STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ
|
|
- Martin Dvořák
- před 9 lety
- Počet zobrazení:
Transkript
1 STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE 1
2 ÚVOD DO TECHNICKÉHO KRESLENÍ TECHNICKÉ KRESLENÍ: je základním odborným předmětem na jehož učivo navazují další odborné předměty jako je Strojírenská technologie, Stavba a provoz strojů, Mechanika, Části strojů, Praxe, Informační technologie, Elektrotechnika a automatizace, Řídící systémy strojů a Automatizace a robotizace. Hlavní cílem předmětu je, aby žáci získali patřičné znalosti a dovednosti pro vytváření a čtení strojnických výkresů. Žáci se zejména naučí: - základům pravoúhlého promítání na dvě průmětny; - základním pojmům z normalizace, zejména z oblasti kreslení; - vytvářet správné výkresové pohledy, používat řezy a podobně; - základním pojmům a pravidlům kótování; - předepisovat přesnosti rozměrů, tvarů a poloh; - používat strojnické tabulky; - nakreslit zobrazení součásti; - nakreslit výrobní výkres součásti; - kreslit výkresy sestavení včetně zpracování popisového pole. Pomůcky na vyučování a pro domácí práci: - Sešit formátu A4 čtverečkovaný s podložkou - J. Švercl: Technické kreslení a deskriptivní geometrie pro školu a praxi. Praha, Scientia, 2003, ISBN J. Leinveber, P. Vávra: Strojnické tabulky. 4. doplněné vydání. Praha Albra, 2008, ISBN Rýsovací potřeby: tužky: - dvě mechanické tužky nebo mikrotužky (sada). kružítko. pryž; pravítko; trojúhelníky; úhloměr; šablonky: maticové, zaoblovací, křivítka; sada technických per; Základní druhy čar a jejich použití: - tlustá plná čára - viditelné hrany a obrysy; - tenká čárkovaná čára - neviditelné hrany; - tenká čerchovaná čára - osy souměrnosti těles a jeho částí; - tenká plná čára - kótovací čáry a pomocné konstrukce. 2
3 ÚVOD DO DESKRIPTIVNÍ GEOMETRIE MONGEOVO PROMÍTÁNÍ (PRAVOÚHLÉ PROMÍTÁNÍ NA DVĚ PRŮMĚTNY) Deskriptivní geometrie umožňuje zobrazení prostorových geometrických útvarů v rovině (průmětně). Pravoúhlé promítání na dvě průmětny (Mongeovo promítání) je způsob zobrazení, kdy jsou geometrické útvary zobrazovány ve dvou navzájem kolmých průmětnách s kolmým směrem promítání. Základní geometrické útvary v prostoru: - Body - označují se velkými písmeny latinské abecedy: A, B; - Přímky - označují se malými písmeny latinské abecedy: a, b; - Roviny - označují malými písmeny řecké abecedy:. Označování vztahů geometrických útvarů v prostoru: - AB - označuje úsečku ohraničenou body A a B; - A = B - označuje, že body A a B jsou totožné; - A ϵ p - označuje, že bod A leží na přímce p. Základní pojmy: počátek souřadného systému os x, y, z; první průmětna neboli půdorysna, - kterou určují osy x a y; 2 - druhá průmětna neboli nárysna, kterou určují osy x a z; - y 1 - první průmět osy y; - y 2 - druhý průmět osy y; - z 1 - první průmět osy z; - z 2 - druhý průmět osy z; - x 1,2 - první a druhý průmět osy x (základnice); první průmět první průmětny, druhy průmět; druhý průmět druhé průmětny, první průmět. 3
4 Zobrazení bodu B (x B ; y B ; z B ): x B = souřadnice x; y B = souřadnice y; z B = souřadnice z; Příklad: B (60; 40; 50). Zobrazte body A, B, C: A (20; 40; 30) B (50; 0; 45) C (80; 40; 0) Přímka je určena dvěma body. Například polohu přímky p určují body A a B (p = AB): - první průmět přímky p 1 prochází prvními průměty daných bodů A 1 a B 1 ; - druhý průmět přímky p 2 prochází prvními průměty daných bodů A 2 a B 2. Stopník přímky je průsečík da-né přímky s průmětnou. Pak: - průsečík přímky s první průmětnou (půdorysnou) se nazývá půdorysný stopník P; - průsečík přímky s druhou průmětnou (nárysnou) se nazývá nárysný stopník N; - první průměty stopníků P 1 a N 1 leží na prvním průmětu přímky (p 1 ); - druhé průměty stopníků P 2 a N 2 leží na prvním průmětu přímky (p 2 ). 4
