3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
|
|
- Markéta Kolářová
- před 8 lety
- Počet zobrazení:
Transkript
1 3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
2 3.1.Kartézský souřadnicový systém O počátek i,j,k ortonormální vektory Společná velikost vektorů j (x,y) souřadnicová rovina (y,z) souřadnicová rovina (x,z) souřadnicová rovina x,y,z osy V technické praxi se převážně užívá pravotočivý kartézský systém
3 3.1.Kartézský souřadnicový systém p...půdorysna n...nárysna m...bokorysna x...základnice x = p n y = p m z = n m B 2...nárys bodu B B 1...půdorys bodu B B 3...bokorys bodu B Poloha bodu B v prostoru je určena trojicí čísel x,y,z. Jsou to orientované vzdálenosti bodu B od souřadnicových rovin. Trojici (x,y,z) říkáme kartézské souřadnice
4 3.2 Základní pojmy Mongeova promítání p...půdorysna n...nárysna x...základnice x p n B 2...nárys bodu B B 1...půdorys bodu B B 2 B 1...ordinála Spojnice sdružených průmětů (ordinála) B 1,B 2, (B 1 B 2 ), je kolmá k základnici. Přiřazení mezi body v prostoru a sdruženými průměty je vzájemně jednoznačné B B1,B2
5 3.2 Základní pojmy Mongeova promítání p...půdorysna n...nárysna x...základnice x p n B 2...nárys bodu B B 1...půdorys bodu B B 2 B 1...ordinála Spojnice sdružených průmětů (ordinála) B 1,B 2, (B 1 B 2 ), je kolmá k základnici. Přiřazení mezi body v prostoru a sdruženými průměty je vzájemně jednoznačné B B1,B2
6 3.4 Průměty základních útvarů Přímka a v obecné poloze N = a n..nárysný stopník přímky a P = a p..půdorysný stopník přímky a a 2...nárys přímky a a 1...půdorys přímky a b...nárysně promítací rovina přímky a a...půdorysně promítací rovina přímky a Sdružené průměty a 1,a 2 určují přímku a v prostoru jednoznačně. Je-li dán jeden průmět bodu A přímky a, lze jednoznačně určit zbývající průmět bodu A
7 3.4 Průměty základních útvarů Přímka a v obecné poloze N 2..nárysný průmět nárysného stopníku přímky a N 1..půdorysný průmět nárysného stopníku přímky a P 2.. nárysný průmět půdorysného stopníku přímky a P 1.. půdorysný průmět půdorysného stopníku přímky a a 2...nárys přímky a a 1...půdorys přímky a Sdružené průměty a 1,a 2 určují přímku a v prostoru jednoznačně. Je-li dán jeden průmět bodu A přímky a, lze jednoznačně určit zbývající průmět bodu A
8 3.4 Průměty základních útvarů Zvláštní polohy přímky, h n, f p, c x 12 h 2...nárys přímky h jako bod h 1...půdorys přímky h kolmice na základnici N h n..nárysný stopník přímky P h p..půdorysný stopník přímkynevlastní bod
9 3.4 Průměty základních útvarů Zvláštní polohy přímky, h n, f p, c x 12 h 2...nárys přímky h jako bod h 1...půdorys přímky h kolmice na základnici N h n..nárysný stopník přímky P h p..půdorysný stopník přímkynevlastní bod
10 3.4 Průměty základních útvarů Hlavni přímky, přímka horizontální h p, h 2...nárys přímky h - h 2 x 12 h 1...půdorys přímky h N h n..nárysný stopník přímky P h p..půdorysný stopník přímky-nevlastní bod N 1 půdorysný průmět nárysného stopníku N 2 nárysný průmět nárysného stopníku
