejím bodě dotyku. Jedna patří do přímek 1. regulu a druhá do přímek 2. regulu. 23

24 Hyperbolický paraboloid Základní pojmy Řez hyperbolického paraboloidu rovinou: Je-li rovina řezu rovnoběžná s řídící rovinou 1. nebo 2. regulu, je řezem jedna površka. Je-li rovina řezu tečna hyperbolického paraboloidu v bodě dotyku T, jsou řezem dvě površky. Je-li rovina řezu rovnoběžná resp. procházející osou hyperbolického paraboloidu, ale různoběžná s řídícími rovinami obou regulů, je řezem parabola Pro všechny ostatní případy je řezem hyperbola. 24

25 Proč hyperbolický paraboloid 25

26 Hyperbolický paraboloid Příklad: V izometrii je dán průmět dvou zdí stejné výšky, jejíž lícní roviny, mají různý spád. Proveďte spojení obou zdí pomocí plochy hyperbolického paraboloidu. A[60, 0, 0], B[80, 30, 0], C[0, 80, 60], D[0, 0, 60]. 26

27 Hyperbolický paraboloid Příklad: V pravoúhlé izometrii je dán hyperbolický paraboloid zborceným čtyřúhelníkem ABCD. Sestrojte několik tvořících přímek plochy patřících do obou přímkových regulů. Je dáno A[40, 0, 0], B[0, 80, 50], C[-40, 0, 0], D[0, -80, 50]. Plochu omezte rovinami (x, y),,, jeli dáno: : y = 80, : y = Bulantová, J. - Prudilová, K. - Puchýřová, J. - Zrůstová, L.: Úlohy o zborcených plochách, Fakulta stavební VUT v Brně,

28 Hyperbolický paraboloid Příklad: V Mongeově promítání je dána plocha hyperbolického paraboloidu pomocí zborceného čtyřúhelníku ABCD, který se v půdorysně zobrazí jako rovnoběžník. A[-69, 62, 77], B[19, 74, 0], C[?,?, 77], D[-19, 9, 0]. V bodě dotyku T sestrojte tečnou rovinu τ. Sestrojte řez rovinou, rovnoběžnou s nárysnou, procházející vrcholem V hyperbolického paraboloidu. 28

29 Hyperbolický paraboloid Střecha nad lichoběžníkovým půdorysem Střešní roviny stejného spádu hřeben není vodorovný Požadujeme hřeben vodorovný 29

30 Hyperbolický paraboloid Střecha nad lichoběžníkovým půdorysem Půlícím bodem střední příčky je veden vodorovný hřeben MN rovnoběžný s jednou okapovou hranou. Část střešní plochy tvoří hyperbolický paraboloid určený zborceným čtyřúhelníkem ABMN. Latě jsou vodorovné, ale krokve nejsou kolmé k hřebeni. 30

31 Hyperbolický paraboloid Střecha nad lichoběžníkovým půdorysem Krokve jsou kolmé na hřeben. Hyperbolický paraboloid je určen zborceným čtyřúhelníkem KLMN. Nároží se sousedními střešními rovinami jsou části kuželoseček. 31

32 Hyperbolický paraboloid Střecha nad lichoběžníkovým půdorysem Užitá část hyperbolického paraboloidu je ohraničena zborceným čtyřúhelníkem KLMN. Přechází v části rovin určených body ALM a BKN. Tím docílíme, že všechna nároží jsou úsečky. 32

33 Hyperbolický paraboloid Graham McCourt Architects, 1983, sportovní aréna, Calgary, Alberta, Canada 33

34 Hyperbolický paraboloid Frei Otto, Günther Behnisch, Fritz Auer, Carlo Weber, , Olympijský stadión, Mnichov, Německo 34

35 Hyperbolický paraboloid F. Calatrava, 1982, oceánografické muzeum, Valencie 35

36 Zborcené plochy vyšších stupňů Přímý kruhový konoid Plückerův konoid Küpperův konoid Plocha Štramberské trúby Plocha Montpellierského oblouku Plocha Marseillského oblouku Plocha Šikmého průchodu 36

