Algoritmy ořezávání. Ořezávací oblast. Test polohy bodu vzhledem ke konvexnímu mnohoúhelníku. Test polohy bodu vzhledem k pravoúhelníku.
|
|
- Štěpánka Marková
- před 7 lety
- Počet zobrazení:
Transkript
1 řednáška 6 lgoitmy ořezávání Ořezávací oblast Učení viditelné oblasti uživatelského souřadnicového systému USS Vykeslení pouze té části obazu, kteá leží ve viditelné oblasti Obvykle je viditelnou (ořezávací) oblastí osově oientovaný pavoúhelník (většinou okno souřadnicového systému zařízení SSZ). Cílem může být: zychlení gafického výstupu (v případě, že velké množství objektů leží mimo viditelnou oblast a zjištění této skutečnosti je ychlejší než samotné keslení) vykeslení obazu pouze do učité části gafického výstupního zařízení náhada ořezávání na úovni gafického výstupního zařízení 1 řednáška 6 2 Test polohy bodu vzhledem k pavoúhelníku Vpřípadě ořezávání osově oientovaným pavoúhelníkem stačí vyhodnotit souřadnice vykeslovaného bodu [x,y] vzhledem k hanicím pavoúhelníku. (x>xmin) (x<xmax) (y>ymin) (y<ymax) Y MX Y MIN y X MIN x X MX Test polohy bodu vzhledem ke konvexnímu mnohoúhelníku Nutno učit polohu bodu vůči všem haničním úsečkám olohu bodu a úsečky B lze učit pomocí velikosti vektoového součinu u (B) a v ( ) S=(b x -a x )(p y -a y )-(b y -a y )(p x -a x ) i j k i j S<0 bod leží napavo od úsečky B S=0 bod leží na úsečce B S>0 bod leží nalevo od úsečky B u v = u okud je mnohoúhelník definován posloupností vcholových uzlů poti směu hodinových učiček, potom vyšetřovaný bod leží uvnitř, pokud leží vlevo od všech úseček. po směu hodinových učiček, potom vyšetřovaný bod leží uvnitř, pokud leží vpavo od všech úseček. v X X uy vy uz = bx ax vz px ax by ay py ay k 0 0 řednáška 6 3 řednáška 6 4
2 Test polohy bodu vzhledem k nekonvexnímu mnohoúhelníku o nekonvexní mnohoúhelník je třeba vyhodnotit počet půsečíků polopřímky vedené z vyšetřovaného bodu libovolným směem s hanami mnohoúhelníku. Sudý počet půsečíků bod leží vně Lichý počet půsečíků bod leží uvnitř oblémy nastanou: okud papsek pochází vcholem U úseků ovnoběžných s papskem Řešení: oužití vodoovného papsku + vynechání vodoovných han + ozpojení han Ořezání úsečky (Cohen-Sutheland) Založeno na ozdělení celé plochy USS na jednotlivé oblasti Oblastem je přiřazen 4-bitový kód podle polohy vzhledem k poloze ořezávací oblasti (vlevo, vpavo, dole, nahoře) řednáška 6 5 řednáška 6 6 o každý počáteční (Z) a koncový (K) bod úsečky se učí kód. okud kód(z) kód(k) = 0.. úsečka je celá uvnitř okud kód(z) kód(k) 0.. úsečka je celá mimo okud kód(z) kód(k) = 0.. úsečka pochází více oblastmi, je třeba ji oříznout (ořezávání se povádí dle libovolné jedničky v kódech po Z a K a testy s novými kódy se zopakují). oznámka: Ořezání úsečky (Liang-Basky) Založeno na paametickém vyjádření úsečky Minimalizuje počet zbytečně učených nových haničních bodů Ořezávání pavoúhelníkem, jehož hany jsou ovnoběžné sosami SS ůnik,, ND, & Zobecnění po obecný konvexní mnohoúhelník metoda Cyus-Beck, viz st. 14 Sjednocení,,OR, řednáška 6 7 řednáška 6 8
