Výpočetní geometrie Computational Geometry
|
|
- Adéla Vacková
- před 9 lety
- Počet zobrazení:
Transkript
1 Datové struktury a algoritmy Část 11 Výpočetní geometrie Computational Geometry Petr Felkel
2 Úvod Výpočetní geometrie (CG) Příklady úloh Algoritmické techniky paradigmata řazení - jako předzpracování zametací technika (scan-line) rozděl a panuj (divide and conquer) geometrické místo (Locus approach) 2/ 47
3 Výpočetní geometrie? Vznikla v roce 1975 M. I. Shamos (1850 Dirichlet, 1908 Voronoi, max. článků 1991) Dvojí cíl: Zkoumá teorii (kombinatorikou strukturu geometrických objektů) i praxi: Hledá optimální algoritmy pracující s geometrickými objekty a implementuje je body, přímky, úsečky, mnohoúhelníky polygony, Aplikace např. v oblastech: databázové systémy, robotika, počítačová grafika, počítačové vidění, rozpoznávání obrazů, řadu problémů lze formulovat geometricky 3/ 47
4 Výpočetní geometrie? Charakteristická je velká probádanost algoritmů v rovině (2D) nárůst složitosti v prostoru (3-D) či v n-dimenzích méně znalostí o řešení v n-dimenzích dále zůstaneme v rovině (2D) ukázky typických úloh ukázky technik při návrhu algoritmů 4/ 47
5 Úvod Výpočetní geometrie (CG) Příklady úloh Algoritmické techniky paradigmata řazení - jako předzpracování zametací technika (scan-line) rozděl a panuj (divide and conquer) geometrické místo (Locus approach) 5/ 47
6 Konvexní obálka = nejmenší konvexní mnohoúhelník, který obsahuje všechny zadané body V množina bodů Convex Hull CH(V ) 6/ 47
7 Průsečíky úseček Cíl: Zjistit, zda se objekty protínají a c b p 2 p 1 Průsečík složitého objektu rozložit na průsečíky částí např. na průsečíky úseček 7/ 47
8 Triangulace mnohoúhelníka Rozklad objektu na nepřekrývající se části complex -> simplex 2D trojúhelník 3D - čtyřstěn (tetrahedron) 8/ 47
9 Vyhledávání Vytvoř strukturu pro rychlé nalezení: Nejbližšího souseda (nearest neighbor) Bodů v daném rozsahu (range query) 9/ 47
10 Voroného diagram Struktura pro vyhledání nejbližšího souseda 10 / 47
11 Delaunayova triangulace Duální k Voronému diagramu min. délka hran 11 / 47
12 Algoritmické techniky paradigmata = principy návrhu efektivních algoritmů, které zůstávají stejné i pro velmi odlišné aplikace hrubá síla prohledá / zkusí všechno efektivní algoritmus co nejúspornější optimální algoritmus dosáhl dolní meze složitosti - Ω 12 / 47
13 Algoritmické techniky paradigmata Řazení Rozděl a panuj (divide and conquer) Zametací technika (plane sweep) Geometrické místo (Locus approach) 13 / 47
14 Řazení
15 Řazení předzpracování dat, které vede k jednoduššímu zpracování typicky podle některé ze souřadnic (např. dle osy x či y) nebo dle úhlu kolem daného bodu/ů Př. použití: konvexní obálka 15 / 47
16 Konvexní obálka = nejmenší konvexní mnohoúhelník, který obsahuje všechny zadané body V množina bodů Convex Hull CH(V ) 16 / 47
17 Grahamův algoritmus 1/3 1. Seřadíme body p V dle x;( Orig: podle úhlu k x-) 2. Najdeme horní, pak dolní řetěz a) p min (a p max ) CH(V). Vezmi p 1 =p min, p 2 =další, i=2 b) přidáme bod p i+1, i=i+1 konvexní c) kontrola úhlu (p i-1, p i, p i+1 ) konkávní i=i-1 vypustíme pi p i-1 p i p i+1 p i-1 p i p i+1 p i-1 p i p i+1 17 / 47
