Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44
|
|
- Květa Nováková
- před 8 lety
- Počet zobrazení:
Transkript
1 Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44
2 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání 2 / 44
3 Vzájemná poloha bodu a přímky Pro bod na přímce musí platit: průmět bodu leží na průmětu přímky Konstruktivní geometrie - LI () Kótované promítání 3 / 44
4 Vzájemná poloha bodu a přímky Pro bod na přímce musí platit: průmět bodu leží na průmětu přímky bod má odpovídající kótu Konstruktivní geometrie - LI () Kótované promítání 4 / 44
5 Vzájemná poloha dvou přímek Různoběžné přímky určují rovinu spojnice jejich bodů o stejných kótách musí být rovnoběžné, neboť tvoří hlavní přímky roviny. Konstruktivní geometrie - LI () Kótované promítání 5 / 44
6 Vzájemná poloha dvou přímek Různoběžné přímky určují rovinu spojnice jejich bodů o stejných kótách musí být rovnoběžné, neboť tvoří hlavní přímky roviny. Konstruktivní geometrie - LI () Kótované promítání 5 / 44
7 Vzájemná poloha dvou přímek Různoběžné přímky určují rovinu spojnice jejich bodů o stejných kótách musí být rovnoběžné, neboť tvoří hlavní přímky roviny. Konstruktivní geometrie - LI () Kótované promítání 5 / 44
8 Vzájemná poloha dvou přímek Rovnoběžné přímky jejich průměty jsou spolu rovnoběžné, mají stejný interval a jejich stupňování stoupá ve stejném směru spojnice jejich bodů o stejných kótách musí být rovnoběžné, neboť tvoří hlavní přímky roviny Konstruktivní geometrie - LI () Kótované promítání 6 / 44
9 Vzájemná poloha dvou přímek Rovnoběžné přímky jejich průměty jsou spolu rovnoběžné, mají stejný interval a jejich stupňování stoupá ve stejném směru spojnice jejich bodů o stejných kótách musí být rovnoběžné, neboť tvoří hlavní přímky roviny Konstruktivní geometrie - LI () Kótované promítání 6 / 44
10 Vzájemná poloha dvou přímek Mimoběžné přímky neurčují rovinu. Konstruktivní geometrie - LI () Kótované promítání 7 / 44
11 Vzájemná poloha dvou přímek Mimoběžné přímky neurčují rovinu. Konstruktivní geometrie - LI () Kótované promítání 7 / 44
12 Vzájemná poloha dvou přímek Příklad Jsou dány přímky p a q v jedné promítací rovině. Přímka p je určena body A, B a přímka q je určena body C, D. Konstruktivní geometrie - LI () Kótované promítání 8 / 44
13 Vzájemná poloha dvou přímek Příklad Jejich vzájemnou polohu určíme sklopením jejich promítací roviny. Nejprve sklopíme přímku p... Konstruktivní geometrie - LI () Kótované promítání 9 / 44
14 Vzájemná poloha dvou přímek Příklad... a potom sklopíme přímku q. Konstruktivní geometrie - LI () Kótované promítání 10 / 44
15 Vzájemná poloha dvou přímek Příklad Ve sklopení určíme průsečík [R] přímek p a q. Bod [R] sklopíme zpět a máme průmět R 1 průsečíku přímek p a q. Konstruktivní geometrie - LI () Kótované promítání 11 / 44
16 Vzájemná poloha dvou rovin Rovnoběžné roviny mají rovnoběžná spádová měřítka. Konstruktivní geometrie - LI () Kótované promítání 12 / 44
17 Vzájemná poloha dvou rovin Různoběžné roviny mají různoběžná nebo rovnoběžná spádová měřítka. Konstruktivní geometrie - LI () Kótované promítání 13 / 44
18 Průsečnice dvou rovin Příklad Jsou dány přímky α a β spádovými měřítky. Máme sestrojit průsečnici rovin α a β. Konstruktivní geometrie - LI () Kótované promítání 14 / 44
19 Průsečnice dvou rovin Příklad Pro obě roviny sestrojíme hlavní přímky o kótách 50 a 70. Konstruktivní geometrie - LI () Kótované promítání 15 / 44
20 Průsečnice dvou rovin Příklad Průsečnice rovin α a β je pak určena body o kótách 50 a 70. Konstruktivní geometrie - LI () Kótované promítání 16 / 44
21 Vzájemná poloha přímky a roviny Přímka m ležící v rovině α protíná hlavní přímky roviny. Konstruktivní geometrie - LI () Kótované promítání 17 / 44
22 Vzájemná poloha přímky a roviny Průsečík přímky m s rovinou α hledáme metodou krycí přímky. α m R π Konstruktivní geometrie - LI () Kótované promítání 18 / 44
23 Vzájemná poloha přímky a roviny Průsečík přímky m s rovinou α hledáme metodou krycí přímky. k α m R π m 1 = k 1 Konstruktivní geometrie - LI () Kótované promítání 18 / 44