3 incip Liang-Basky metody (1) Úsečka je definována body se souřadnicemi (x 1, y 1 ) a (x 2, y 2 ). aametické vyjádření úsečky: x =x 1 + u x y =y 1 + u y, kde: paamet u nabývá hodnot 0, 1 x = (x 2 -x 1 ) y = (y 2 -y 1 ) o každý bod úsečky, ležící uvnitř ořezávané oblasti platí: x MIN x 1 + u x x 1 + u x x MX y MIN y 1 + u y y 1 + u y y MX incip Liang-Basky metody (2) řepis uvedených neovností do tvau: up k q k, po k = 1,2,3,4 Definice hodnot p k a q k : k = 1: p 1 = - x q 1 =x 1 -x MIN k = 2: p 2 = x q 2 =x MX -x 1 k = 3: p 3 = - y q 3 =y 1 -y MIN k = 4: p 4 = y q 4 =y MX -y 1 okud někteé p k =0, potom úsečka je ovnoběžná s příslušnou hanou ořezávací oblasti. okud někteé p k <0, potom úsečka (přímka) směřuje dovnitř oblasti (vzhledem na příslušnou hanici ořezávací oblasti). okud někteé p k >0, potom úsečka (přímka) směřuje ven z oblasti (vzhledem na příslušnou hanici ořezávací oblasti). řednáška 6 9 řednáška 6 10 incip Liang-Basky metody (3) incip Liang-Basky metody (4) Význam paametů p k a q k po jednu hanu ořezávací oblasti p 4 =0; q 4 <0 p 4 <0 p 4 >0 u 1 u 2 V případě p k =0 q k <0 leží ovnoběžná úsečka "před" hanicí a je možno ji vynechat. o každou podmínku, kde p k 0, ke možno spočítat paamet k = q k / p k, kteý učuje bod půsečíku úsečky (přímky) s danou hanicí ořezávací oblasti. o všechny podmínky, kde p k <0 (úsečka směřuje dovnitř) učíme paamet k = q k / p k a výsledný paamet u 1 (počátečního bodu ořezané úsečky) vybeeme maximum z vypočítaných hodnot k a hodnoty 0 (nula). o všechny podmínky, kde p k >0 (úsečka směřuje ven) učíme paamet k = q k / p k a výsledný paamet u 2 (koncového bodu ořezané úsečky) vybeeme minimum z vypočítaných hodnot k a hodnoty 1 (jedna). Ořezaná ús. je dána pa. u 1 a u 2, kde u 1 < u 2, u 1 a u 2 0,1. řednáška 6 11 řednáška 6 12
4 říklad Liang-Basky metody Ořezání úsečky (Cyus-Beck) [y] Založeno na paametickém vyjádření úsečky Ořezání obecným konvexním n-úhelníkem 400 [500, 350] očet ořezů závisí na pořadí han n (1) (4) (3) (2) p1 = -350, q1 = -50; = p2 = 350, q2 = 250; = p3 = -300, q3 = -100; = p4 = 300, q4 = 250; = u 2 =min (1; 0,714; 8.333) n 5 V 1 1 V 5 V 4 B 3 V 3 n 3 B 100 [150, 50] [x] u 1 =max (0; 0.143; 0.333) ůvodní úsečka B Ořezaná úsečka 1 B 3 Ořezávací oblast V 1 V 2 V 3 V 4 V 5 5 n 1 V 2 n 2 řednáška 6 13 řednáška 6 14 Cyus-Beck předpoklady Cyus-Beck postup V 1 n 1.V 1 (t C )<0 ředpoklady a základní pavidla: Ořezávací oblast je zadána pomocí oientovaných han, oientace je poti směu hod. uč. Ořezávaná úsečka je oientována B aametické vyjádření (t)= + t (B-) x (t) = x + t(b x - x ) y (t) = y + t(b y - y ) Kolmé vektoy: u. v = 0 Nomálový vekto (otočení v o 90 vpavo): n v, n = ( vy, vx) Tupý úhel: u. v < 0 Ostý úhel: u. v > 0 n v C půsečík hany V 1 V 2 a B t c paamet půsečíku C = ( tc) = + tc( B ) vekto V 1 C musí být kolmý na nom. vekt. n 1 V 1C) = 0 ( tc) V 1) = 0 + tc( B ) V 1) = 0 V 1) n1x( x V 1x) + n1 y( y V 1y) tc = = B ) n1x( Bx x) + n1y( By y) Rozlišujeme případy, kdy B - směřuje dovnitř: -směřuje ven: n 1.V 1 (t C )>0 1 - je ovnoběžná s hanou: B ) = řednáška 6 15 řednáška 6 16 n 1 C V 2 B ) < 0 n.( B ) > 0 0
5 Cyus-Beck stučný algoitmus inicializace paametů začátku a konce úsečky: t Z =0, t K =1 po každou hanu n-úhelníku: učení nomálového vektou n pokud skalání součin n.(b - )<>0 výpočet t C dle směu dovnitř/ven případná změna t Z = max(t Z, t C ) nebo t K = min(t K, t C ) jinak úsečka je ovnoběžná s touto hanou pokud leží v poloovině mimo n-úhelník: lze ořezávanou úsečku zcela vypustit KONEC jinak nemá tato hana na ořezání vliv OKRČ. DLŠÍ HRNOU pokud t Z < t K, potom se keslí ořezaná úsečka (t Z ) (t K ), jinak po ořezu z úsečky nic nezbylo Ořezávání n-úhelníku Ořezávání jednotlivých úseček (tvořících hanici polygonu) pomocí předcházejících algoitmů lze použít pouze po vykeslení obysu ořezaného polygonu. ři požadavku na zachování n-úhelníku (např. z