37 Konoidy Má-li zborcená plocha mezi řídícími křivkami přímku v konečnu a přímku v nekonečnu, zanývá se konoid. Hyperbolický paraboloid je konoidem nejnižšího stupně. Třetí řídící křivka dourčuje název konoidu: kruhový konoid eliptický konoid šroubový konoid Konoidy dělíme na přímé a kosé podle úhlu, který svírá přímka v konečnu s řídící s řídící rovinou = 90 přímý konoid 90 kosý konoid 37

38 Přímý kruhový konoid 38

39 Přímý kruhový konoid zadání řídící rovinou (c ) řídící přímkou d řídící kružnicí k ;, d stupeň křivky: =4 39

40 Přímý kruhový konoid Příklad: V kosoúhlém promítání (=135, q x =2/3) je dán přímý kruhový konoid s řídící kružnicí 1 k (S[35, 35, 0], r=) v půdorysně, řídící rovinou a řídící přímkou 2 k. Přímka 2k prochází bodem M[0, 35, 80]. Sestrojte několik tvořících přímek konoidu, určete stupeň plochy. 40

41 Přímý parabolický konoid 41

42 Přímý parabolický konoid zadání řídící rovinou (c ) řídící přímkou d řídící parabolou p ;, d stupeň křivky: =4 42

43 Přímý parabolický konoid 43

44 Plocha Štramberské trúby 44

45 Plocha Štramberské trúby zadání dvěma k sobě kolmými mimoběžkami 1 d, 2 d kružnicí k ležící v rovině rovnoběžné s 1 d a 2 d a se středem na ose mimoběžek 1 d a 2 d. stupeň křivky: =4 45

46 Plocha Štramberské trúby 46

47 Plocha Montpellierského oblouku 47

48 Plocha Montpellierského oblouku zadání řídící kružnicí k řídící přímkou 1 d, která prochází středem S kružnice k kolmo na rovinu kružnice řídící přímkou 2 d, která je rovnoběžná a různá s rovinou kružnice a mimoběžná s řídící přímkou 1 d stupeň křivky: =4 48

49 Plocha Montpellierského oblouku 49

50 Deskriptivní geometrie BA03 Plocha Montpellierského oblouku Příklad: V Mongeově promítání sestrojte Montpelliérský oblouk daný řídící kružnicí 1 k (S [0, 20, 0], r = 40), která leží v rovině ν' ν (x, z), dále řídící přímkou 2 d x 1,2, Q 2 d, Q [0, 60, 60] a přímkou 3 d, 3 d ν, S 3 d. Plochu omezte řídící kružnicí 1 k, řídící přímkou 2 d a rovinami α (20, -20, ) a β (-20, - 20, ). Dále sestrojte řez rovinou ρ(, 80, 65). 50

51 Plocha Marseillského oblouku 51

52 Plocha Marseillského oblouku zadání řídící kružnicí 1 k( 1 S, 1 r) 1 řídící kružnicí 2 k( 2 S, 2 r) 2, 1 2 řídící přímkou d, 1 Sd, 2 Sd, d 1, 2 stupeň křivky: =6 52

53 Plocha Marseillského oblouku 53

54 Plocha Marseillského oblouku Příklad: V kolmé axonometrii Δ(90, 110, 95) je dána plocha Marseillského oblouku určena řídícími kružnicemi 1 k ( 1 S[0, 47, 0], r=30) v bokorysně, 2 k ( 2 S[30, 47, -10], r=50) v ronině rovnoběžné s a řídící přímkou 3 k procházející bodem 1 S kolmo k rovině. Sestrojte část plochy nad půdorysnou, omezenou rovina v nichž leží řídící kružnice. 54

55 Plocha šikmého průchodu 55

56 Plocha šikmého průchodu zadání řídícími kružnicemi 1 k a 2 k, ležících v rovnoběžných rovinách, o stejném poloměru a středech 1 S a 2 S řídící přímkou d, kolmou na roviny kružnic a procházejí středem úsečky 1 S 2 S stupeň křivky: =4 56

57 Plocha šikmého průchodu Vyšehradský tunel 57

58 dále viz Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt VUT v Brně: Deskriptivní geometrie, verze 4.0 pro I. ročník Stavební fakulty Vysokého učení technického v Brně, Soubor CD-ROMů Deskriptivní geometrie, Fakulta stavební VUT v Brně, ISBN