24 Průsečík přímky s rovinou Příklad Sestrojte průsečík přímky p = (P, Q) s rovinou α danou spádovým měřítkem. Konstruktivní geometrie - LI () Kótované promítání 19 / 44
25 Průsečík přímky s rovinou Příklad Přímkou p proložíme krycí přímku k. Přímka k α, tedy její body o kótách 10 a 20 leží na hlavních přímkách roviny h α 1 (10) a hα 1 (20). Konstruktivní geometrie - LI () Kótované promítání 20 / 44
26 Průsečík přímky s rovinou Příklad Nyní máme určit vzájemnou polohu přímek p a k ležících v jedné promítací rovině. Nejprve sklopíme přímku p. Konstruktivní geometrie - LI () Kótované promítání 21 / 44
27 Průsečík přímky s rovinou Příklad Sklopíme i přímku k Konstruktivní geometrie - LI () Kótované promítání 22 / 44
28 Průsečík přímky s rovinou Příklad Ve sklopení najdeme sklopený průsečík [R] přímky p s rovinou α. Bod R 1 získáme sklopením zpět. Konstruktivní geometrie - LI () Kótované promítání 23 / 44
29 Průsečík přímky s rovinou Příklad Nakonec vyřešíme viditelnost přímky p. Konstruktivní geometrie - LI () Kótované promítání 24 / 44
30 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání 25 / 44
31 Spád přímky i interval přímky p e ekvidistance α odchylka přímky p od průmětny Konstruktivní geometrie - LI () Kótované promítání 26 / 44
32 Spád přímky i interval přímky p e ekvidistance α odchylka přímky p od průmětny spád přímky p: s = tg e i Konstruktivní geometrie - LI () Kótované promítání 26 / 44
33 Spád přímky spád přímky p: s = tg e i i interval přímky p e ekvidistance α odchylka přímky p od průmětny Konstruktivní geometrie - LI () Kótované promítání 27 / 44
34 Spád přímky Příklad V rovině α dané stopou p α a bodem M veďte bodem M přímky spádu 4/3. Konstruktivní geometrie - LI () Kótované promítání 28 / 44
35 Spád přímky Postup Konstruktivní geometrie - LI () Kótované promítání 29 / 44
36 Spád přímky Postup Konstruktivní geometrie - LI () Kótované promítání 29 / 44
37 Spád přímky Postup Konstruktivní geometrie - LI () Kótované promítání 29 / 44
38 Spád přímky Příklad V rovině α dané stopou p α a bodem M veďte bodem M přímky spádu 4/3. Konstruktivní geometrie - LI () Kótované promítání 30 / 44
39 Spád přímky Příklad Všechny přímky spádu 4/3 vedené bodem M vytvoří spádový kužel. Spádový kužel je rotační a jeho výška je 40. Konstruktivní geometrie - LI () Kótované promítání 31 / 44
40 Spád přímky Příklad Podstava spádového kužele je kružnice o poloměru 30 se středem v bodě M 1. Konstruktivní geometrie - LI () Kótované promítání 32 / 44
41 Spád přímky Příklad Hledané přímky k, l tvoří řez spádového kužele vrcholovou rovinou α. Konstruktivní geometrie - LI () Kótované promítání 33 / 44
42 Spád roviny s σ σ α π Spád roviny je dán spádem její spádové přímky. Konstruktivní geometrie - LI () Kótované promítání 34 / 44
43 Spád roviny Příklad Přímkou PM proložte rovinu spádu 4/3. Konstruktivní geometrie - LI () Kótované promítání 35 / 44
44 Spád roviny Postup Konstruktivní geometrie - LI () Kótované promítání 36 / 44
45 Spád roviny Postup Konstruktivní geometrie - LI () Kótované promítání 36 / 44
46 Spád roviny Postup Konstruktivní geometrie - LI () Kótované promítání 36 / 44
47 Spád roviny Příklad Přímkou PM proložte rovinu spádu 4/3. Konstruktivní geometrie - LI () Kótované promítání 37 / 44
48 Spád roviny Příklad Najdeme úhel odpovídající spádu 4/3. Konstruktivní geometrie - LI () Kótované promítání 38 / 44
49 Spád roviny Příklad Najdeme poloměr r podstavy spádového kužele. Konstruktivní geometrie - LI () Kótované promítání 39 / 44
50 Spád roviny Příklad Sestrojíme podstavu spádového kužele jako kružnici k(m, r). Konstruktivní geometrie - LI () Kótované promítání 40 / 44
51 Spád roviny Příklad Stopy hledaných rovin jsou tečny ke kružnici k z bodu P. Konstruktivní geometrie - LI () Kótované promítání 41 / 44
52 Spád roviny Příklad Pro rovinu α sestrojíme spádovou přímku. Konstruktivní geometrie - LI () Kótované promítání 42 / 44
53 Spád roviny Příklad Hlavní přímka h α (30) roviny α prochází bodem M. Konstruktivní geometrie - LI () Kótované promítání 43 / 44