důvodu vyplňování) je nutno použít po ořezávání jiný algoitmus, například poudové ořezávání metodou Sutheland-Hodgman. Ořezání pavoúhlou oblastí algoitmus Sutheland-Hodgman Ořezání libovolným (i nekonvexním n-úhelníkem, včetně dě ) algoitmus Weile-theton řednáška 6 17 řednáška 6 18 Různé vaianty, vznikající při ořezávání n-úhelníhů. Sutheland-Hodgman oudové ořezávání Ořez se povádí 4x, vždy po jednu hanici okna. Je nutno v případě potřeby vytvářet nové haniční úsečky tak, aby oblast zůstala spojitá a uzavřená. ři implementaci lze používat 4x stejný kód (modul) a ořezávání jednotlivými hanami okna ealizovat pomocí otáčení o 90. Modul pobíá postupně všechny aktuální vcholy polygonu. řednáška 6 19 řednáška 6 20
6 Schéma poudového ořezávání pomocí jednotného modulu Modul povede ořezání podle jedné hanice okna. ktualizuje seznam vcholů polygonu. Otáčení se povádí záměnou x-ových a y-ových souřadnic současně se změnou znaménka. x Ořez - Ořez - Ořez - Ořez - x y y X max Y max -X min -Y min řednáška 6 21 řednáška 6 22 ktualizace vcholů Stučný algoitmus modulu Modul povádí vkládání nových vcholů, popřípadě ušení vcholů na základě polohy pávě vyšetřovaného a předcházejícího vcholu vůči hanici. 4 případy polohy, (aktuální) a (předcházející) a/ Vchol se uší a nepostupuje do dalšího zpacování N b/ Vkládá se nový vchol N, vchol postupuje nezměněn c/ Vchol postupuje nezměněn N d/ Vchol je nahazen novým vcholem N vstup: souřadnice vcholů polygonu (pole, seznam), hanice inicializace: Vynulovat pole aktualizovanevcholy, pocetktvcholu = 0 = vcholy[pocet-1] //poslední vchol polygonu postupně po všechny vcholy V i = 1..pocetVcholu poveď pokud hana V i je celá vně, potom nic (pokačuj dalším vcholem) pokud hana V i směřuje z venku dovnitř, potom vypočítej půsečík N s hanicí, do pole přidej N a V i ; pocetktvcholu += 2; pokud hana V i je celá uvnitř, potom přidej do pole V i ; pocetktvcholu++; pokud hana V i směřuje zevnitř ven, potom vypočítej půsečík N s hanicí; do pole přidej N; pocetktvcholu++; = V i řednáška 6 23 řednáška 6 24
7 odpoa v Javě bstaktní třída oint2d Třída oint: souřadnice x, y (int) Třída oint2d.double: souřadnice x, y (double) Třída oint2d.float: souřadnice x, y (float) double distance (oint2d pt) double distance (double px, double py) static double distance(double x1, double y1, double x2, double y2) oint2d p2 = new oint2d.double(20.0, 40.0); double vzdal = p2.distance(10.0, 10.0); odpoa v Javě bstaktní třída Rectangle2D Třída Rectangle: x, y, w, h (int) Třída Rectangle2D.Double: x, y, w, h(double) Třída Rectangle2D.Float: x, y, w, h (float) boolean contains (oint2d p) boolean contains (Rectangle 2D ) Rectangle2D ceateintesection (Rectangle2D ) Rectangle2D ceateunion(rectangle2d ) static void intesect (Rectangle2D sc1, Rectangle2D sc2, Rectangle2D dest) boolean intesects (Rectangle ) boolean intesectsline (Line2D l) boolean isempty () řednáška 6 25 řednáška 6 26 odpoa v Javě Třída olygon (int[] xpoints, int[] ypoints, int npoints) boolean contains (oint p) boolean contains (oint2d p) boolean contains (Rectangle 2D ) boolean intesects (Rectangle ) Složitější úlohy se řeší pomocí ozhaní Shape ozhaní athiteato třídy ea třídy Genealath třídy ath2d řednáška 6 27
Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc
Ořezávání dvourozměrných objektů Počítačová grafika Mgr. Markéta Trnečková, Ph.D. Palacký University, Olomouc Test polohy bodu Osově orientovaná hranice - Cohen-Sutherland p x < xw min... vně p x > xw