18 Grahamův algoritmus 2/3 Kontrola úhlu (p i-1, p i, p i+1 ) Vektorový součin b x a p i-1 p a i b - kolmý na rovinu => jediná z-ová složka > 0, x- a y-ová = 0 x i+1 x i y i+1 y i > 0 => konvexní (R) x i x y i-1 i y i-1 < 0 => konkávní (L) p i+1 b x b y a x a y = b x a y - a x b y a = p i - p i-1 = (a x, a y ) b = p i+1 - p i = (b x, b y ) p i = [x i, y i, z i ] 18 / 47
19 Grahamův algoritmus 3/3 Složitost 1. Seřazení bodů dle x O( n log n ) 2. Nalezení horního a dolního řetězu O( n ) => celkem O( n log n ) 19 / 47
20 Jarvisův algoritmus balení dárku (gift wrapping) 1. Vezmeme bod p s minimální souřadnicí y a vodorovnou přímku 2. Otáčíme přímku kolem p dokud nenarazí na bod q 3. p = nový nejbližší bod q 4. Dokud (p p 0 ) jdi na 2 p k Bod s min. úhlem p 0 p 1 Složitost: O( n ) + O( n ) * k => celkem O( k*n ) vhodný pro málo bodů na konvexním obalu 20 / 47
21 Rozděl a panuj Divide and conquer
22 Konvexní obálka metodou D&C Seřaď body dle x Rekurzivně: děl na 2 části Najdi obálky Spoj obálky Horní most, pak dolní most zač.: nejbližší body, L proti, P po směru hodin Složitost: O(nlog(n) + O(n)) = O(nlog(n) ) 22 / 47
23 Zametací technika Plane sweep
24 Zametací technika princip Svislou přímku (scanline, SL, zametací přímku) suneme zleva doprava přes množinu objektů Pamatujeme si informace o objektech nalevo od zametací přímky (y-stuktura, T) Při průchodu nad objektem ji aktualizujeme Nesuneme se spojitě, ale skáčeme mezi body, kde je nutno zastavit Body jsou v prioritní frontě (x-struktura, B, postupový plán) odebírám je zleva-doprava 24 / 47
25 Příklad 1: Minimální body Od nich nalevo ani dolů není žádný bod 1. Seřadíme body dle souřadnice x -> x-struktura 2. Inicializujeme y-strukturu na 3. Scanline umísťujeme zleva doprava do bodů v x-str. 4. Do y-strukt. ukládám minimální y-souřadnici O(n log n) - řazení O(1) na bod O(n) pro všechny body O(n log n) - celkem 25 / 47
26 Příklad 2: Průsečíky úseček Nalezení všech průsečíků zadaných úseček rychleji než každá s každou, tj. než O(n 2 ) počítám průsečíky jen mezi sousedními úsečkami v T T, y-struktura = úsečky v pořadí jak protínají scanline B, x-struk., body, kde se mění pořadí úseček: na začátku jen koncové body úseček průběžně průsečíky sousedních úseček v T 26 / 47
27 Průsečíky úseček 1. Inicializace B L koncové body > B b? A R T prázdné C L c A L 1 a? C R B R b B: A L,B L, C L,C R, A R,B R T: prázdná1 27 / 47
28 Průsečíky úseček 2. dokud není B prázdná vezmi bod p z B (a smaž ho v B) dle typu bodu p aktualizuj T strukturu: L... P... průsečík / 47
29 Průsečíky úseček L Najdi v T sousedy s (úsečky s 1 a s 2 ) (s je úsečka s počátečním bodem p) if( protíná s 1 x s 2 ) odstraň průsečík (už nejsou sousedy) vlož průs. s 1 x s a s x s 2 do B 29 / 47
30 Průsečíky úseček B 0 : A L,B L, C L,C R,A R,B R B L T 0 : prázdná A L C L a c? b? C R A R 1. A L B 1 : B L, C L,C R,A R,B R T 1 : a B R / 47
31 Průsečíky úseček B L 2. B L p 1 = s1 x s = a x b... vložit A L C L a c? b p 1 C R A R B 2 : C L,p 1, C R, A R,B R T 2 : a, b s 1 s B R / 47
32 Průsečíky úseček B L 2. B L B 2 : C L,p 1, C R, A R,B R T 2 : a, b b p 1 A R 3. C L p 1 = s 1 x s 2 = a x b...smazat C L c A L a p 2 C R p 2 = s 1 x s = a x c... vložit B R B 3 : p 2, C R, A R,B R T 3 : a, c, b s 1 s s 2 32 / 47