54 Spád roviny Příklad Vystupňujeme spádovou přímku a sestrojíme další hlavní přímky. Konstruktivní geometrie - LI () Kótované promítání 44 / 44
KONSTRUKTIVNÍ GEOMETRIE
KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Kótované promítání. Úvod. Zobrazení bodu
Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
Mongeova projekce - úlohy polohy
Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova
Deskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání
MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1
Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu
KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ
KÓTOVANÉ PROMÍTÁNÍ 2.KÓTOVANÉ PROMÍTÁNÍ Označíme: s...směr promítání, s p k c...kóta bodu C C 1 (k c )...kótovaný průmět bodu C. pokud k c 0 (k c 0), potom bod C leží nad (pod) průmětnou p. jednotka j=1cm
MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím
část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po
Topografické plochy KG - L MENDELU. KG - L (MENDELU) Topografické plochy 1 / 56
Topografické plochy KG - L MENDELU KG - L (MENDELU) Topografické plochy 1 / 56 Obsah 1 Úvod 2 Křivky a body na topografické ploše 3 Řez topografické plochy rovinou 4 Příčný a podélný profil KG - L (MENDELU)
Elementární plochy-základní pojmy
-základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),
Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:
Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme
Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].
Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
mapa Moravy podle J.A.Komenske ho, roku 1627
mapa Moravy podle J.A.Komenske ho, roku 1627 TOPOGRAFICKÉ PLOCHY zemský povrch je členitý, proto se v technické praxi nahrazuje tzv. topografickou plochou, která má přibližně stejný průběh (přesné znázornění
MONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
Zadání domácích úkolů a zápočtových písemek
Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační
Perspektiva. Doplňkový text k úvodnímu cvičení z perspektivy. Obsahuje: zobrazení kružnice v základní rovině metodou osmi tečen
Perspektiva Doplňkový text k úvodnímu cvičení z perspektivy Obsahuje: úvodní pojmy určení skutečné velikosti úsečky zadané v různých polohách zobrazení kružnice v základní rovině metodou osmi tečen 1 Příklad
AXONOMETRIE - 2. část
AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.
ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.
ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru
SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
1. MONGEOVO PROMÍTÁNÍ
Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá
BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr
BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura
půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho
Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;
Pravoúhlá axonometrie - řezy hranatých těles
Pravoúhlá axonometrie - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Pravoúhlá axonometrie - řezy hranatých těles 1 / 1 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého čtyřbokého hranolu ABCDA
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:
0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek
Konstruktivní geometrie
Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační
1 Topografické plochy
1 Topografické plochy 1.1 Spojení komunikace s terénem Úvodní pojmy Je dána komunikace, která má vůči okolnímu terénu znázorněnému topografickou plochou, obecnou polohu. Osa komunikace se nazývá niveleta,
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie Pomocný učební text František Ježek, Světlana Tomiczková Plzeň 20. září 2004 verze 2.0 Předmluva Tento pomocný text
Mongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102
Mongeova projekce KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Mongeova projekce ZS 2008 1 / 102 Obsah 1 Úvod 2 Zobrazení bodu 3 Zobrazení přímky 4 Určení roviny 5 Polohové úlohy Vzájemná poloha dvou
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení
[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]
Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.