Algoritmy pro ořezávání 2D polygonů
Algoritmy pro ořezávání 2D polygonů Využití ořezávání v praxi odstranění částí obrazu nacházejících se mimo zobrazitelnou oblast výstupního zařízení Využití ořezávání v praxi Vyplňování 3D objektů Vytvoření
Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4
Která barva nepatří do základních barev prostoru RGB? a. Černá b. Zelená c. Modrá d. Červená Úloha 2 Jakým minimálním počtem bodů je jednoznačně určena interpolační křivka 5. řádu? a. 6 b. 3 c. 5 d. 7
Přímková a rovinná soustava sil
STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá
Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.
Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu
B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo.
B. Výpočetní geometie a počítačová gafika 9. Pomítání., světlo. Pomítání Převedení 3D objektu do 2D podoby je ealizováno pomítáním, při kteém dochází ke ztátě infomace. Pomítání (nebo též pojekce) je tedy
1.7.2 Moment síly vzhledem k ose otáčení
.7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá
Zobrazení kružnice v pravoúhlé axonometrii. osy, která je normálou roviny dané kružnice; délka hlavní poloosy je rovna poloměru
Geometie Zoazovací metody Zoazení kužnice v pavoúhlé axonometii Zoazení kužnice ležící v souřadnicové ovině Výklad v pavoúhlé axonometii lze poměně snadno sestojit půmět kužnice dané středem a poloměem,
Planimetrie. Přímka a její části
Planimetie Přímka a její části Bod - značí se velkými tiskacími písmeny - bod ozděluje přímku na dvě opačné polooviny Přímka - značí se malými písmeny latinské abecedy nebo AB, AB - přímka je dána dvěma
Vzorce počítačové grafiky
Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u
Moment síly, spojité zatížení
oment síly, spojité zatížení Pet Šidlof TECHNICKÁ UNIVERZITA V LIBERCI akulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ES CZ.1.07/2.2.00/07.0247 Reflexe požadavků
Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách
Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických
Kružnice, úhly příslušné k oblouku kružnice
KRUŽNICE, KRUH Kružnice, úhly příslušné k oblouku kružnice Je dán bod S a kladné číslo r. Kružnice k(s;r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Můžeme také říci. Kružnicí k
Geometrické vyhledávání
mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či
MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ
Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..
Úlohy krajského kola kategorie B
61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé
Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém
Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná
ÚLOHY S POLYGONEM. Polygon řetězec úseček, poslední bod je totožný s prvním. 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU
ÚLOHY S POLYGONEM Polygon řetězec úseček, poslední bod je totožný s prvním 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU 3 úsečky (segmenty) v horní části 2 úsečky ve spodní části
7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.
75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,
5 Algoritmy vyplňování 2D oblastí
5 Algoritmy vyplňování 2D oblastí Studijní cíl Tento blok je věnován základním algoritmům pro vyplňování plošných objektů. V textu bude vysvětlen rozdíl mezi vyplňováním oblastí, které jsou definovány
Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)
Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].