5 Zobrazte přímku a určenou body A a B a vyšetřete stopníky dané přímky: A (70; 40; 20); B (20; 10; 70). Zvláštní polohy přímky vzhledem k průmětnám. Přímka b je rovnoběžná s první průmětnou. Přímka c je rovnoběžná s druhou průmětnou. Přímka d je rovnoběžná s osou x. Přímka e je kolmá na druhou průmětnu. Přímka f je kolmá na první průmětnu. 5
6 Určete skutečnou velikost úsečky AB: A (20; 40; 20); B (70; 10; 50). Zobrazte trojúhelník ABC: A (20; 20; 30) B (50; 50; 10) C (80; 20; 30) Zobrazte trojúhelník ABC: A (20; 20; 30) B (50; 50; 30) C (80; 20; 30) 6
7 Zobrazte trojúhelník ABC: A (70; 10; 5) B (20; 0; 40) C (30; 40; 15) Rovina je určena třemi různými body nebo bodem a přímkou nebo dvěma různoběžkami nebo dvěma rovnoběžkami. - rovinu nejčastěji určuje pomocí stop roviny; - stopa roviny je průsečnice roviny s průmětnou; - půdorysná stopa roviny je průsečnice roviny s první průmětnou (p - půdorysnou); - nárysná stopa roviny je průsečnice roviny s druhou průmětnou (n - nárysnou); - pak rovinu r určují souřadnice ( x, y, z ). Zobrazte stopy roviny (100; 60; 50). Zadání udává souřadnice bodů: X (100; 0; 0), Y ( 0; 60; 0) a Z ( 0; 0; 50). 7
8 Zobrazte trojúhelník ABC, jestliže A (10; 10; 40), B (20; 30; 10) a C (50; 10; 15). Dále zobrazte stopy roviny určené body A, B a C. Zobrazte trojúhelník ABC, jestliže A (10; 5; 40), B (30; 25; 10) a C (60; 15; 5). Dále zobrazte stopy roviny určené body A, B a C. Zobrazte trojúhelník ABC v rovině (100, 60, 50), jestliže A (10; 20;?), B (20; 40;?) a C (70; 10;?). 8
9 Zobrazte pravidelný čtyřboký hranol s podstavou v první průmětně, jestliže je dáno: body A (40; 10; 0) a B (20; 40; 0) a výška h = 50 (y C > y B ). Zobrazte válec s podstavou ve druhé průmětně, jestliže je dán střed podstavy S (40; 0; 30), poloměr podstavy R = 25 a výška válce h = 50. Zobrazte pravidelný čtyřboký jehlan s podstavou v první průmětně, jestliže je dán střed podstavy bod S (40; 30; 0), vrchol podstavy bod A (30; 10; 0) a výška jehlanu h = 50. Zobrazte pravidelný šestiboký hranol s podstavou v první průmětně, jestliže je dán střed jeho podstavy S (40; 30; 0), vrchol podstavy bod A ( 30; 5; 0) a výška hranolu h = 50. 9
MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
Více1. MONGEOVO PROMÍTÁNÍ
Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá
VíceMONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím
část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po
VíceAXONOMETRIE - 2. část
AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.
VícePracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
VíceKonstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
VíceMONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
VíceDESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně
VíceBA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr
BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura
Více0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
VíceKonstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].
Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie
VícePopis výukového materiálu
Popis výukového materiálu Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_TD.21.1 Autor Petr Škapa Datum vytvoření 01.09.2013 Předmět, ročník Tematický celek Téma Druh učebního materiálu Anotace (metodický
VíceZobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části.