Deskriptivní geometrie 1
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 2. října 2006 verze 2.0 Předmluva Tento pomocný
Mongeovo zobrazení. Vzájemná poloha dvou přímek
Mongeovo zobrazení Vzájemná poloha dvou přímek Dvě přímky a, b mohou být v prostoru: Dvě přímky a, b mohou být v prostoru: a) rovnoběžné totožné a = b Dvě přímky a, b mohou být v prostoru: a) rovnoběžné
3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
Konstruktivní geometrie
Mgr. Miroslava Tihlaříková, Ph.D. Konstruktivní geometrie & technické kreslení Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny
II. TOPOGRAFICKÉ PLOCHY
II. TOPOGRAFICKÉ PLOCHY 1. Základní úlohy 1.1 Základní pojmy Topografická plocha je omezující plocha části zjednodušeného zemského povrchu. Při jejím zobrazování se obvykle používá kótované promítání.
A 1. x x. 1.1 V pravoúhlé axonometrii zobrazte průměty bodu A [4, 5, 8].
strana 1 1. onometrie. 1.1 V pravoúhlé aonometrii obrate průmět bodu [4, 5, 8]. 1.2 Zobrate bývající pravoúhlé průmět bodu do souřadnicových rovin. Určete souřadnice bodu, který je obraen v pravoúhlé aonometrii.
Dvěma různými body prochází právě jedna přímka.
Úvod Jestliže bod A leží na přímce p a přímka p leží v rovině, pak i bod A leží v rovině. Jestliže v rovině leží dva různé body A, B, pak také přímka p, která těmito body prochází, leží v rovině. Dvěma
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok
Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60
Axonometrie KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Axonometrie ZS 2008 1 / 60 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU
STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...
STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 11. září 2006 verze 4.0 Předmluva
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE Diplomová práce Řezy rotačních těles v projekcích Vedoucí diplomové práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání:
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
Zobrazení a řezy těles v Mongeově promítání
UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání
REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE
REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné
1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.
1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/
BA008 Konstruktivní geometrie. Topografické plochy. pro kombinované studium. učebna Z240 letní semestr
BA008 Konstruktivní geometrie pro kombinované studium Topografické plochy přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 3. března 2017 Základní literatura Králová, Alice Liška, Petr
Prùniky tìles v rùzných projekcích
UNIVERZITA PALACKÉHO V OLOMOUCI PØÍRODOVÌDECKÁ FAKULTA Katedra algebry a geometrie Prùniky tìles v rùzných projekcích Bakalářská práce Vedoucí práce: RNDr. Lenka Juklová, Ph.D. Rok odevzdání: 2010 Vypracoval:
OBECNÉ ROTAČNÍ PLOCHY
OBECNÉ ROTAČNÍ PLOCHY 1. Základní konstrukce na rotačních plochách, tečné roviny a řezy rotačních ploch. Rotační plochy vznikají rotačním pohybem kolem osy. Máme-li v prostoru dánu přímku o a orientovaný
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl
5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ
5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Kartografické projekce
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Kartografické projekce Vypracoval: Jiří Novotný Třída: 4.C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,
Kartografické projekce
GYMNÁZIUM CHRISTIANA DOPPLERA Zborovská 45, Praha 5 Ročníková práce z deskriptivní geometrie Kartografické projekce Vypracoval: Nguyen, Viet Bach, 4.C Školní rok: 2011/2012 Zadavatel: Mgr. Ondřej Machů
Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.
Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,
Deskriptivní geometrie 1
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 22. září 2009 verze 3.0 Předmluva Tento pomocný
5.2.4 Kolmost přímek a rovin II
5.2.4 Kolmost přímek a rovin II Předpoklady: 5203 Př. 1: Zformuluj stereometrické věty analogické k planimetrické větě: aným bodem lze v rovině k dané přímce vést jedinou kolmici. Věta: aným bodem lze
Aplikace deskriptivní geometrie
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Rozšíření akreditace učitelství matematiky a učitelství deskriptivní geometrie na PřF UP v Olomouci o formu kombinovanou CZ.1.07/2.2.00/18.0013 Aplikace deskriptivní geometrie
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Test č. 6. Lineární perspektiva
Test č. 6 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2008-2009 Lineární perspektiva (1) Nad průměrem A S B S (A, B leží v základní rovině π) sestrojte metodou osmi tečen
pomocný bod H perspektivního obrázku zvolte 10 cm zdola a 7 cm zleva.)