11 3.4 Průměty základních útvarů Hlavni přímky, přímka horizontální h p, h 2...nárys přímky h - h 2 x 12 h 1...půdorys přímky h N h n..nárysný stopník přímky P h p..půdorysný stopník přímky-nevlastní bod N 1 půdorysný průmět nárysného stopníku N 2 nárysný průmět nárysného stopníku
12 3.4 Průměty základních útvarů Hlavni přímky, přímka frontální, f n, f 2...nárys přímky f f 1...půdorys přímky f- f 1 x 12 N f n..nárysný stopník přímky - nevlastní bod P f p..půdorysný stopník přímky P 1 půdorysný průmět půdorysného stopníku P 2 nárysný průmět půdorysného stopníku
13 3.4 Průměty základních útvarů Hlavni přímky, přímka frontální, f n, f 2...nárys přímky f f 1...půdorys přímky f- f 1 x 12 N f n..nárysný stopník přímky - nevlastní bod P f p..půdorysný stopník přímky P 1 půdorysný průmět půdorysného stopníku P 2 nárysný průmět půdorysného stopníku
14 3.4 Průměty základních útvarů a) třemi body B 2 C 2 Určení roviny: A 2 x 12 B 1 A 1 b) dvěma různoběžkami u2 C 1 B 2 v2 x 12 u1 B 1 v1 c) dvěma rovnoběžkami a 2 b 2 x 12 a 1 b 1 d) přímkou a bodem M p p 2 M 2 x 12 V Mongeově promítáni budeme rovinu která není kolmá k průmětně, zadávat pomocí sdružených průmětů určujících prvků. p 1 M 1
15 3.4 Průměty základních útvarů Určení roviny třemi body Rovina může být určena rovnou stopami. n a = a n..nárysná stopa roviny p a = a p..půdorysná stopa roviny n 2 x 12 p 1 n 2 nárysný průmět nárysné stopy roviny p 1 půdorysný průmět půdorysné stopy roviny Pří hledání stop roviny využijeme faktu že stopníky přímek ležících v rovině nutně leží na stopách roviny.
16 3.4 Průměty základních útvarů Zvláštní polohy roviny a) půdorysně promítací b) nárysně promítací c) kolmá k základnici d) rovnoběžná s některou z průměten Polohu roviny považujeme za zvláštní když je kolmá k některé z průměten, případně k oběma. Půdorysem roviny s (s p) je přímka, kterou označíme s 1, nárysem je celá průmětna.
17 3.4 Průměty základních útvarů Zvláštní polohy roviny a) půdorysně promítací b) nárysně promítací c)kolmá k základnici d)rovnoběžná s některou z průměten Je-li rovina v obecné poloze, můžeme z jednoho průmětu bodu roviny, podobně jako u přímky, určit zbývající průmět. U zvláštních poloh roviny tomu tak vždy není.
18 3.4 Průměty základních útvarů Půdorysně promítací rovina Je-li rovina v obecné poloze, můžeme z jednoho průmětu bodu roviny, podobně jako u přímky, určit zbývající průmět. U zvláštních poloh roviny tomu tak vždy není.
19 3.5 Polohové úlohy Vzájemná poloha přímek a) různoběžné b) rovnoběžné c)mimoběžné Zkoumáme-li vzájemnou polohu základních útvarů, tj. bodů, přímek a rovin, vycházíme z toho, že rovnoběžné promítaní zachovává incidenci. Takže platí A m A 1 m 1, A 2 m 2 Snadno nahlédneme, že sdružené průměty různoběžných přímek (v obecné poloze) jsou dvojice různoběžných přímek, jejichž průsečíky leží na kolmici k základnici. R a b R 1 a 1 b 1, R 2 a 2 b 2, R 1 R 2 x 1,2 Pro sdružené průměty přímek a b v obecné poloze platí: a1 a2, a2 b2.
20 3.5.1 Úloha Je dán půdorysný průmět bodu A 1. Najdi A 2 tak aby bod ležel v rovině určené různoběžkami b, c.