Zobrazení hranolu Příklad 1: Zobrazte pravidelný pětiboký hranol s podstavou v půdorysně π. Podstava je dána středem S a vrcholem A. Výška hranolu je v. Určete zbývající průmět bodu M pláště hranolu. 1
VíceDeskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl
VíceZadání domácích úkolů a zápočtových písemek
Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační
VíceMongeovo zobrazení. Osová afinita
Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A
VíceKONSTRUKTIVNÍ GEOMETRIE
KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Více3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek
VíceMongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102
Mongeova projekce KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Mongeova projekce ZS 2008 1 / 102 Obsah 1 Úvod 2 Zobrazení bodu 3 Zobrazení přímky 4 Určení roviny 5 Polohové úlohy Vzájemná poloha dvou
VíceZákladní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1
Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu
VíceMongeovo zobrazení. Řez jehlanu
Mongeovo zobrazení Řez jehlanu Středová kolineace Středová kolineace Definice Geometrická příbuznost mezi útvary dvou rovin (různých nebo totožných) splňující následující podmínky Středová kolineace Definice
VíceA[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70).
Úkoly k zápočtu z BA008 Všechny úkoly jsou povinné. Úkoly číslo 4, 7, 12, 14 budou uznány automaticky, pokud poslední den semestru, tj. 3. 5. 2019, budou všechny ostatní úkoly odevzdané a uznané. 1. Je
VíceDeskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:
VíceSTŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ZOBRAZOVÁNÍ NA VÝKRESECH 1 PRAVIDLA
VíceMongeova projekce - úlohy polohy
Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova
Více1. Technické zobrazování str.11-84
1. Technické zobrazování str.11-84 Co je technické kreslení společný název pro všechny druhy kreslení ve strojírenství, elektrotechnice, stavebnictví a dalších oborech K čemu slouží TK k dorozumívání mezi
VíceTECHNICKÁ DOKUMENTACE
TECHNICKÁ DOKUMENTACE Jan Petřík 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Obsah přednášek 1. Úvod do problematiky tvorby technické dokumentace
VíceKreslení obrazů součástí Zobrazování geometrických těles. Zobrazení kvádru
Kreslení obrazů součástí Zobrazování geometrických těles Zobrazení kvádru Kreslení obrazů součástí Zobrazování geometrických těles Zobrazení jehlanu s čtvercovou podstavou Kreslení obrazů součástí Zobrazování
VíceMat2 - Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základních škol. Matematické semináře pro 9.
škola: číslo projektu: název projektu: Základní škola Ivana Olbrachta, Semily CZ.1.07/1.4.00/21.0439 Inovace pro kvalitní výuku Název šablony: číslo šablony: 1 poř.č. označení oblast dle RVP okruh dle
VíceP R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
VíceMongeovo zobrazení. Bod a přímka v rovině
Mongeovo zobrazení Bod a přímka v rovině Přímka v rovině Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka leží v rovině; Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka
VíceA 1. x x. 1.1 V pravoúhlé axonometrii zobrazte průměty bodu A [4, 5, 8].
strana 1 1. onometrie. 1.1 V pravoúhlé aonometrii obrate průmět bodu [4, 5, 8]. 1.2 Zobrate bývající pravoúhlé průmět bodu do souřadnicových rovin. Určete souřadnice bodu, který je obraen v pravoúhlé aonometrii.
VíceAxonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60
Axonometrie KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Axonometrie ZS 2008 1 / 60 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU
VíceRys č. 1 Zobrazení objektu
Deskriptivní geometrie I zimní semestr 2018/19 Rys č. 1 Zobrazení objektu Pokyny pro vypracování platné pro všechny příklady Použijte čerchovanou čáru pro otočený půdorys v PA, KP. elips a parabol. Čerchovaná
VíceŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.
ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní
Více4) Vztah mezi ČSN, EN a ISO
Obsah: VÝZNAM TEK A NORMALIZACE 1. Co je to technické kreslení? 2. Cíle výuky TEK. 3. Druhy platných norem v ČR 4. Vztah mezi ČSN, EN a ISO 5. Druhy technických výkresů 6. Formáty výkresů 7. Povinná výbava
VíceTechnická dokumentace
Technická dokumentace Obor studia: 23-45-L / 01 Mechanik seřizovač VY_32_inovace_FREI10 : Zásady kreslení průřezů a průniků Datum vypracování: 26.11.2012 Vypracoval: Ing. Bohumil Freisleben Motto: průřez
VíceŘez jehlanu. Mongeovo promítání. Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ.
Řez jehlanu Mongeovo promítání Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ. A[ 3; 1; 0], B[0; 2; 0], y C > y B, v = 8cm, σ(4; 7; 3) B 2 A 2 Vyneseme
VíceTechnická dokumentace
Technická dokumentace Obor studia: 23-45-L / 01 Mechanik seřizovač VY_32_inovace_FREI14 : Kótování úhlů, zkosení, kuželovitosti a jehlanovitosti Datum vypracování: 10.01.2013 Vypracoval: Ing. Bohumil Freisleben
VíceKonstruktivní geometrie
Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační
Více2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
VícePředmět poskytuje základní vědomosti o normalizaci pro zobrazování, kótování, kreslení řezů a detailů, značení materiálů výrobků na výkresech.
1. ÚVOD DO PŘEDMĚTU Předmět poskytuje základní vědomosti o normalizaci pro zobrazování, kótování, kreslení řezů a detailů, značení materiálů výrobků na výkresech. Cílem je čtení, kreslení jednoduchých
VíceŠroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem
Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................
VíceJe-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:
Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme
VícePravoúhlá axonometrie - osvětlení těles
Pravoúhlá axonometrie - osvětlení těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles ZS 2008 1 / 39 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles
VíceTECHNICKÁ DOKUMENTACE
VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Katedra elektrických strojů a přístrojů KAT 453 TECHNICKÁ DOKUMENTACE (přednášky pro hodiny cvičení) Zobrazování Petr Šňupárek, Martin Marek 1 Co je
Více3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
VíceTECHNICKÉ KRESLENÍ. Technické normy. Popisové pole. Zobrazování na technických výkresech
Technické normy Formáty výkresů Úprava výkresových listů Popisové pole Skládání výkresů TECHNICKÉ KRESLENÍ Čáry na technických výkresech Technické písmo Zobrazování na technických výkresech Kótování Technické
Více5.1.4 Obrazy těles ve volném rovnoběžném promítání II
5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 5103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary
VíceSTŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ PRAVIDLA PRO KÓTOVÁNÍ SOUČÁSTÍ
VíceVyužití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu
VíceZobrazení a řezy těles v Mongeově promítání
UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání
VíceDeskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání
VícePoznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:
Mongeovo promítání základní úlohy polohové (bod, přímka, rovina, bod v rovině, hlavní přímky roviny, rovina daná různoběžkami, průsečnice rovin, průsečík přímky s rovinou) Budeme pracovat v rovině nejlépe
VíceUNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok
VícePrincip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L
Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů
VíceZářezová metoda Kosoúhlé promítání
Zářezová metoda Kosoúhlé promítání Mgr. Jan Šafařík Přednáška č. 6 přednášková skupina P-B1VS2 učebna Z240 Základní literatura Jan Šafařík: příprava na přednášku Autorský kolektiv Ústavu matematiky a deskriptivní
VíceObsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna
VíceMongeovo zobrazení. Konstrukce stop roviny
Mongeovo zobrazení Konstrukce stop roviny Způsoby určení roviny Způsoby určení roviny při provádění konstrukcí v Mongeově zobrazení je výhodné pracovat s rovinami, které náme určeny pomocí stop; Způsoby
Více5.1.4 Obrazy těles ve volném rovnoběžném promítání II
5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 050103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary
VíceTECHNICKÁ DOKUMENTACE (Technické kreslení)
TECHNICKÁ DOKUMENTACE (Technické kreslení) 1 NEŽ SE ZAČNE Pro úspěšné zvládnutí technického kreslení je nutno spojit : teoretické znalosti, logické myšlení, praktické dovednosti. CÍL STUDIA Cílem předmětu
VícePravoúhlá axonometrie - řezy hranatých těles
Pravoúhlá axonometrie - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Pravoúhlá axonometrie - řezy hranatých těles 1 / 1 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého čtyřbokého hranolu ABCDA
VíceUNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:
VíceS T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,
Vícevést žáky k pečlivému vypracování výkresu vést je k organizaci a plánování práce vést žáky k používání vhodných rýsovacích potřeb
Vyučovací předmět: TECHNICKÉ KRESLENÍ A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Předmět Technické kreslení má žákům umožnit zvládnout základy technického
VíceVÝUKOVÝ MATERIÁL PRO ŽÁKY
PROJEKT Zlepšení podmínek výuky učebních oborů CZ.1.07./1.1.06/01.0079 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky VÝUKOVÝ MATERIÁL PRO ŽÁKY Vyučovací
VíceSBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru
SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI
Více1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
VíceZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI
ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI Pravoúhlé rovnoběžné promítání na několik vzájemně kolmých průměten Použití pomocné průmětny Čistě ploché předměty Souměrné součásti Čistě rotační součásti
Více= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty
STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.