59 Konec Děkuji za pozornost

Konstruktivní geometrie

Konstruktivní geometrie Mgr. Miroslava Tihlaříková, Ph.D. Konstruktivní geometrie & technické kreslení Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného

Více

RNDr. Jana Slaběňáková Mgr. Jan Šafařík. přednášková skupina P-BK1VS1 učebna Z240 letní semestr

RNDr. Jana Slaběňáková Mgr. Jan Šafařík. přednášková skupina P-BK1VS1 učebna Z240 letní semestr RNDr. Jana Slaběňáková Mgr. Jan Šafařík přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 Kontakt: RNDr. Jana Slaběňáková Ústav matematiky a deskriptivní geometrie Žižkova 17, 602 00 Brno

Více

BA03 Deskriptivní geometrie

BA03 Deskriptivní geometrie BA03 Deskriptivní geometrie Mgr. Jan Šafařík přednášková skupina P-B1VS2 učebna Z240 letní semestr 2013-2014 Jan Šafařík: Úvod do předmětu deskriptivní geometrie Kontakt: Ústav matematiky a deskriptivní

Více

BA03 Deskriptivní geometrie pro kombinované studium

BA03 Deskriptivní geometrie pro kombinované studium BA03 Deskriptivní geometrie pro kombinované studium RNDr. Jana Slaběňáková Mgr. Jan Šafařík přednášková skupina P-BK1VS1 učebna D185 letní semestr 2014-2015 Kontakt: Deskriptivní geometrie pro kombinované

Více

Šroubovice a šroubové plochy

Šroubovice a šroubové plochy Šroubovice a šroubové plochy Mgr. Jan Šafařík Konzultace č. 2 přednášková skupina P-BK1VS1 učebna Z240 Literatura Základní literatura: Autorský kolektiv Ústavu matematiky a deskriptivní geometrie FaSt

Více

Zborcené plochy. Lenka Macálková Lenka (Brkos 2011) Brkosí prezentace / 16

Zborcené plochy. Lenka Macálková Lenka (Brkos 2011) Brkosí prezentace / 16 Zborcené plochy Lenka Macálková Hutník 2011 28.8.-3.9.2011 Lenka (Brkos 2011) Brkosí prezentace 28.8.-3.9.2011 1 / 16 Úvod Plocha je tvořená spojitým pohybem křivky Jedno z možných dělení: přímkové vs.

Více

PŘÍMKOVÉ PLOCHY. Přednáška DG2*A

PŘÍMKOVÉ PLOCHY. Přednáška DG2*A PŘÍMKOVÉ PLOCHY Přednáška DG*A PŘÍMKOVÉ PLOCHY = plocha, jejímž každým bodem prochází alespoň jedna přímka plochy. Každá přímková plocha je určena třemi řídícími křivkami, příp. plochami. p k k k 3 Je-li

Více

BA008 Konstruktivní geometrie pro kombinované studium

BA008 Konstruktivní geometrie pro kombinované studium BA008 Konstruktivní geometrie pro kombinované studium Jana Slaběňáková Jan Šafařík Ústav matematiky a deskriptivní geometrie Vysoké učení technické v Brně 10. února 2017 Kontakt RNDr. Jana Slaběňáková

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

Zářezová metoda Kosoúhlé promítání

Zářezová metoda Kosoúhlé promítání Zářezová metoda Kosoúhlé promítání Mgr. Jan Šafařík Přednáška č. 6 přednášková skupina P-B1VS2 učebna Z240 Základní literatura Jan Šafařík: příprava na přednášku Autorský kolektiv Ústavu matematiky a deskriptivní

Více

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura

Více

Další plochy technické praxe

Další plochy technické praxe Další plochy technické praxe Dosud studované plochy mají široké využití jak ve stavební tak ve strojnické praxi. Studovali jsme možnosti jejich konstrukcí, vlastností i využití v praxi. Kromě těchto ploch

Více

Zborcené plochy. Přímkové plochy lze vytvořit i jiným způsobem než jsme je dosud konstruovali. V o- tzv. Chaslesova věta:

Zborcené plochy. Přímkové plochy lze vytvořit i jiným způsobem než jsme je dosud konstruovali. V o- tzv. Chaslesova věta: Zborcené plochy Přímkové plochy lze vytvořit i jiným způsobem než jsme je dosud konstruovali. V o- becném případě lze přímku zadat jako průsečnici dvou rovin, každá přímka v prostoru tak je zadána čtyřmi

Více

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................