Technická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky KŘIVKY. Pomocný učební text
Technická univezita v Libeci Fakulta příodovědně-humanitní a pedagogická Kateda matematiky a didaktiky matematiky KŘIVKY Pomocný učební text Peta Piklová Libeec, leden 04 V tomto textu si budeme všímat
Výslednice, rovnováha silové soustavy.
Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
VEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
pravidelné konvexní mnohostěny
PLATÓNOVA TĚLESA pavidelné konvexní mnohostěny Platónova tělesa Stěny Počet stěn S vcholů V han H Čtyřstěn tetaed ovnostanný tojúhelník 4 4 6 Šestistěn(Kychle) hexaed čtveec 6 8 12 Osmistěn oktaed ovnostanný
Konvexní obal a množina
Definice M Množina se nazývá konvení, jestliže úsečka spojující libovolné dva její bod je částí této množin, tj. ab, M, t 0, : ta+ ( tb ) M konvení množina a b a b nekonvení množina Definice Konvení obal
Souřadnicové prostory
Prostor objektu Tr. objektu Tr. modelu Prostor scény Souřadnicové prostory V V x, y z x, y z z -z x, y Tr. objektu V =V T 1 T n M Tr. modelu Tr. scény x, y Tr. pohledu Tr. scény Tr. pohledu Prostor pozorovatele
Ř Ú č č ň č š Ú č š ň Č č š Ž č č č ň Č č š š š ň Č Ž Č ň š č č ň Č Ó ň č Ž ů Ž Ž Č Ú Ř č š ň č š č ú úč ň ů ů ž č ů ů ň Č š Ž ň Ž ž ů ž ň Ž č Č š Ž ň Ž šš ž ž š ů ů ů č č ž ů ž Ž č š č č š ú ň ž Ú ů ž
Střední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
Dynamické datové struktury III.
Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované
3.2.8 Oblouková míra. Předpoklady:
3..8 Oblouková mía Předpoklady: Pedagogická poznámka: Tato hodina zabee přibližně jednu a půl vyučovací hodiny. Na 45 minut je možné hodinu zkátit buď vynecháním někteých převodů na konci (vzhledem k tomu,
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík
Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]
1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,
č ú č ů ř é č č ú Úč ř š ř Šč š ř š č Š č ř č ř ř ů č ů é č é ř é č č č ů š ř ů ů é é č ř ř éč ž ř č š č ů š ř č ů č é č ř ř é č é š é ř é ř č Ž ř Š ř š ř é é ř š ř ř ř Ž ř š ř š é é č ů é Ž č č ř ř é
BI-EP1 Efektivní programování 1
BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Evropský
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
Úlohy klauzurní části školního kola kategorie A
64. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1. Určete počet cest délky 14, které vedou po hranách sítě na obrázku z bodu do bodu. élka každé hrany je jedna.. Je dán rovnoběžník,
Konstrukci (jejíčásti) budeme idealizovat jako tuhá (nedeformovatelná) tělesa (v prostoru) nebo desky (v rovině).
. íl působící na tělso/dsku.. Zadání úloh, přdpoklad Úloha: obcněji matmatick popsat mchanické účink atížní na konstukci a účink částí konstukc navájm. Konstukci (jjíčásti) budm idaliovat jako tuhá (ndfomovatlná)
Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1
Kapitola 4 Rasterizace objektů Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na rastrově definované obrazy. Při zobrazení reálného modelu ve světových souřadnicích na výstupní
10. cvičení - LS 2017
10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro
Shodná zobrazení v rovině
Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech
PLANIMETRIE ZÁKLADNÍ POJMY PŘÍMKA A JEJÍ ČÁSTI
Předmět: Ročník: ytvořil: Dtum: MTEMTIK DRUHÝ Mg. Tomáš MŇÁK 17. květn 2012 Název zcovného celku: PLNIMETRIE ZÁKLDNÍ POJMY Plnimetie = geometie v ovině. Zákldními útvy eukleidovské geometie jsou: bod římk
É Ý Ú Ó ď Ý Ý Í ň ř Í É Š Ý Í Ž š ř ď ť Ž ř č š š čš ž ř č ů ď š ů ů řš ž ž ř ž ž č ů č ú ž č ř š ž ů ř ž ž šš Ť ň š ů ť č š ř Í ů ž úč ů ř ř Ž š š č ť úč ů č ď š Š ř ř ř ď ď Í č ž š ůž ř úč ůž č ď ž ž
3.2.2 Shodnost trojúhelníků II
3.. hodnost tojúhelníků II Předpoklady: 30 Pokud mají tojúhelníky speiální vlastnosti, mohou se věty o shodnosti zjednodušit Př. : Zfomuluj věty o shodnosti: a) ovnoamennýh tojúhelníků b) ovnostannýh tojúhelníků
2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.
ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě
Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,
6 Diferenciální operátory
- 84 - Difeenciální opeátoy 6 Difeenciální opeátoy 61 Skalání a vektoové pole (skalání pole) u u x x x Funkci 1 n definovanou v učité oblasti Skalání pole přiřazuje každému bodu oblasti učitou číselnou
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca
Metamorfóza obrázků Josef Pelikán CGG MFF UK Praha
Metamorfóza obrázků 1998-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Morphing 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Metamorfóza obrázků -
č ú ý Ú š ě ě ý ň Ř Č š č č ě é ú č Á ý ě ý ě ě é ý č ý š é ě ň ý ů ž ň ý ě ý ě ý š é č Ů ž ě ý ú č ý ý ů š ň č ž é č ž é ě č ú ý Ú š ě ě Á š ě ý ň Á č Ř ý ů ě ě ě ě ě é ě ě ě ý ě ě ů ýš ě ě š ů ě ý ž
Úlohy domácí části I. kola kategorie A
67. očník Matematické olympiády Úlohy domácí části I. kola kategoie A 1. Pavel střídavě vpisuje křížky a kolečka do políček tabulky (začíná křížkem). Když je tabulka celá vyplněná, výsledné skóe spočítá
Zlín, 23. října 2011
(. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.
Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
Geometrické vyhledání.
Geometrické vyhledání. Ray algoritmus. Winding algoritmus. Lichoběžníkové (trapezoidální) mapy Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta
Funkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Vektorová data Michal Kačmařík, Daniela
Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem
Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A
Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1
Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme
Hydraulika podzemních vod
Hydaulika podzemních vod STOUPACÍ ZKOUŠKY - vyhodnocení stavu po skončení čepací zkoušky - měří se tzv. zbytkové snížení (původní hladina hladina po skončení čepání v libovolném čase po skončení odběu)
5. P L A N I M E T R I E
5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční
Algoritmizace a programování
Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu
Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital
V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
3. přednáška. Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti
Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti 3. přednáška nalezení největšího prvku, druhého nejvyššího prvku, algoritmus shozeného praporku. Algoritmizace
CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
Jak v Javě primitivní datové typy a jejich reprezentace. BD6B36PJV 002 Fakulta elektrotechnická České vysoké učení technické
Jak v Javě primitivní datové typy a jejich reprezentace BD6B36PJV 002 Fakulta elektrotechnická České vysoké učení technické Obsah Celočíselný datový typ Reálný datový typ Logický datový typ, typ Boolean
17 Kuželosečky a přímky
17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x
3.7. Magnetické pole elektrického proudu
3.7. Magnetické pole elektického poudu 1. Znát Biotův-Savatův zákon a umět jej použít k výpočtu magnetické indukce v jednoduchých případech (okolí přímého vodiče, ve středu oblouku apod.).. Pochopit význam
ř ž č š ř ů č ř š ř ů ř ž ř ž ž ř Č Č Č č č č Ž Á ť Č ř ž ž Š Ž Č ř č úč Š Ř Ě ř ó ř ů Š ů ů č š š ů ů š ř ů ř ř ř ř č ž ř ř ž š ř ř č Š Ž ř ř č č Š ř ř č ř č č č š ů ř ř š č ř č ř ř č ú ř š ř Ž ř č Č
Derivace a monotónnost funkce
Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je