VíceMěřítka. Technická dokumentace Ing. Lukáš Procházka. Téma: Měřítka, čáry a technické písmo 1) Měřítka 2) Technické čáry 3) Technické písmo
Technická dokumentace Ing. Lukáš Procházka Téma: Měřítka, čáry a technické písmo 1) Měřítka 2) Technické čáry 3) Technické písmo Měřítka Měřítka zmenšení (1 : 10000 až 1 : 2) skutečné (1 : 1) zvětšení
VíceSTŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ PRAVIDLA PRO KÓTOVÁNÍ SOUČÁSTÍ
VíceTémata profilové maturitní zkoušky z předmětu Název oboru: Kód oboru: Druh zkoušky: Forma zkoušky: Školní rok: Číslo tématu Téma
ta profilové maturitní zkoušky z předmětu Deskriptivní geometrie Druh zkoušky: profilová nepovinná 1. Základní geometrické útvary 2. Principy a druhy promítání 3. Pravoúhlé promítání na jednu průmětnu
VíceTémata profilové maturitní zkoušky z předmětu Stavební konstrukce
ta profilové maturitní zkoušky z předmětu Stavební konstrukce Druh zkoušky: profilová - povinná 1. Dimenzování dřevěných trámů na ohyb 2. Dimenzování dřevěných sloupů 3. Dimenzování ocelových sloupů 4.
VíceGymnázium Christiana Dopplera, Zborovská 45, Praha 5. ROČNÍKOVÁ PRÁCE Technické osvětlení
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické osvětlení Vypracoval: Martin Hanuš Třída: 8.M Školní rok: 2015/2016 Seminář: Deskriptivní geometrie Prohlašuji, že jsem ročníkovou
VíceTémata profilové maturitní zkoušky z předmětu Stavební konstrukce
ta profilové maturitní zkoušky z předmětu Stavební konstrukce 1. Dimenzování dřevěných trámů na ohyb 2. Dimenzování dřevěných sloupů 3. Dimenzování ocelových sloupů 4. Dimenzování ocelových válcovaných
VíceGeometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
VíceKótované promítání. Úvod. Zobrazení bodu
Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,
VíceTémata profilové maturitní zkoušky z předmětu Pozemní stavitelství
ta profilové maturitní zkoušky z předmětu Pozemní stavitelství Druh zkoušky: profilová - povinná 1. Zaměřování terénu a tvorba vrstevnicového plánu 2. Svislé nosné konstrukce 3. Otvory ve zdech 4. Komíny
VíceKonstruktivní geometrie a technické kreslení
Konstruktivní geometrie a technické kreslení Základy technického kreslení Petr Liška Mendelova univerzita 23.11.2015 Petr Liška (Mendelova univerzita) Konstruktivní geometrie a technické kreslení 23.11.2015
VíceTECHNICKÉ KRESLENÍ A CAD. Přednáška č.5
TECHNICKÉ KRESLENÍ A CAD Přednáška č.5 Řezy a průřezy těles Mnoho součástek - tvarové podrobnosti uvnitř součástky díry, vyfrézované otvory. Lze zobrazit skrytými čarami v mnoha případech na úkor názornosti,
VíceMASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě BRNO 2006 BLANKA MORÁVKOVÁ Prohlášení: Prohlašuji, že jsem diplomovou práci vypracovala
VíceTechnické zobrazování
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Technické zobrazování V technické praxi se setkáváme s potřebou zobrazení prostorových útvarů pomocí náčrtu
VíceZákladní geometrické tvary
Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.