33 Průsečíky úseček průsečík úseček s a s Najdi v T sousedy s a s (úsečky s 1 a s 2 ) prohoď s a s v T if( protíná s x s 1 ) odstraň průsečík z B if( protíná s x s 2 ) odstraň průsečík z B (už nejsou sousedy) vlož průs. s x s 2 a s x s 1 do B 33 / 47
34 Průsečíky úseček B L B 3 : p 2, C R, A R,B R T 3 : a, c, b A L 1 C L a c b p 2 p 1 C R A R p 2 změna pořadí úseček a,c B 4 : p 1, C R, A R,B R T 4 : c, a, b 5. p 1 změna pořadí úseček a,b B 5 : C R, A R,B R T 5 : c, b, a B R 34 / 47
35 Průsečíky úseček R Najdi v T sousedy s (úsečky s 1 a s 2 ) (s je úsečka s koncovým bodem p) smaž s z T if( protíná s 1 x s 2 )vložprůsečík do B 35 / 47
36 Průsečíky úseček B L B 5 : C R, A R,B R T 5 : c, b, a C L c b p 1 A R 6. C R B 6 : A R,B R T 6 : b, a A L a p 2 C R 7. A R B 7 : B R B R T 7 : b B R B 7 : prázdná T 7 : prázdná 36 / 47
37 Paměť O(n) Průsečíky úseček Operační složitost n+k poloh každá log n => O(k+n) log n 37 / 47
38 Geometrické místo Locus approach
39 Voroného diagram (VD) Struktura pro vyhledání nejbližšího souseda hrana VD zadaný bod uzel VD 39 / 47
40 Voroného diagram = planární graf (též Voronoiův diagram) obsahuje n oblastí (n = počet bodů) hrana = gmb. stejně vzdál. od dvou bodů = osa spojnice těchto dvou bodů uzel = střed kružnice opsané 3 bodům uzly mají stupeň 3 počet uzlů 2n-4, počet hran n-6, tj. O(n) otevřené oblasti odpovídají bodům konvexní obálky 40 / 47
41 Konvexní obal Voroného diagram 41 / 47
42 Voroného diagram Konstrukce metodou rozděl a panuj 1. Rozděl body dle x-souř. na L a P 2. Rekurze na L a P 1-3 body => návrat VD L a VD P 3. Spoj Voroného diagramy z L a P monotónní řetěz úseček zkrať protnuté hrany nové hrany z řetězu ús. O(k+n) log n 42 / 47
43 VD L Voroného diagram Konstrukce metodou rozděl a panuj VD P 1. Rozděl body dle x-souř. na L a P 2. Rekurze na L a P 1-3 body => návrat VD L a VD P 3. Spoj Voroného diagramy z L a P monotónní řetěz úseček zkrať protnuté hrany nové hrany z řetězu ús. O(k+n) log n 43 / 47
44 VD L Voroného diagram Konstrukce metodou rozděl a panuj VD P 1. Rozděl body dle x-souř. na L a P 2. Rekurze na L a P 1-3 body => návrat VD L a VD P 3. Spoj Voroného diagramy z L a P monotónní řetěz úseček zkrať protnuté hrany nové hrany z řetězu ús. O(k+n) log n 44 / 47
45 VD L Voroného diagram Konstrukce metodou rozděl a panuj VD P 1. Rozděl body dle x-souř. na L a P 2. Rekurze na L a P 1-3 body => návrat VD L a VD P 3. Spoj Voroného diagramy z L a P monotónní řetěz úseček zkrať protnuté hrany nové hrany z řetězu ús. O(k+n) log n 45 / 47
46 Links Collections of geometry resources (Rozcestníky) N. Amenta, Directory of Computational Geometry Software, D. Eppstein, Geometry in Action, Jeff Erickson, Computational Geometry Pages, 46 / 47
47 References Jan Slovák, Geometrické algoritmy I, skripta na webu, 1994, ftp:// ricke.algoritmy/galgi.ps Rourke: Computational geometry in C, 2nd ed., Cambridge University Press, 1998, for more see the collections on the previous slide 47 / 47
Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta
12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,
Úvod do mobilní robotiky AIL028
md at robotika.cz, zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 27. listopadu 2007 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením Mapa světa - příklad Obsah Mapa světa Exaktní