Více

ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY

ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné

Více

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří

Více

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha. Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,

Více

Deskriptivní geometrie 0A5

Deskriptivní geometrie 0A5 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie 0A5 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Veronika Roušarová Brno c 2003 Obsah

Více

Modely zborcených ploch

Modely zborcených ploch Modely zborcených ploch Modely geometrických těles jsou vhodným názorným doplňkem pro zvyšování prostorové představivosti. U zborcených ploch, což jsou plochy přímkové, pak mohou být modely obzvláště jednouché.

Více

Test č. 9. Zborcené plochy

Test č. 9. Zborcené plochy Test č. 9 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr Zborcené plochy Při vypracování úloh se využijí následující poučky: a) u plochy jednodílného hyperboloidu a hyperbolického

Více

Test č. 9. Zborcené plochy

Test č. 9. Zborcené plochy Test č. 9 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2002/2003 Zborcené plochy Při vypracování úloh se využijí následující poučky: a) u plochy jednodílného hyperboloidu

Více

1 Rovnoběžné promítání a promítací metody. Nevlastní útvary. Osová afinita v rovině.

1 Rovnoběžné promítání a promítací metody. Nevlastní útvary. Osová afinita v rovině. Přednáška 1 Mgr.Güttnerová FAST Dg - bakaláři VŠB-TU Ostrava 1 Rovnoběžné promítání a promítací metody. Nevlastní útvary. Osová afinita v rovině. Literatura: (1)Černý, J. - Kočandrlová, M.: Konstruktivní

Více

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: 8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE Diplomová práce Řezy rotačních těles v projekcích Vedoucí diplomové práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání:

Více

Deskriptivní geometrie

Deskriptivní geometrie Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké

Více

Zadání domácích úkolů a zápočtových písemek

Zadání domácích úkolů a zápočtových písemek Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační

Více

DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:

DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze: DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...

Více

Deg2-Kvadriky. Světlana Tomiczková

Deg2-Kvadriky. Světlana Tomiczková KMA FAV ZČU Plzeň 18. března 2016 Kvadriky Rotační kvadriky singulární (vzniknou rotací singulární kuželosečky) a) rotační válcová plocha x2 + y2 = 1 a 2 a 2 b) rotační kuželová plocha x2 + y2 z2 = 0 a

Více

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

ROTAČNÍ PLOCHY. 1) Základní pojmy

ROTAČNÍ PLOCHY. 1) Základní pojmy ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Deskriptivní geometrie

Deskriptivní geometrie Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké

Více

ZBORCENÉ PLOCHY. Zobrazení, které každému bodu X regulární přímky p přiřadí tečnou rovinu plochy v bodě X je projektivní, tj. zachovává dvojpoměr.

ZBORCENÉ PLOCHY. Zobrazení, které každému bodu X regulární přímky p přiřadí tečnou rovinu plochy v bodě X je projektivní, tj. zachovává dvojpoměr. ZBORCENÉ PLOCHY Přímkové plochy lze vytvořit i jiným způsobem než jsme je dosud konstruovali. V obecném případě lze přímku zadat jako průsečnici dvou rovin, každá přímka v prostoru tak je zadána čtyřmi

Více

MONGEOVO PROMÍTÁNÍ - 2. část

MONGEOVO PROMÍTÁNÍ - 2. část MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice

Více

Test č. 9. Zborcené plochy

Test č. 9. Zborcené plochy Test č. 9 Deskriptivní geometrie, I. ročník distančního studia FAST, letní semestr 2000/2001 Zborcené plochy Posluchači užijí pouček, že: a) u plochy jednodílného hyperboloidu a hyperbolického paraboloidu

Více

AXONOMETRIE - 2. část

AXONOMETRIE - 2. část AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl I Světlana Tomiczková Plzeň 12. února 2016 verze 2.0 2 Autoři Obsah 1 Elementární