VíceVŠB-Technická univerzita Ostrava
Úvod do promítání Mgr. František Červenka VŠB-Technická univerzita Ostrava 6. 2. 2012 Mgr. František Červenka (VŠB-TUO) Úvod do promítání 6. 2. 2012 1 / 15 osnova 1 Semestr 2 Historie 3 Úvod do promítání
VíceVY_52_INOVACE_H 01 31
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
VíceDalší servery s elektronickým obsahem
Právní upozornění Všechna práva vyhrazena. Žádná část této tištěné či elektronické knihy nesmí být reprodukována a šířena v papírové, elektronické či jiné podobě bez předchozího písemného souhlasu nakladatele.
VíceKreslení, rýsování. Zobrazení A B. Promítání E 3 E 2
Kreslení, rýsování Zobrazení A B Promítání E 3 E 2 1 Promítání lineární 1. Obrazem bodu je bod 2. Obrazem přímky je přímka (nebo bod) 3. Obrazem roviny je rovina (nebo přímka) Nelineární perspektivy: válcová...
VíceSTŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ V Úžlabině 320, Praha 10 Sbírka úloh z technického kreslení pracovní listy I. Praha 2011 Ing. Gabriela Uhlíková Sbírka úloh z technického kreslení Tato sbírka
VíceBAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie
UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava
VíceKótování sklonu, kuželovitosti, jehlanovitosti a zkosených hran
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Kótování sklonu, kuželovitosti, jehlanovitosti a zkosených hran Kótování sklonu Sklon plochy nebo přímky, popř.
VíceTechnická dokumentace
Technická dokumentace VY_32_inovace_FREI26 : Zásady kreslení výkresů hřídelů a hřídelových čepů Datum vypracování: 5. 9. 2013 Vypracoval: Ing. Bohumil Freisleben Motto: Jedny z nejrozšířenějších částí
VícePolohové úlohy v axonometrii
Sestrojte a označte průmět, půdorys, nárys a bokorys přímky p: y=3 a z=2. Sestrojte a popište stopy roviny : x=3 a určete její průsečík R s přímkou p. Sestrojte a označte průmět, půdorys, nárys a bokorys
VícePolohové úlohy v axonometrii
Přímka p leží v rovině α. Doplňte p a p 2. Bod A leží v rovině α. Doplňte A a A 2. Přímka p leží v rovině α. Doplňte p a p 3. Sestrojte průmět a půdorys bodu A, který leží v rovině ρ. Přímka a leží v rovině.
VíceMetrické vlastnosti v prostoru
Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii
VíceTECHNICKÁ DOKUMENTACE
VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Katedra elektrických strojů a přístrojů KAT 453 TECHNICKÁ DOKUMENTACE (přednášky pro hodiny cvičení) Cvičení č. I. Čáry a písmo 1 Druhy čar Na technických
VíceA[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
VíceTest č. 1. Kuželosečky, afinita a kolineace
Test č. 1 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2006-2007 Kuželosečky, afinita a kolineace (1) (a) Je dána elipsa E(F 1, F 2, a), F 1 F 2 < 2a. Sestrojte několik bodů
VíceTechnická dokumentace
Technická dokumentace Obor studia: 23-45-L / 01 Mechanik seřizovač VY_32_inovace_FREI03 : Pomůcky pro technické zobrazování, kreslení náčrtů Datum vypracování: 21.9.2012 Vypracoval: Ing. Bohumil Freisleben
VíceShodná zobrazení v rovině
Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech
Více