Algoritmizace prostorových úloh
Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních
Algoritmy používané ve výpočetní geometrii
Algoritmy používané ve výpočetní geometrii Hrubá síla. Inkrementální metoda. Zametací přímka. Heuristiky. Rozděl a panuj. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie.
Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace
Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární
Geometrické vyhledávání
mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či
Triangulace. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
11 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Význam triangulace trojúhelník je základní grafický
Úvod do mobilní robotiky AIL028
zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 5. prosince 2005 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením (náznak řešení) Mapa světa - příklad Obsah Mapa
Konvexní obal a množina
Definice M Množina se nazývá konvení, jestliže úsečka spojující libovolné dva její bod je částí této množin, tj. ab, M, t 0, : ta+ ( tb ) M konvení množina a b a b nekonvení množina Definice Konvení obal
Vzorce počítačové grafiky
Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u
Semestrální práce z předmětu KMA/MM. Voroneho diagramy
Semestrální práce z předmětu KMA/MM Voroneho diagramy Jméno a příjmení: Lenka Skalová Osobní číslo: A08N0185P Studijní obor: Finanční informatika a statistika Datum: 22. 1. 2010 Obsah Obsah... 2 1 Historie...
Počítačová geometrie I
0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti
Výpočetní geometrie. Pavel Strachota. 9. listopadu FJFI ČVUT v Praze
Výpočetní geometrie Pavel Strachota FJFI ČVUT v Praze 9. listopadu 2012 Obsah 1 Úvod 2 Jednoduché algoritmy výpočetní geometrie 3 Další problémy výpočetní geometrie Obsah 1 Úvod 2 Jednoduché algoritmy
Konvexní obálka v E 3 a dělení prostoru
Konvexní obálka v E 3 a dělení prostoru Zuzana Majdišová 30.1.2015 Úvod Existující algoritmy: QuickHull O nh Divide and Conquer O n log n Inkrementální konstrukce O n log n Balení dárků O nh Hlavní myšlenka
6. Základy výpočetní geometrie
6. Základy výpočetní geometrie BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení
Geometrické vyhledání.
Geometrické vyhledání. Ray algoritmus. Winding algoritmus. Lichoběžníkové (trapezoidální) mapy Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Vektorová data Michal Kačmařík, Daniela
Konvexní obálka množiny bodů.
Konvexní obálka množiny bodů. Graham Scan. Jarvis Scan. Quick Hull. Inkrementální metoda. Divide and Conquer. Rotating Calipers. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie.
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
ÚLOHY S POLYGONEM. Polygon řetězec úseček, poslední bod je totožný s prvním. 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU
ÚLOHY S POLYGONEM Polygon řetězec úseček, poslední bod je totožný s prvním 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU 3 úsečky (segmenty) v horní části 2 úsečky ve spodní části
Voroného konstrukce na mapě světa
na mapě světa Jan Ústav matematiky, FSI VUT, 7. 6. 2011 na mapě světa Jan Ústav matematiky, FSI VUT, 7. 6. 2011 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru).