Teoretické řešení střech Zastřešení daného půdorysu rovinami různého spádu vázaná ptačí perspektiva Řešené úlohy Příklad: tačí perspektivě vázané na Mongeovo promítání zobrazte řešení střechy nad daným
Metrické vlastnosti v prostoru
Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii
Rovnice přímky v prostoru
Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé
= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty
STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.
AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.
AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna
C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU
36. Je dán pravidelný čtyřboký jehlan V. Určete průsečíky přímky s hranicí jehlanu. Pro body, platí: = S, = S SV, bod S je střed podstavy.. TRIÉ VSTOSTI ÚTVRŮ V PROSTORU.1 Odchylky přímek a rovin V odchylka
KARTOGRAFIE. Rovinné projekce. Gnómické projekce. 1. Pólová gnómonická projekce
KARTOGRAFIE Kartografie se zabývá zobrazováním zemského povrchu. Zemský povrch (geoid) nahrazujeme plochou kulovou a tu zobrazujeme. Délky zmenšujeme v daném měřítku. Na kulové ploše zavádíme souřadný
Užití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
A[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70).
Úkoly k zápočtu z BA008 Všechny úkoly jsou povinné. Úkoly číslo 4, 7, 12, 14 budou uznány automaticky, pokud poslední den semestru, tj. 3. 5. 2019, budou všechny ostatní úkoly odevzdané a uznané. 1. Je
Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu
ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice
Test č. 9. Zborcené plochy
Test č. 9 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2002/2003 Zborcené plochy Při vypracování úloh se využijí následující poučky: a) u plochy jednodílného hyperboloidu
Zobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části.
Zobrazení hranolu Příklad 1: Zobrazte pravidelný pětiboký hranol s podstavou v půdorysně π. Podstava je dána středem S a vrcholem A. Výška hranolu je v. Určete zbývající průmět bodu M pláště hranolu. 1
ZÁKLADNÍ ZOBRAZOVACÍ METODY
ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno
Deskriptivní geometrie
Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
Deskriptivní geometrie
Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké
STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
STEREOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití IT ve vyučování matematiky na gymnáziu INVESTIE
Katedra matematiky. Geometrie pro FST 1. Plzeň 1. února 2009 verze 6.0
Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 1. února 2009 verze 6.0 Předmluva Tento pomocný text vznikl pro potřeby předmětu Geometrie
Řezy těles rovinou III
5.1.11 Řezy těles rovinou III Předpoklady: 050110 Ne vždy nám vystačí spojování bodů a dělaní rovnoběžek. Jako třeba bod b) posledního příkladu z minulé hodiny: Rovnoběžné jsou pouze podstavy nemůžeme
Mongeovo zobrazení. Osová afinita
Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě BRNO 2006 BLANKA MORÁVKOVÁ Prohlášení: Prohlašuji, že jsem diplomovou práci vypracovala
Test č. 9. Zborcené plochy
Test č. 9 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr Zborcené plochy Při vypracování úloh se využijí následující poučky: a) u plochy jednodílného hyperboloidu a hyperbolického
Princip a vlastnosti promítání. Konstruktivní geometrie a technické kresleni - L
Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů ve dvojrozměrné rovině. Vlastnosti promítání Úkolem konstruktivní geometrie je zobrazení trojrozměrných předmětů
Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Jan Helm. Topografické plochy. Katedra didaktiky matematiky
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Jan Helm Topografické plochy Katedra didaktiky matematiky Vedoucí bakalářské práce: RNDr. Jana Hromadová, Ph.D. Studijní program:
9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
Polohové úlohy v axonometrii
Sestrojte a označte průmět, půdorys, nárys a bokorys přímky p: y=3 a z=2. Sestrojte a popište stopy roviny : x=3 a určete její průsečík R s přímkou p. Sestrojte a označte průmět, půdorys, nárys a bokorys
Polohové úlohy v axonometrii
Přímka p leží v rovině α. Doplňte p a p 2. Bod A leží v rovině α. Doplňte A a A 2. Přímka p leží v rovině α. Doplňte p a p 3. Sestrojte průmět a půdorys bodu A, který leží v rovině ρ. Přímka a leží v rovině.