Více

Konstruktivní geometrie BA008

Konstruktivní geometrie BA008 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Konstruktivní geometrie BA008 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2017 Určeno pro studenty studijních

Více

Test č. 1. Kuželosečky, afinita a kolineace

Test č. 1. Kuželosečky, afinita a kolineace Test č. 1 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2008-2009 Kuželosečky, afinita a kolineace (1) (a) Je dána elipsa E(F 1, F 2, a), F 1 F 2 < 2a. Sestrojte několik bodů

Více

Deskriptivní geometrie BA03

Deskriptivní geometrie BA03 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie BA03 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 Určeno pro studenty studijních

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

Sedlová plocha (hyperbolický paraboloid)

Sedlová plocha (hyperbolický paraboloid) Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Mongeova projekce - úlohy polohy

Mongeova projekce - úlohy polohy Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova

Více

KMA/G2 Geometrie 2 9. až 11. cvičení

KMA/G2 Geometrie 2 9. až 11. cvičení KMA/G2 Geometrie 2 9. až 11. cvičení 1. Rozhodněte, zda kuželosečka k je regulární nebo singulární: a) k : x 2 0 + 2x 0x 1 x 0 x 2 + x 2 1 2x 1x 2 + x 2 2 = 0; b) k : x 2 0 + x2 1 + x2 2 + 2x 0x 1 = 0;

Více

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu

Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání

Více

Plochy technické praxe

Plochy technické praxe Masarykova univerzita Přírodovědecká fakulta Plochy technické praxe Diplomová práce Šárka Blaženková Brno, 2006 Prohlášení Prohlašuji, že jsem celou diplomovou práci vypracovala samostaně pouze za použití

Více

Klasické třídy ploch

Klasické třídy ploch Klasické třídy ploch Geometrické vidění světa KMA/GVS ak. rok 2013/2014 letní semestr Klasické třídy ploch klasické plochy jsou často generovány kinematicky, a to pohybem tvořicí křivky takto např. vznikají

Více

Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m

Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m Deskriptivní geometrie I Prezentace a podklady k pr edna s ka m Geometrická zobrazení v rovině Shodná zobrazení v rovině: identita, posunutí, rotace, středová souměrnost osová souměrnost posunutá souměrnost

Více

Konstruktivní geometrie

Konstruktivní geometrie Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační

Více

s touto válcovou plochou. Tento případ nebudeme dále uvažovat.

s touto válcovou plochou. Tento případ nebudeme dále uvažovat. Šroubové plochy Šroubová plocha Φ(k) vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý, resp. pravotočivý je i plocha Φ levotočivá, resp. pravotočivá.

Více

Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60

Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60 Axonometrie KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Axonometrie ZS 2008 1 / 60 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

Šroubové plochy. Mgr. Jan Šafařík. Konzultace č. 3. přednášková skupina P-BK1VS1 učebna Z240

Šroubové plochy. Mgr. Jan Šafařík. Konzultace č. 3. přednášková skupina P-BK1VS1 učebna Z240 Šroubové plochy Mgr. Jan Šafařík Konzultace č. 3 přednášková skupina P-BK1VS1 učebna Z240 Šroubový pohyb Šroubový pohyb vzniká složením z rovnoměrného otáčení (rotace) kolem dané osy o a rovnoměrného posunutí

Více

Prùniky tìles v rùzných projekcích

Prùniky tìles v rùzných projekcích UNIVERZITA PALACKÉHO V OLOMOUCI PØÍRODOVÌDECKÁ FAKULTA Katedra algebry a geometrie Prùniky tìles v rùzných projekcích Bakalářská práce Vedoucí práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2010 Vypracoval:

Více

Analytická geometrie v E 3 - kvadriky

Analytická geometrie v E 3 - kvadriky Analtická geometrie v E 3 - kvadrik ROVNICE KVADRIKY ( v ákladní a posunuté poloe) Kvadrik v ákladní poloe - střed nebo vrchol leží v počátku ( vi příloha na konci) Posunutí v rovnici nahradíme všechn

Více

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy. strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek

Více

17 Kuželosečky a přímky

17 Kuželosečky a přímky 17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

Deskriptivní geometrie BA03

Deskriptivní geometrie BA03 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie BA03 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2006 Obsah 1. Kuželosečky 2 2.