č Ž Ř ž ž ž č č Í č ž č ž Í ž č č Č č Š Č č ú ž č Ž Ž Ž č č č Ž Žš č š š Ž Žš šť š č š Ž Ůž č š šš š Ž š šš Í Ž Ž Ž Ž Č Ž č č Ž č Ž ň Ž Ž č Č č č č č Ž š š Ž šš šč Ž š Č Ó č Č č Š Č č Ž Ž Í š č č ó Ž č
P L A N I M E T R I E
M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů
Kopie z www.dschuchlik.cz
ó š ó Ň Ť ú š ú š š š ř Ú ó ú ň ú š řš ř řš ř ú ú ú ú ř ú ň ů ů š ň ú š řš ú ř ó š Ý Á ů ú úř š ň š ú š š š š ťť ř ň ů ř ř ř š ů ů ů řš ř ú ú ř ň ř ů ř ř ú ř ř ú ú ř ř ú ří š š ř ů ú Ú ř ú ÚČ ú ú ú š ů
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
Úhly a jejich vlastnosti
Úhly a jejich vlastnosti Pojem úhlu patří k nejzákladnějším pojmům geometrie. Zajímavé je, že úhel můžeme definovat několika různými způsoby, z nichž má každý své opodstatnění. Definice: Úhel je část roviny
2 Grafický výstup s využitím knihovny
2 Grafický výstup s využitím knihovny Studijní cíl Tento blok je věnován základním principům při vytváření grafického výstupu pomocí standardních metod, které poskytuje grafické rozhraní. V textu budou
CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
Příklady elektrostatických jevů - náboj
lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém
4. Statika základní pojmy a základy rovnováhy sil
4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr
VEKTOR. Vymyslete alespoň tři příklady vektorových a skalárních fyzikálních veličin. vektorové: 1. skalární
VEKTOR Úvod Vektor je abstraktní pojem sloužící k vyjádření jistého směru a velikosti. S vektorovými veličinami se setkáváme například ve fyzice. Jde o veličiny, u nichž je rozhodující nejen velikost,
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
Funkce pro studijní obory
Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
Matematika B 2. Úvodní informace
Matematika B 2 MIROSLAV KUČERA Úvodní informace Kontakt miroslav.kucera@vsfs.czvsfs.cz Studijní středisko Kladno IT oddělení 306B (kanceláře studijního oddělení) Konzultační hodiny Po Pá 8:30 15:00 možno
do strukturní rentgenografie e I
Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka
Časopis pro pěstování mathematiky a fysiky
Časopis po pěstování mathematiky a fysiky Jan Somme Ze školní paxe Časopis po pěstování mathematiky a fysiky, Vol. 26 (1897), No. 1, 57--60 Pesistent URL: http://dml.cz/dmlcz/109192 Tems of use: Union
Ó ú ú ž ř ů ř ž ú ž ř č š ř š Ž č Ž Ž ř ú Ž Ž ň š Ž Š Ž č Ž ň Ž č Ž Š ř řč Ú ř Š ř č č Ž Š č ÚŽ ř Ů Č š Ž Ž ň ř č ř š ř š ř ů Š ř ů ř Ž Ž ú Ó ž ď č š úž Š ů ď ř ř Š Š ď š Š ů ř Š Ž š Ž č ů Š Úč č ů č č
Vyplňování souvislé oblasti
Počítačová grafika Vyplňování souvislé oblasti Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU. Které z následujících tvrzení není pravdivé: a) Princip interpolace je určení
Kristýna Bémová. 13. prosince 2007
Křivky v počítačové grafice Kristýna Bémová Univerzita Karlova v Praze 13. prosince 2007 Kristýna Bémová (MFF UK) Křivky v počítačové grafice 13. prosince 2007 1 / 36 Pojmy - křivky a jejich parametrické
Úlohy domácího kola kategorie B
49. očník Matematické olympiády Úlohy domácího kola kategoie B 1. Po kteá eálná čísla t má funkce f(x) = 5x + 44 + t x 3 x t maximum ovné 0? Daná funkce je lineání lomená, potože obsahuje dva výazy s absolutní
Části kruhu. Předpoklady:
2.10.3 Části uhu Předpolady: 0201002 Př. 1: Na užnici ( ;5cm) leží body,, = 8cm. Uči početně vzdálenost tětivy od středu užnice. pávnost výpočtu zontoluj ýsováním. Naeslíme si obáze a využijeme speciální