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
Vyplňování souvislé oblasti
Počítačová grafika Vyplňování souvislé oblasti Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU. Které z následujících tvrzení není pravdivé: a) Princip interpolace je určení
P L A N I M E T R I E
M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů
Náplň. v.0.03 16.02.2014. - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění
Náplň v.0.03 16.02.2014 - Jednoduché příklady na práci s poli v C - Vlastnosti třídění - Způsoby (algoritmy) třídění Spojení dvou samostatně setříděných polí void Spoj(double apole1[], int adelka1, double
Geometrické algoritmy pro počítačovou grafiku
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Katedra fyzikální elektroniky Informatická fyzika Geometrické algoritmy pro počítačovou grafiku Semestrální práce Autor práce:
2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.
ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě
8. Geometrie vrací úder (sepsal Pavel Klavík)
8. Geometrie vrací úder (sepsal Pavel Klavík) Když s geometrickými problémy pořádně nezametete, ony vám to vrátí! Ale když užzametat,takurčitěnepodkoberecamístosmetákupoužijtepřímku.vtéto přednášce nás
Konvexní obálka množiny bodů.
Konvexní obálka množiny bodů. Graham Scan. Jarvis Scan. Quick Hull. Inkrementální metoda. Divide and Conquer. Rotating Calipers. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie.
Zobrazování těles. problematika geometrického modelování. základní typy modelů. datové reprezentace modelů základní metody geometrického modelování
problematika geometrického modelování manifold, Eulerova rovnost základní typy modelů hranový model stěnový model objemový model datové reprezentace modelů základní metody geometrického modelování těleso
Úlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.
7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň
1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
5 Algoritmy vyplňování 2D oblastí
5 Algoritmy vyplňování 2D oblastí Studijní cíl Tento blok je věnován základním algoritmům pro vyplňování plošných objektů. V textu bude vysvětlen rozdíl mezi vyplňováním oblastí, které jsou definovány
PROGRAMY PRO GIS. Formovat/formulovat problém pro aplikaci v počítači. Fungování GIS programů na základní úrovni - "uvažovat" jako počítač
PROGRAMY PRO GIS Formovat/formulovat problém pro aplikaci v počítači Fungování GIS programů na základní úrovni - "uvažovat" jako počítač Jak počítače řeší problémy procesor central processing unit - CPU
KRUŽNICE, KRUH, KULOVÁ PLOCHA, KOULE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KRUŽNICE,
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)
Sedlová plocha (hyperbolický paraboloid)
Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc
Ořezávání dvourozměrných objektů Počítačová grafika Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc Test polohy bodu Osově orientovaná hranice - Cohen-Sutherland p x < xw min... vně p x > xw
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
autorovu srdci... Petr Hliněný, FI MU Brno 1 FI: MA010: Průnikové grafy
9 Krátké povídání o průnikových grafech Od této lekce teorie grafů se zaměříme lehce na několik vybraných partíı teorie grafů bĺızkých autorovu srdci... Naším prvním výběrem jsou průnikové grafy, což jsou
Metamorfóza obrázků Josef Pelikán CGG MFF UK Praha
Metamorfóza obrázků 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Morphing 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Metamorfóza obrázků -
11 Vzdálenost podprostorů
11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu
KMA/GPM Barycentrické souřadnice a
KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
Rozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.
Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]
1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika 017 ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na jeho řešení máte 90 minut čistého času. n V průběhu
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
Jana Dannhoferová Ústav informatiky, PEF MZLU
Počítačová grafika 1. Definice oblasti souvisí: a) s definováním množiny všech bodů, které náleží do hranice a zároveň do jejího vnitřku b) s popisem její hranice c) s definováním množiny všech bodů, které
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
Algoritmy výpočetní geometrie
Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr
9 Prostorová grafika a modelování těles
9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.