21 3.5.2 Hlavní přímky roviny
22 3.5.2 Úloha Sestrojte hlavní přímky v rovině s, která je dána třemi body A, B, C. Dáno: s = (A,B,C ) Hledáme: h horizontální hlavní přímku h p, h s Řeš obdobnou úlohu. Hledáme: f frontální hlavní přímku f n, f s
23 3.5.3 Úloha Sestrojte průsečík přímky m s rovinou s Dáno: s = (A,B,C ), m. Hledáme: M m s Této metodě se říká také metoda krycí přímky
24 3.5.3 Úloha Sestrojte průsečík přímky m s rovinou s Dáno: s = (A,B,C ), m. Hledáme: M m s Této metodě se říká také metoda krycí přímky
25 3.5.3 Úloha Sestrojte průsečík přímky m s rovinou s Této metodě se říká také metoda krycí přímky
26 3.6 Metrické úlohy Úlohy při nichž řešíme velikosti úseček a úhlů Definice. Úhel dvou mimoběžných přímek je definován jako úhel dvou s nimi rovnoběžných různoběžek Definice. Přímka je kolmá k rovině je-li kolmá ke všem přímkám roviny Věta. Přímka je kolmá k rovině je-li kolmá alespoň ke dvěma různoběžným přímkám roviny Poznámka. Rovina je kolmá k rovině jestliže obsahuje alespoň jednu přímku k ní kolmou
27 3.6.1 Sklápění promítací roviny do průmětny
28 3.6.2 Úloha Sestrojte skutečnou velikost úsečky AB. Jiné řešení úlohy: sklápěj úsečku AB do hlavní roviny p p procházející bodem A použij pro sklápění nárysně promítací roviny
29 3.6.3 Úloha Zobrazte rovnostranný trojúhelník DABC ležíci v rovině s,(s n), je-li dána jeho strana AB. Zobrazíme jedno ze dvou řešení.
30 3.6.4 Úloha Zobrazte kružnici k=(s,r) ležíci v rovině s,(s n). Snadno nahlédneme, že sdružené průměty kružnice ležící v promítací rovině můžeme sestrojit přímo bez sklopení kružnice.
31 3.6.5 Přímka kolmá k rovině Poznámka. Kolmice m k rovině s je kolmá ke všem přímkám roviny s, tedy i k hlavním přímkám (stopám) této roviny. Věta. Pravý úhel mezi přímkami a,b se pravoúhlým promítáním zachová, je-li alespoň jedno jeho rameno rovnoběžné s průmětnou p nebo v ní leží Úloha Daným bodem M sestrojte přímku m kolmou k rovině s
32 3.6.6 Úloha Daným bodem M sestrojte přímku m kolmou k rovině s V našem případě se omezíme pouze na nalezení průmětů kolmice, nehledáme průsečík s rovinou s
33 3.6.7 Úloha Daným bodem M sestrojte rovinu kolmou k dané přímce m.
34 3.6.7 Úloha Daným bodem M sestrojte rovinu kolmou k dané přímce m. V našem případě se omezíme pouze na nalezení průmětů kolmice, nehledáme průsečík s rovinou s
35 To je konec
MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím
část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po
Mongeova projekce - úlohy polohy
Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova
Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60
Axonometrie KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Axonometrie ZS 2008 1 / 60 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU
1. MONGEOVO PROMÍTÁNÍ
Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1
Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu
Mongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102
Mongeova projekce KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Mongeova projekce ZS 2008 1 / 102 Obsah 1 Úvod 2 Zobrazení bodu 3 Zobrazení přímky 4 Určení roviny 5 Polohové úlohy Vzájemná poloha dvou
MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl
Mongeovo zobrazení. Bod a přímka v rovině
Mongeovo zobrazení Bod a přímka v rovině Přímka v rovině Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka leží v rovině; Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka
KONSTRUKTIVNÍ GEOMETRIE
KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Kótované promítání. Úvod. Zobrazení bodu
Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,
Mongeovo zobrazení. Vzájemná poloha dvou přímek
Mongeovo zobrazení Vzájemná poloha dvou přímek Dvě přímky a, b mohou být v prostoru: Dvě přímky a, b mohou být v prostoru: a) rovnoběžné totožné a = b Dvě přímky a, b mohou být v prostoru: a) rovnoběžné
Pravoúhlá axonometrie
Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Polohové úlohy v axonometrii
Sestrojte a označte průmět, půdorys, nárys a bokorys přímky p: y=3 a z=2. Sestrojte a popište stopy roviny : x=3 a určete její průsečík R s přímkou p. Sestrojte a označte průmět, půdorys, nárys a bokorys
Polohové úlohy v axonometrii
Přímka p leží v rovině α. Doplňte p a p 2. Bod A leží v rovině α. Doplňte A a A 2. Přímka p leží v rovině α. Doplňte p a p 3. Sestrojte průmět a půdorys bodu A, který leží v rovině ρ. Přímka a leží v rovině.
Mongeovo zobrazení. Konstrukce stop roviny
Mongeovo zobrazení Konstrukce stop roviny Způsoby určení roviny Způsoby určení roviny při provádění konstrukcí v Mongeově zobrazení je výhodné pracovat s rovinami, které náme určeny pomocí stop; Způsoby
AXONOMETRIE - 2. část
AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.
Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:
Mongeovo promítání základní úlohy polohové (bod, přímka, rovina, bod v rovině, hlavní přímky roviny, rovina daná různoběžkami, průsečnice rovin, průsečík přímky s rovinou) Budeme pracovat v rovině nejlépe
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho
Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;
Deskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání
BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr
BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:
Zobrazení a řezy těles v Mongeově promítání
UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání
Mongeovo zobrazení. Řez jehlanu
Mongeovo zobrazení Řez jehlanu Středová kolineace Středová kolineace Definice Geometrická příbuznost mezi útvary dvou rovin (různých nebo totožných) splňující následující podmínky Středová kolineace Definice
Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].
Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie Pomocný učební text František Ježek, Světlana Tomiczková Plzeň 20. září 2004 verze 2.0 Předmluva Tento pomocný text
0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
ZÁKLADNÍ ZOBRAZOVACÍ METODY
ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno
Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44
Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání
Perspektiva. Doplňkový text k úvodnímu cvičení z perspektivy. Obsahuje: zobrazení kružnice v základní rovině metodou osmi tečen
Perspektiva Doplňkový text k úvodnímu cvičení z perspektivy Obsahuje: úvodní pojmy určení skutečné velikosti úsečky zadané v různých polohách zobrazení kružnice v základní rovině metodou osmi tečen 1 Příklad
MONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
VŠB-Technická univerzita Ostrava
Úvod do promítání Mgr. František Červenka VŠB-Technická univerzita Ostrava 6. 2. 2012 Mgr. František Červenka (VŠB-TUO) Úvod do promítání 6. 2. 2012 1 / 15 osnova 1 Semestr 2 Historie 3 Úvod do promítání
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně
Mongeovo zobrazení. Osová afinita
Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
Kreslení, rýsování. Zobrazení A B. Promítání E 3 E 2
Kreslení, rýsování Zobrazení A B Promítání E 3 E 2 1 Promítání lineární 1. Obrazem bodu je bod 2. Obrazem přímky je přímka (nebo bod) 3. Obrazem roviny je rovina (nebo přímka) Nelineární perspektivy: válcová...
Shodná zobrazení v rovině
Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Konstruktivní geometrie
Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační
Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L
Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů
Zadání domácích úkolů a zápočtových písemek
Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační
Obrázek 34: Vznik středové kolineace
6 Středová kolineace Jak naznačuje Obr. 34, středová kolineace (se středem S), jako vzájemně jednoznačné zobrazení Ē 2 na sebe, je výsledkem středového průmětu (se středem S ) středového promítání (se
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:
Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme
tečen a osu o π, V o; plochu omezte hranou vratu a půdorysnou a proved te rozvinutí
Řešené úlohy Rozvinutelná šroubová plocha v Mongeově promítání Příklad: V Mongeově promítání zobrazte půl závitu rozvinutelné šroubové plochy, jejíž hranou vratu je pravotočivá šroubovice, která prochází
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 11. září 2006 verze 4.0 Předmluva
ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.
ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní
Deskriptivní geometrie 1
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 2. října 2006 verze 2.0 Předmluva Tento pomocný
3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
pomocný bod H perspektivního obrázku zvolte 10 cm zdola a 7 cm zleva.)
Teoretické řešení střech Zastřešení daného půdorysu rovinami různého spádu vázaná ptačí perspektiva Řešené úlohy Příklad: tačí perspektivě vázané na Mongeovo promítání zobrazte řešení střechy nad daným
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení
Užití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ
KÓTOVANÉ PROMÍTÁNÍ 2.KÓTOVANÉ PROMÍTÁNÍ Označíme: s...směr promítání, s p k c...kóta bodu C C 1 (k c )...kótovaný průmět bodu C. pokud k c 0 (k c 0), potom bod C leží nad (pod) průmětnou p. jednotka j=1cm
SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru
SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI
5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ
5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok
Zářezová metoda Kosoúhlé promítání
Zářezová metoda Kosoúhlé promítání Mgr. Jan Šafařík Přednáška č. 6 přednášková skupina P-B1VS2 učebna Z240 Základní literatura Jan Šafařík: příprava na přednášku Autorský kolektiv Ústavu matematiky a deskriptivní
FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině
FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li
AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.
AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna
2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
Řez jehlanu. Mongeovo promítání. Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ.
Řez jehlanu Mongeovo promítání Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ. A[ 3; 1; 0], B[0; 2; 0], y C > y B, v = 8cm, σ(4; 7; 3) B 2 A 2 Vyneseme
Deskriptivní geometrie
Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
Deskriptivní geometrie
Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna
Test č. 9. Zborcené plochy
Test č. 9 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr Zborcené plochy Při vypracování úloh se využijí následující poučky: a) u plochy jednodílného hyperboloidu a hyperbolického
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Test č. 9. Zborcené plochy
Test č. 9 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2002/2003 Zborcené plochy Při vypracování úloh se využijí následující poučky: a) u plochy jednodílného hyperboloidu
Rovnice přímky v prostoru
Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé
Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY
Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY INTERAKTIVNÍ ÚLOHY MONGEOVA PROMÍTÁNÍ DIPLOMOVÁ PRÁCE Bc. Petra Konjatová Učitelství pro 2. stupeň ZŠ,
= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty
STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.
Dvěma různými body prochází právě jedna přímka.
Úvod Jestliže bod A leží na přímce p a přímka p leží v rovině, pak i bod A leží v rovině. Jestliže v rovině leží dva různé body A, B, pak také přímka p, která těmito body prochází, leží v rovině. Dvěma
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
Axiomy: Jsou to tvrzení o těchto pojmech a vztazích, která jsou přijata bez důkazů. Například:
1.Euklidovský prostor 1.1) Základními geomterickými útvary jsou bod přímka a rovina. Základním geometrickým vztahem je vztah incidence, který se většinou opisuje spojeními bod leží na přímce, přímka prochází
Roviny. 3.) MP O[5;7] Rovina je dána body A[-2;3;3], B[-4;1;5] a C[-7;4;1]. Zobrazte stopy roviny.
Roviny.) MP O 6 Zobrazte stoy rovin 6 ;3) a (-5;45 ;0 )..) MP O[9;5] Zobrazte stoy rovin (-4;h;4) a (5;;h). 3.) MP O[5;7] Rovina je dána body A[-;3;3], B[-4;;5] a C[-7;4;]. Zobrazte stoy roviny. 4.) MP
5 Pappova věta a její důsledky
5 Pappova věta a její důsledky Pappos z Alexandrie (?90?350), řecký matematik a astronom. Pod označením Pappova věta je uváděno více vět. Proto je třeba uvést, o jaké z těchto vět hovoříme. Zde se budeme
Test č. 6. Lineární perspektiva
Test č. 6 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2008-2009 Lineární perspektiva (1) Nad průměrem A S B S (A, B leží v základní rovině π) sestrojte metodou osmi tečen
Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.
Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,
SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ
Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,
PŘÍMKOVÉ PLOCHY. Přednáška DG2*A
PŘÍMKOVÉ PLOCHY Přednáška DG*A PŘÍMKOVÉ PLOCHY = plocha, jejímž každým bodem prochází alespoň jedna přímka plochy. Každá přímková plocha je určena třemi řídícími křivkami, příp. plochami. p k k k 3 Je-li
Další servery s elektronickým obsahem
Právní upozornění Všechna práva vyhrazena Žádná část této tištěné či elektronické knihy nesmí být reprodukována a šířena v papírové, elektronické či jiné podobě bez předchozího písemného souhlasu nakladatele
Metrické vlastnosti v prostoru
Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii
Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů
1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou
Úvod do Deskriptivní geometrie
Úvod do Deskriptivní geometrie Deskriptivní geometrie se věnuje zkoumání geometrických vztahů trojrozměrných objektů prostřednictvím jejich dvojrozměrného znázornění. www.ak3d.de/portfolio/tutorials/freesample.pdf
STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...
STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...
RELIÉF. Reliéf bodu. Pro bod ležící na s splynou přímky H A 2 a SA a reliéf není tímto určen.
RELIÉF Lineární (plošná) perspektiva ne vždy vyhovuje pro zobrazování daných předmětů. Například obraz, namalovaný s osvětlením zleva a umístěný tak, že je osvětlený zprava, se v tomto pohledu "nemodeluje",
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě BRNO 2006 BLANKA MORÁVKOVÁ Prohlášení: Prohlašuji, že jsem diplomovou práci vypracovala