Více

Obsah a průběh zkoušky 1PG

Obsah a průběh zkoušky 1PG Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna

Více

Gymnázium, Brno, Elgartova 3

Gymnázium, Brno, Elgartova 3 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma: Analytická geometrie

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

ZÁKLADNÍ ZOBRAZOVACÍ METODY

ZÁKLADNÍ ZOBRAZOVACÍ METODY ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno

Více

Deskriptivní geometrie AD7 AD8

Deskriptivní geometrie AD7 AD8 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie AD7 AD8 Kombinované studium Jan Šafařík Pavel Hon Brno c 2003 2004 Test č. 1 1 Deskriptivní

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok

Více

Deskriptivní geometrie 1

Deskriptivní geometrie 1 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 2. října 2006 verze 2.0 Předmluva Tento pomocný

Více

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení

Více

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání

Více

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ Abstrakt Příspěvek se zabývá historií výuky deskriptivní geometrie na Vysokém učení technickém.

Více

Plochy stavebně-inženýrské praxe

Plochy stavebně-inženýrské praxe Plochy stavebně-inženýrské praxe 8. Plochy součtové In: František Kadeřávek (author): Plochy stavebně-inženýrské praxe. (Czech). Praha: Jednota československých matematiků a fysiků, 1950. pp. 88 94. Persistent

Více

37. PARABOLA V ANALYTICKÉ GEOMETRII

37. PARABOLA V ANALYTICKÉ GEOMETRII 37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

Test č. 1. Kuželosečky, afinita a kolineace

Test č. 1. Kuželosečky, afinita a kolineace Test č. 1 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2006-2007 Kuželosečky, afinita a kolineace (1) (a) Je dána elipsa E(F 1, F 2, a), F 1 F 2 < 2a. Sestrojte několik bodů

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní

Více

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2] Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie Pomocný učební text František Ježek, Světlana Tomiczková Plzeň 20. září 2004 verze 2.0 Předmluva Tento pomocný text

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 11. září 2006 verze 4.0 Předmluva

Více

Deskriptivní geometrie 1

Deskriptivní geometrie 1 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 22. září 2009 verze 3.0 Předmluva Tento pomocný

Více

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch.

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch. TEORETICKÉ ŘEŠENÍ STŘECH TEORETICKÉ ŘEŠENÍ STŘECH Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o tzv. střešních rovinách. Velké stavby se často zastřešují pomocí

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

OBECNÉ ROTAČNÍ PLOCHY

OBECNÉ ROTAČNÍ PLOCHY OBECNÉ ROTAČNÍ PLOCHY 1. Základní konstrukce na rotačních plochách, tečné roviny a řezy rotačních ploch. Rotační plochy vznikají rotačním pohybem kolem osy. Máme-li v prostoru dánu přímku o a orientovaný

Více

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky. AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:

Více

10. Analytická geometrie kuželoseček 1 bod

10. Analytická geometrie kuželoseček 1 bod 10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)

Více

Obrázek 34: Vznik středové kolineace

Obrázek 34: Vznik středové kolineace 6 Středová kolineace Jak naznačuje Obr. 34, středová kolineace (se středem S), jako vzájemně jednoznačné zobrazení Ē 2 na sebe, je výsledkem středového průmětu (se středem S ) středového promítání (se

Více

Shodná zobrazení v rovině

Shodná zobrazení v rovině Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech

Více

A[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70).

A[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70). Úkoly k zápočtu z BA008 Všechny úkoly jsou povinné. Úkoly číslo 4, 7, 12, 14 budou uznány automaticky, pokud poslední den semestru, tj. 3. 5. 2019, budou všechny ostatní úkoly odevzdané a uznané. 1. Je

Více

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1 Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu

Více

Technická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická. Katedra matematiky a didaktiky matematiky PLOCHY PŘÍMKOVÉ

Technická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická. Katedra matematiky a didaktiky matematiky PLOCHY PŘÍMKOVÉ Technická univerzita v Liberci Fakulta řírodovědně-humanitní a edagogická Katedra matematiky a didaktiky matematiky PLOCHY PŘÍMKOÉ Pomocný učební text Petra Pirklová Liberec, leden 04 Přímková locha je

Více