Rastrová reprezentace
Rastrová reprezentace Zaměřuje se na lokalitu jako na celek Používá se pro reprezentaci jevů, které plošně pokrývají celou oblast, případně se i spojitě mění. Používá se i pro rasterizované vektorové vrstvy,
Fotogrammetrie. zpracovala Petra Brůžková. Fakulta Architektury ČVUT v Praze 2012
Fotogrammetrie zpracovala Petra Brůžková Fakulta Architektury ČVUT v Praze 2012 Fotogrammetrie je geometrický postup, který nám umožňuje určení tvaru, velikosti a polohy reálných objektů na základě fotografického
VE 2D A 3D. Radek Výrut. Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského sumy
25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Radek Výrut VÝPOČET MINKOWSKÉHO SUMY VE 2D A 3D Abstrakt Tento článek obsahuje postupy pro výpočet Minkowského sumy dvou množin v rovině a pro výpočet Minkowského
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková
GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak
c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice
Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly
1. jarní série Termín odeslání: 4. února 2019
Váhy 1. jarní série Termín odeslání: 4. února 2019 Vážením na rovnoramenných vahách zjistíme, která strana je těžší, resp. že jsou obě stejně těžké. Na misky vah můžeme dávat i více než jeden předmět.
Název: Stereometrie řez tělesa rovinou
Název: Stereometrie řez tělesa rovinou Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Matematika (Deskriptivní geometrie) Tematický
Úvod do výpočetní geometrie. Základní vztahy.
Úvod do výpočetní geometrie. Základní vztahy. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra
Kartografické modelování. VIII Modelování vzdálenosti
VIII Modelování vzdálenosti jaro 2015 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Vzdálenostní funkce
DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a
DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x
STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...
STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...
prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného
Elipsa Výklad efinice a ohniskové vlastnosti prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného řezu na rotační kuželové ploše, jestliže řezná rovina není kolmá k ose
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.
MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný
Semestrální práce z KIV/PRO. Využití Voroného diagramu pro inicializaci K-means
Semestrální práce z KIV/PRO Využití Voroného diagramu pro inicializaci K-means shlukování Jméno Příjmení (Osobní číslo) 11. prosince 2014 Obsah 1 Úvod 2 2 Vysvětlení pojmů 3 2.1 K-means shlukování.........................
Imagine Logo pokračování 1 Seznamy
Imagine Logo pokračování 1 Seznamy autor: Viktor Svoboda Konstruktory vlozprvni a vlozposledni Konstruktory jsou to procedury, které umožňují spojovat slova nebo čísla. Obecněji řečeno jsou to procedury
Geoinformatika. IX GIS modelování
Geoinformatika IX GIS modelování jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Geoinformatika
3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Třídění, vyhledávání Daniela Szturcová
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu
Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
Topologická kostra. Medial Axis. Straight Skeleton.
Topologická kostra Medial Axis. Straight Skeleton. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
9.5. Kolmost přímek a rovin
9.5. Kolmost přímek a rovin Pro kolmost přímek a rovin platí následující věty, které budeme demonstrovat na krychli ABCDEFGH se středy podstav S, Q. Přímka kolmá k rovině je kolmá ke všem přímkám této
Opakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011
MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován
NP-úplnost a další. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
NP-úplnost a další Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018 Datové struktury a algoritmy, B6B36DSA 01/2018, Lekce 13
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik
MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené
4EK212 Kvantitativní management. 2. Lineární programování
4EK212 Kvantitativní management 2. Lineární programování 1.7 Přídatné proměnné Přídatné proměnné jsou nezáporné Mají svoji ekonomickou interpretaci, která je odvozena od ekonomické interpretace omezení
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
Minkowského operace. Použití. Světlana Tomiczková. Rozmisťování Robot Motion Planning Offset Optics. Pojmy:
Minkowského operace Hermann Minkowski Narodil se 22. 6. 1864. Studoval na univerzitách v Berlíně a Königsbergu. Učil na univerzitách v Bonnu, Königsbergu and Zurichu. V Zurichu byl jeho studentem A. Einstein.
Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.
Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y
Hledání úhlů se známou hodnotou goniometrické funkce
4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických