Segmentace. Ilona Janáková. Rozvrh přednášky:

Rozměr: px
Začít zobrazení ze stránky:

Download "Segmentace. Ilona Janáková. Rozvrh přednášky:"

Transkript

1 1 / 31 Segmentace Ilona Janáková Rozvrh přednášky: 1. Úvod do segmentace. 2. Segmentace prahováním. 3. Segmentace z obrazu hran. 4. Segmentace z obrazu hran - Houghova transformace.

2 2 / 31 Segmentace Ilona Janáková Rozvrh přednášky: 1. Úvod do segmentace. 2. Segmentace prahováním. 3. Segmentace z obrazu hran. 4. Segmentace z obrazu hran - Houghova transformace.

3 Úvod do segmentace 3 / 31 Cíl segmentace: rozčlent obraz do částí které souvsí s předměty č oblastm reálného světa = oddělení obektů od pozadí každému pxelu e přřazen ndex segmentu představuící určtý obekt v obraze analýza obsahu obrazu obraz chystáme pro další krok = pops redukce dat zednodušení

4 Úvod do segmentace 4 / 31 Segmentace vychází z: globální znalost obrazu barva tvar poloha bod obektu určování hranc mez oblastm určování / vytváření oblastí Výsledek segmentace: by měl být soubor vzáemně se nepřekrývaících oblastí samostatné část homogenní vzhledem k určtým vlastnostem ako např. as barva textura které ednoznačně koresponduí s obekty kompletní segmentace nemusí přímo korespondovat s obekty částečná segmentace záleží na složtost scény na použté metodě na dalších krocích řetězce zpracování Problémy: př procesu pořízení obrazu šum nerovnoměrné osvětlení neednoznačnost obrazových dat složtost scény překrývaící se obekty různé metody nebo stená metoda s různým parametry počátek práh dávaí různé výsledky edna metoda není vhodná pro všechny typy úloh snímky

5 Úvod do segmentace segmentační metody 5 / 31 Segmentace prahováním - prosté - s více prahy - částečné / poloprahování - adaptvní / lokální prahování Hybrdní metody - neuronové sítě - morfologcké operace - ampltudová proekce - Segmentace z obrazu hran edge-based - prahování obrazu hran - sledování hrance - heurstcké sledování hrance - určování hrance s využtím znalost o eí poloze - aktvní kontury - level-set - houghova transformace Znalostní metody knowledgebased - srovnáním se vzorem Metody orentované na regony regon-based - spoování oblastí - štěpení oblastí - štěpení a spoování - watershed - shluková analýza Mean-shft K-means

6 6 / 31 Segmentace Ilona Kalová Rozvrh přednášky: 1. Úvod do segmentace. 2. Segmentace prahováním. 3. Segmentace z obrazu hran. 4. Segmentace z obrazu hran - Houghova transformace.

7 Segmentace prahováním 7 / 31 obekty č oblast sou charakterzovány konstantní odrazvostí č pohltvostí svého povrchu barva as X obekt a pozadí maí rozdílné vlastnost Prahování - bodová asová transformace vstupního obrazu g na výstupní bnární obraz f s prahem T obrazové elementy náležeící obektu as větší než práh maí hodnotu 1 pxely náležeící k pozadí maí hodnotu 0: f 1 0 pro pro g g T T Prahování: prosté s více prahy částečné / poloprahování adaptvní / lokální prahování prahování s hysterezí Způsoby určení prahu: expermentálně z hstogramu procentní ze statstk z globální znalost

8 Segmentace prahováním prosté prahování 8 / 31 orgnál práh = 50 práh = 100 práh = 200

9 9 / 31 Segmentace prahováním prahování s více prahy nak A g pro n A g pro A g pro f n A sou podmnožny asových úrovní 1 práh 2 prahy 3 prahy 9 prahů 19 prahů

10 10 / 31 Segmentace prahováním částečné prahování T g pro T g pro g f 0 T pro g g T pro g f T g pro T T g pro g T g pro f

11 Segmentace prahováním adaptvní prahování 11 / 31 Př adaptvním prahování e práh funkcí polohy v obrazu t. e určován vždy pro část obrazu Problém ak správně určt velkost oblastí Pokud obraz rozdělen do několka daných oblastí mohou vznkat artefakty na přechodech Řešení: - částečně se překrývaící oblast - nterpolace hodnot mez oblastm - lokální oblast kolem každého pxelu výpočetně náročné Vhodné např. pro snímky s nerovnoměrným osvětlením pokud není vyřešeno v rámc předzpracování Orgnální obraz globální práh obraz rozdělen na šestny každý pxel: oblast 11x11pxl stř.hod. oblast 21x21pxl stř.hod. oblast 11x11pxl stř.hod. + 1 pokud malý rozptyl

12 Segmentace prahováním určení prahu 12 / 31 a expermentálně b z hstogramu graf četností výskytu ednotlvých asových úrovní v obrazu vhodné pro b-modální hstogramy se dvěma dobře separovatelným maxmy lokální mnmum mez dvěma maxmy polovna vzdálenost mez dvěma maxmy překrývaící se rozsahy Otsu prahování Otsu prahování mnmalzace vntřního rozptylu w σ T n 0Tσ0T n1tσ1 T w nebo maxmalzace mez-rozptylu b 2 σ T n 0T n1t b μ T μ T T 1 n 0T p 0 N 1 T n1t p T 1 0T T 1 p n 0 0 p N 1 T n1 125 T zvažovaný práh p počet pxelů o dané ntenztě µ 0 a µ 1 průměrná hodnota ntenzty pozadí a popředí σ 0 a σ 0 rozptyly pozadí a popředí 69

13 Segmentace prahováním určení prahu 13 / 31 c procentní vychází z odhadu plochy kterou obekt zauímá vzhledem k celému snímku pokud např. víme že obekt pokrývá 20 % zvolím prahovou hodnotu T tak aby právě 20 % plochy hstogramu mělo úroveň asu menší než T relatvní kumulatvní hstogram např. pokrytí stránky tštěným textem obekt dané velkost v daném zorném pol d ze statstk práh T určen ako statstka z dané oblast např.: střední hodnota medán max+mn/2 Medán oblast 11x11pxl e z globální znalost prahování na základě né aprorní znalost např. barva kůže

14 14 / 31 Segmentace Ilona Kalová Rozvrh přednášky: 1. Úvod do segmentace. 2. Segmentace prahováním. 3. Segmentace z obrazu hran. 4. Segmentace z obrazu hran - Houghova transformace.

15 Segmentace z obrazu hran 15 / 31 Využívá se: hrana nalezena některým z hranových operátorů předzpracování hrance oblastí obektu sestávaí z hran hrana detekována postupně ako kraní pxely oblast s asem ným než e pozadí aprorní nformace víme předem něco o obektech např. přblžný tvar nebo barvu lepší segmentace ověření kvalty segmentace Požadavky: mnmální počet chyb žádná opomenutá významná hrana; žádná detekována místa která hranam nesou přesnost rozdíl mez skutečnou a nalezenou hranou by měl být mnmální ednoznačnost na ednu hranu nesmí reagovat vícenásobně Problémy: absence hran tam kde hrance probíhá výskyt hran tam kde hrance být nemá dvoté hrany Segmentace z obrazu hran edge-based - prahování obrazu hran - sledování hrance - heurstcké sledování hrance - určování hrance s využtím znalost o eí poloze - aktvní kontury - level-set - houghova transformace

16 Segmentace z obrazu hran prahování 16 / 31 hranové operátory Sobel Prewtt Roberts Krsch Laplacán velkost hrany = dference ostrá hrana může s nízkým prahem dávat menší příspěvek

17 Segmentace z obrazu hran Cannyho detektor 17 / 31 Postup který zahrnue několk kroků pro co nelepší splnění požadavků: Doporučený postup: 1. Elmnace šumu nečastě Gaussův fltr 2. Určení velkost a směru gradentů první dervace např. Sobel 3. Ztenčení nalezení lokálních maxm 4. Prahování s hysterezí elmnace nevýznamných hran Prahování s hysterezí: Předem stanoveny dva prahy vyšší T H a nžší T L. hodnoty hran > T H sou hned uznány ako hrany hodnoty < T L nesou uznány v ntervalu <T L ;T H > sou uznány en pokud ž dříve byl uznán ako hrana některý z okolních bodů

18 Segmentace z obrazu hran sledování hrance 18 / 31 není znám tvar hrance en např. barva obektu hrance e hledána postupně obkroužením obektu - čtyřokolí x osmokolí záps hrance např. pomocí Freemanova kódu Algortmus: 1. Procházíme obraz po řádcích dokud nenarazíme na barvu obektu 2. V okolí 3x3 hledáme další elementy obektu nalezený bod se stává novým výchozím 3. Skončíme až pokud se vrátíme do prvního výchozího bodu Záps hrance:

19 19 / 31 Segmentace z obrazu hran heurstcké sledování hrance využívá postupů prohledávání grafů hrany sou spoovány do řetězů lépe odpovídaících průběhu hranc graf = struktura sestávaící z množny uzlů {n } a z orentovaných sponc mez uzly {n n } hrany mohou být ohodnoceny cena - např. velkost změny asu délka hrany atd. generování grafu soubor pravdel na základě údaů o velkost a směru hrany v každém bodě obrazu prohledávání grafu zednodušení ucelení grafu relaxace hran hledání nekratší cesty cesta s nemenší cenou atd. Relaxace hran cílem e vytvořt souvslé hrance všechny vlastnost hrance včetně té zda hrana má č nemá exstovat sou postupně teračním způsobem zpřesňovány dokud není hranový kontext zcela zřemý podle pozce a velkost hran ve vhodně zvoleném okolí se věrohodnost každé hrany buď zvětšue nebo zmenšue Věrohodnost hran: negatvní 1-1 poztvní středně poztvní nemá vlv na relaxac

20 Segmentace z obrazu hran ze znalost o poloze 20 / 31 a máme nformace o pravděpodobné poloze a tvaru hrance skutečná hrance e hledána ako poloha významných hranových buněk v blízkost předpokládaného umístění hrance s podobným směrem nalezené buňky sou proloženy vhodnou aproxmační křvkou b známe počáteční a koncové body hrance teratvně postupně dělíme sponce ž detekovaných sousedních elementů hrance a vyhledáváme další hranční elementy na normálách vedených středy sponc Zlatý řez

21 Segmentace z obrazu hran Aktvní kontury snakes 21 / 31 Metoda postupného tvarování kontur až ke hraně obektu v obrazu: teratvní postup mnmalzace energe aktvní kontura e řízená uzavřená kontura která se deformue vlvem tzv. vntřních obrazových a vněších sl. vntřní síly kontroluí hladkost průběhu ohyb zlom E N obrazové síly směruí tvarování kontury směrem ke hraně obektu E I vněší síly sou výsledkem počátečního umístění kontury E T Kontura - dskrétní sada bodů: x y pro n 01 N pn n n... Výsledná pozce kontury = lokální mnmum energe kontury: E s N n1 E N p E p E p n Exstue mnoho navržených postupů měření výše uvedených energí N n1 I n N n1 T n

22 Segmentace z obrazu hran Level-set 22 / 31 Obdobný přístup ako aktvní kontury - tvar křvky však neměníme přímo ale prostřednctvím level-set funkce level set functon Level-set funkce vícedmenzonální funkce např. tvaru ehlanu kdy řez nulovou hladnou řez v rovně xy zero level set defnue počáteční křvku přřazue každému bodu rovny xy eho výšku u nad nebo pod nulovou hladnou = povrch funkce se postupně adaptue vzhledem k zadaným metrkám křvost a obrazovým gradentům level-set segmentace může být efektvněší pro komplexní obekty se složtým tvary Nahoře: Příklad Level-set funkce vpravo pro uzavřenou 2D křvku C Dole: Počáteční průběžný a koncový stav segmentace testovacích obrázků elpsy metodou Level-set převzato z

23 23 / 31 Segmentace Ilona Kalová Rozvrh přednášky: 1. Úvod do segmentace. 2. Segmentace prahováním. 3. Segmentace z obrazu hran. 4. Segmentace z obrazu hran - Houghova transformace.

24 Segmentace z obrazu hran Houghova transformace 24 / 31 Použtí: metoda pro nalezení obektů v obraze vyhledávání hranc nebo určování orentace obektů pokud známe analytcký pops tvaru hledaného obektu - detekce známého ednoduchého tvaru - přímka kružnce elpsa troúhelník lze ale použít tam kde není možný ednoduchý analytcký pops obektu detekce lbovolného tvaru = zobecněná Houghova transformace generalzed HT nevhodněší aplkace na bnární naprahovaný vyhranovaný snímek Prncp: mapování obrazového prostoru do prostoru parametrů = body se mapuí na křvku a naopak křvky na body sčítací buňky hlasování - sčítaí kolk bodů patří k přímce kružnc = akumulační prostor hledání maxma

25 Houghova transformace detekce přímek 25 / 31 y k x q Rovnce přímky ve tvaru transformace z prostoru xy obrázek na prostor kq vše co patřlo v obrazu edné přímce se mapue v prostoru kq na bod a naopak každý bod se mapue na přímku pro nalezení přímky v obrazu hledáme tedy v prostoru kq průsečík přímek ednodušší řešt pomocí sčítacích buněk příspěvek do bodu [kq] od každé přímky méně vhodná protože ntervalem možných hodnot parametru k směrnce e celá množna reálných čísel

26 Houghova transformace detekce přímek 26 / 31 r x cos y sn Rovnce přímky ve tvaru kde r e délka normály přímky od počátku e úhel mez normálou a osou x přímka se mapue na bod bod na křvku nterval hodnot např. 0;360 a r 0;velkost úhlopříčky obrázku

27 Houghova transformace detekce přímek 27 / 31 orgnální snímek 470x374 pxl naprahovaný Sobel orgnální snímek s nalezeným přímkam Houghův prostor s vyznačeným maxmy Algortmus: 1. Pro všechny body bnárního vyhranovaného snímku I pro které Ix y = 1: a. Pro úhly od 0 do urč r : r x cos y sn - do akumulátoru H o rozměrech na pozc r přčt ednčku 0 :359;0 : 2 x y 2. Nalezn maxmum maxma akumulátoru H 2

28 Houghova transformace detekce kružnc 28 / 31 šedotónový snímek naprahovaný Sobel Houghův prostor s vyznačeným maxmy r = 50 orgnální snímek s nalezeným středy a kružncem nečastě pracue s rovncí: x a y b r nebo parametrckým vyádřením: x a r cos y b r sn hledané parametry sou a b a r => Houghův prostor má dmenz 3 => vzroste výpočetní náročnost výhodou e znalost alespoň ednoho parametru nebo odhad = omezení ntervalu hledání

29 Houghova transformace - zobecnění 29 / 31 pro obekty které není možné ednoduše analytcky popsat pops hrance hledaného vzoru pomocí explctního seznamu LUT look up table všech bodů hrance tvaru pozce všech pxelů vztažená relatvně k něakému referenčnímu bodu např. těžště Vzor - seznam: p 1 : např. x y rozdíl souřadnc nebo r vzdálenost a natočení p 2 : p 3 :.. p n :

30 Houghova transformace - zobecnění 30 / 31 Algortmus: 1.Pro všechny body bnárního snímku I pro které Ix y = 1: a. Pro každý pxel p hrance vzoru pro každou položku seznamu - ze seznamu získe relatvní pozc bodu p od referenčního bodu - přde tento offset k pozc p - nkrementu tuto pozc v akumulátoru 2. Urč lokální maxma v akumulátoru obrázek naznačue ednoduchý případ kdy e uvažována pouze translace vzoru pokud chceme řešt změnu měřítka nebo/a rotac musíme přdat další parametry dmenze vnořené cykly: s scale měřítko natočení celého obektu

31 Houghova transformace výhody X nevýhody 31 / 31 Výhody: málo ctlvá na šum nectlvá k porušení hranc použtelná př částečném zakrytí obektů Nevýhody: problém přesnost - blízké rovnoběžné čáry mohou vlvem dskretzace vytvořt en edno maxmum zkreslení zakřví přímky -> ve výsledku několk maxm = několk přímek tlustá hrana = několk přímek neříká nc o počátku a konc křvek např. získáváme přímky místo úseček pracnost - vícenásobné vnořené cykly = časová náročnost Metody pro snížení výpočetní náročnost: RHT randomzed HT Monte Carlo náhodný výběr bodů pyramdy postupné zpřesňování v zaímavých oblastech - každá další má dvonásobné rozlšení kvadrantové stromy

1. Nejkratší cesta v grafu

1. Nejkratší cesta v grafu 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost

Více

EKONOMICKO-MATEMATICKÉ METODY

EKONOMICKO-MATEMATICKÉ METODY . přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a

Více

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2

ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2 ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

Obsah přednášky 1. Bayesův teorém 6. Naivní Bayesovský klasifikátor (NBK)

Obsah přednášky 1. Bayesův teorém 6. Naivní Bayesovský klasifikátor (NBK) Obsah přednášky 1. Bayesův teorém 2. Brutální Bayesovský klasfkátor (BBK) 3. Mamální aposterorní pravděpodobnost (MA) 4. Optmální Bayesovský klasfkátor (OBK) 5. Gbbsův alortmus (GA) 6. Navní Bayesovský

Více

Dopravní plánování a modelování (11 DOPM )

Dopravní plánování a modelování (11 DOPM ) Department of Appled Mathematcs Faculty of ransportaton Scences Czech echncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 5: FSM: rp dstrbuton Prof. Ing. Ondře Přbyl, Ph.D. Ing.

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více

Statistická energetická analýza (SEA)

Statistická energetická analýza (SEA) Hladna akustckého tlaku buzení harmonckou slou [db] Statstcká energetcká analýza (SA) V současné době exstue řada způsobů, ak řešt vbroakustcké problémy. odobně ako v ných odvětvích nženýrství, také ve

Více

8a.Objektové metody viditelnosti. Robertsův algoritmus

8a.Objektové metody viditelnosti. Robertsův algoritmus 8a. OBJEKOVÉ MEODY VIDIELNOSI Cíl Po prostudování této kaptoly budete znát metody vdtelnost 3D objektů na základě prostorových vlastností těchto objektů tvořt algortmy pro určování vdtelnost hran a stěn

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček Aplkace L-Ma metody na scntgrafcké vyšetření příštítných tělísek P. Karhan, P. Fala, J. Ptáček Vyšetření příštítných tělísek dagnostka hyperparatyreózy: lokalzace tkáně příštítných tělísek neexstence radofarmaka

Více

Základy počítačové grafiky

Základy počítačové grafiky Základy počítačové gafky Pezentace přednášek Ústav počítačové gafky a multmédí Téma přednášky Radozta Motto Světlo se šíří podle fyzkálních zákonů! Př ealstcké zobazení vtuálních počítačových scén e poto

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Zpracování digitalizovaného obrazu (ZDO) - Segmentace II

Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Zpracování digitalizovaného obrazu (ZDO) - Segmentace II Další metody segmentace Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz

Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Markéta Brázdová 1 Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Klíčová slova: odbavování záslek, centrum grafu, vážená excentrcta vrcholů sítě, časová náročnost odbavení záslky, vážená

Více

Zpracování digitalizovaného obrazu (ZDO) - Segmentace

Zpracování digitalizovaného obrazu (ZDO) - Segmentace Zpracování digitalizovaného obrazu (ZDO) - Segmentace úvod, prahování Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování digitalizovaného obrazu

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti

Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti Teore her a ekonomcké rozhodování 10. Rozhodování př stotě, rzku a neurčtost 10.1 Jednokrterální dskrétní model Jednokrterální model rozhodování: f a ) max a Aa, a,..., a ( 1 2 f krterální funkce (zsk,

Více

Jasové transformace. Karel Horák. Rozvrh přednášky:

Jasové transformace. Karel Horák. Rozvrh přednášky: 1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace

Více

Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička

Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady. Milan Růžička Přednášky část 4 Analýza provozních zatížení a hypotézy kumulace poškození, příklady Mlan Růžčka mechanka.fs.cvut.cz mlan.ruzcka@fs.cvut.cz Analýza dynamckých zatížení Harmoncké zatížení x(t) přes soubor

Více

PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO

PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO MAPOVÁNÍ WEBOVÝCH STRÁNEK ŘIMNÁČ MARTIN 1, ŠUSTA RICHARD 2, ŽIVNŮSTKA JIŘÍ 3 Katedra řídcí technky, ČVUT-FEL, Techncká 2, Praha 6, tel. +42 224 357 359, fax. +

Více

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá

Více

Metoda digitalizace starých glóbů respektující jejich kartografické vlastnosti a Virtuální mapová sbírka Chartae-Antiquae.cz

Metoda digitalizace starých glóbů respektující jejich kartografické vlastnosti a Virtuální mapová sbírka Chartae-Antiquae.cz Metoda dgtalzace starých glóbů respektuící ech kartografcké vlastnost a Vrtuální mapová sbírka hartae-antquae.cz Mlan Talch, Klára Ambrožová, Flp Antoš, Ondře Böhm, Jan Havrlant, Lubomír Soukup XXXIV.

Více

n lokální působení různých vnějších faktorů ovlivňujících růst a zánik živých organismů n lokální variace vnitřních proměnných biologických systémů.

n lokální působení různých vnějších faktorů ovlivňujících růst a zánik živých organismů n lokální variace vnitřních proměnných biologických systémů. PROSTOROVÁ AUTOKORELACE V ANALYTICKÉ CHEMII JIŘÍ MILITKÝ, Katedra textlních materálů, Techncká unversta v Lberc, 46 7 Lberec MILAN MELOUN, Katedra analytcké cheme, Unversta Pardubce, Pardubce. Úvod Autokorelace

Více

Statistická šetření a zpracování dat.

Statistická šetření a zpracování dat. Statstcká šetření a zpracování dat. Vyjadřovací prostředky ve statstce STATISTICKÉ TABULKY Typckým vyjadřovacím prostředkem statstky je číslo formalzovaným nástrojem číselného vyjádření je statstcká tabulka.

Více

Umělé neuronové sítě a Support Vector Machines. Petr Schwraz

Umělé neuronové sítě a Support Vector Machines. Petr Schwraz Umělé neuronové sítě a Support Vector Machnes Petr Schraz scharzp@ft.vutbr.cz Perceptron ( neuron) x x x N f() y y N f ( x + b) x vstupy neuronu váhy jednotlvých vstupů b aktvační práh f() nelneární funkce

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOS A SAISIKA Regulární systém hustot Vychází se z: -,, P - pravděpodobnostní prostor -, R neprázdná množna parametrů - X X 1,, náhodný vektor s sdruženou hustotou X n nebo s sdruženou pravděpodobnostní

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Operace s obrazem II

Operace s obrazem II Operace s obrazem II Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova Matematická morfologie Segmentace obrazu Klasifikace objektů

Více

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce

Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce . meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu

Více

Klasifikace a predikce. Roman LUKÁŠ

Klasifikace a predikce. Roman LUKÁŠ 1/28 Klasfkace a predkce Roman LUKÁŠ 2/28 Základní pomy Klasfkace = zařazení daného obektu do sté skupny na základě eho vlastností Dvě fáze klasfkace: I. Na základě trénovacích vzorů (u nchž víme, do aké

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Staré mapy TEMAP - elearnng Modul 4 Kartometrcké analýzy Ing. Markéta Potůčková, Ph.D., 2013 Přírodovědecká fakulta UK v Praze Katedra aplkované geonformatky a kartografe Kartometre a kartometrcké vlastnost

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i. Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n

Více

Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30

Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30 Extrakce obrazových příznaků Roman Juránek Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 30 Motivace Účelem extrakce

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má

Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po

Více

VĚROHODNOST VÝSLEDKŮ PŘI UŽITÍ EXPLORATORNÍ ANALÝZY DAT

VĚROHODNOST VÝSLEDKŮ PŘI UŽITÍ EXPLORATORNÍ ANALÝZY DAT VĚROHODNOST VÝSLEDKŮ PŘI UŽITÍ EXPLORATORNÍ ANALÝZY DAT Mlan Meloun Unverzta Pardubce, Čs. Legí 565, 53 10 Pardubce, mlan.meloun@upce.cz 1. Obecný postup analýzy jednorozměrných dat V prvním kroku se v

Více

Pracovní list č. 6: Stabilita svahu. Stabilita svahu. Návrh či posouzení svahu zemního tělesa. FS s

Pracovní list č. 6: Stabilita svahu. Stabilita svahu. Návrh či posouzení svahu zemního tělesa. FS s Pracovní lst č. 6: Stablta svahu Stablta svahu 1 - máme-l násyp nebo výkop, uvntř svahu vznká smykové napětí - aktvuje se smykový odpor zemny - porušení - na celé smykové ploše se postupně dosáhne maxma

Více

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2 Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky

Více

{ } SYNTÉZA TABULEK PŘECHODŮ 1. NEALGEBRAICKÉ METODY

{ } SYNTÉZA TABULEK PŘECHODŮ 1. NEALGEBRAICKÉ METODY SNTÉZA TABULEK PŘECHODŮ. NEALGEBRAICKÉ METOD a) GINSBURGOVA METODA Využívá tzv. korespondencí mez vstupním a výstupním slovem př dané vstupní a výstupní abecedě. Jnak řečeno, vyhodnocuí se ednotlvé odezvy

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

FERGUSONOVA KUBIKA. ( u) ( ) ( ) X s X s. Kubický spline C 2 má dva stupně volnosti Q 1 Q 2

FERGUSONOVA KUBIKA. ( u) ( ) ( ) X s X s. Kubický spline C 2 má dva stupně volnosti Q 1 Q 2 FERGUSONOVA KUBIKA C F F F ( u) = Q F ( u) + Q F ( u) + Q F ( u) + Q F ( u), u F ( u) = u ( u) = u + ( u) = u u ( u) = u u u + u + u Q Q Q Q C napojení Fergusonových kubk Kubcký splne C má dva stupně volnost

Více

Plánování a rozvrhování. Podmínky pro zdroje. Typy zdrojů. Zdroje. časové vztahy. omezení kapacity zdrojů. Roman Barták, KTIML

Plánování a rozvrhování. Podmínky pro zdroje. Typy zdrojů. Zdroje. časové vztahy. omezení kapacity zdrojů. Roman Barták, KTIML 12 Plánování a rozvrhování Roman Barták, KTIML roman.bartak@mff.cun.cz http://ktml.mff.cun.cz/~bartak Rozvrhování jako CSP Rozvrhovací problém je statcký, takže může být přímo zakódován jako CSP. Splňování

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201

[ ] 6.2.2 Goniometrický tvar komplexních čísel I. Předpoklady: 4207, 4209, 6201 6.. Gonometrcký tvar kompleních čísel I Předpoklad: 07, 09, 60 Pedagogcká poznámka: Gonometrcký tvar kompleních čísel není pro student njak obtížný. Velm obtížné je pro student s po roce vzpomenout na

Více

MANAŽERSKÉ ROZHODOVÁNÍ

MANAŽERSKÉ ROZHODOVÁNÍ MANAŽERSKÉ ROZHODOVÁNÍ Téma 14 POSUZOVÁNÍ A HODNOCENÍ VARIANT doc. Ing. Monka MOTYČKOVÁ (Grasseová), Ph.D. Unverzta obrany Fakulta ekonomka a managementu Katedra voenského managementu a taktky Kouncova

Více

Určení tlouštky folie metodou konvergentního elektronového svazku (TEM)-studijní text.

Určení tlouštky folie metodou konvergentního elektronového svazku (TEM)-studijní text. Určení tlouštky fole metodou konverentního elektronového svazku (TEM)-studjní text. Pracovní úkol: 1) Nastavte a vyfotorafujte snímek dfrakce elektronů v konverentním svazku, který je vhodný pro určení

Více

Monte Carlo metody Josef Pelikán CGG MFF UK Praha.

Monte Carlo metody Josef Pelikán CGG MFF UK Praha. Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt

Přemysl Žiška, Pravoslav Martinek. Katedra teorie obvodů, ČVUT Praha, Česká republika. Abstrakt ALGORITMUS DIFERENCIÁLNÍ EVOLUCE A JEHO UŽITÍ PRO IDENTIFIKACI NUL A PÓLŮ PŘE- NOSOVÉ FUNKCE FILTRU Přemysl Žška, Pravoslav Martnek Katedra teore obvodů, ČVUT Praha, Česká republka Abstrakt V příspěvku

Více

1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem

1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem Kvaternon 2/204, 79 98 79 MATICOVÉ HRY V INŽENÝRSTVÍ JAROSLAV HRDINA a PETR VAŠÍK Abstrakt. Následuící text pokrývá eden z cyklů přednášek předmětu Aplkovaná algebra pro nženýry (0AA) na FSI VUT. Text

Více

1. Sítě se vzájemnými vazbami

1. Sítě se vzájemnými vazbami Obsah 1. Sítě se vzáemným vazbam... 2 1.1 Základní nformace... 2 1.2 Výstupy z učení... 2 1.3 Obecná charakterstka umělých neuronových sítí se vzáemným vazbam... 2 1.4 Hopfeldova síť... 3 1.4.1 Organzační

Více

Analýza nahraditelnosti aktivního systému úsekového měření rychlosti pasivním systémem P. Chmelař 1, L. Rejfek 1,2, M.

Analýza nahraditelnosti aktivního systému úsekového měření rychlosti pasivním systémem P. Chmelař 1, L. Rejfek 1,2, M. Ročník 03 Číslo II Analýza nahradtelnost aktvního systému úsekového měření rychlost pasvním systémem P. Chmelař, L. Refek,, M. Dobrovolný Katedra elektrotechnky, Fakulta elektrotechnky a nformatky, Unverzta

Více

ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ

ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ THE TIME COORDINATION OF PUBLIC MASS TRANSPORT ON SECTIONS OF THE TRANSPORT NETWORK Petr Kozel 1 Anotace: Předložený příspěvek

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

Numerická matematika A

Numerická matematika A Numercká matematka A 5615 A1 Máme dánu soustava lneárních rovnc tvaru AX = B, kde 4 1 A = 1 4 1, B = 1 a Zapíšeme soustavu rovnc AX = B ve tvaru upravíme a následně (L + D + P X = B, DX = (L + P X + B,

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

kamerou. Dle optických parametrů objektivu mohou v získaném obraze nastat geometrická

kamerou. Dle optických parametrů objektivu mohou v získaném obraze nastat geometrická Odstranění geometrických zkreslení obrazu Vstupní obraz pro naše úlohy získáváme pomocí optické soustavy tvořené objektivem a kamerou. Dle optických parametrů objektivu mohou v získaném obraze nastat geometrická

Více

Počítačová grafika III Monte Carlo integrování Přímé osvětlení. Jaroslav Křivánek, MFF UK

Počítačová grafika III Monte Carlo integrování Přímé osvětlení. Jaroslav Křivánek, MFF UK Počítačová grafka III Monte Carlo ntegrování Přímé osvětlení Jaroslav Křvánek, MFF UK Jaroslav.Krvanek@mff.cun.cz Renderng = Integrování funkcí L r ( x, o H ( x L ( x, f r ( x, cos d o Příchozí radance

Více

Rekonstrukce křivek a ploch metodou postupné evoluce

Rekonstrukce křivek a ploch metodou postupné evoluce Rekonstrukce křivek a ploch metodou postupné evoluce Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Evoluce křivek princip evoluce použití evoluce křivky ve

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

2 ÚVOD DO TEORIE PRAVDĚPODOBNOSTI. 2.1 Náhodný jev. π, které je třeba co nejpřesněji a nejúplněji vymezit, a k nimž je třeba výsledky pokusu a

2 ÚVOD DO TEORIE PRAVDĚPODOBNOSTI. 2.1 Náhodný jev. π, které je třeba co nejpřesněji a nejúplněji vymezit, a k nimž je třeba výsledky pokusu a ÚVOD DO TEORIE PRAVDĚPODOBNOSTI.1 Náhodný ev Tato kaptola uvádí souhrn základních pomů a postupů teore pravděpodobnost, které se uplatňuí př rozboru spolehlvost stavebních konstrukcí a systémů. Výklad

Více

M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U

M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U M E T O D Y R O Z P O Z NÁNÍ OB J E K T Ů V O B R A Z U CÍLE LABORTATORNÍ ÚLOHY 1. Seznámení se s metodami rozpoznání objektů v obraze 2. Vyzkoušení detekce objektů na snímcích z kamery a MRI snímku ÚKOL

Více

Sylabus 18. Stabilita svahu

Sylabus 18. Stabilita svahu Sylabus 18 Stablta svahu Stablta svahu Smykové plochy rovnná v hrubozrnných zemnách ev. u vrstevnatého ukloněného podloží válcová v jemnozrnných homogenních zemnách obecná nehomogenní podloží vč. stavebních

Více

Numerické metody optimalizace

Numerické metody optimalizace Numercké metody optmalzace Numercal optmzaton methods Bc. Mloš Jurek Dplomová práce 2007 Abstrakt Abstrakt česky Optmalzační metody představují vyhledávání etrémů reálných funkcí jedné nebo více reálných

Více

KOMPLEXNÍ ČÍSLA (druhá část)

KOMPLEXNÍ ČÍSLA (druhá část) KOMPLEXNÍ ČÍSLA (druhá část) V první kaptole jsme se senáml s algebrackým tvarem komplexního čísla. Některé výpočty s komplexním čísly je však lépe provádět ve tvaru gonometrckém. Pon. V následujícím textu

Více

Úvod Terminologie Dělení Princip ID3 C4.5 CART Shrnutí. Obsah přednášky

Úvod Terminologie Dělení Princip ID3 C4.5 CART Shrnutí. Obsah přednášky Obsah přednášky. Úvod. Termnologe 3. Základní dělení 4. Prncp tvorby, prořezávání a použtí RS 5. Algortmus ID3 6. C4.5 7. CART 8. Shrnutí A L G O RI T M Y T E O R I E Stromové struktury a RS Obsah knhy

Více

ÚLOHY S POLYGONEM. Polygon řetězec úseček, poslední bod je totožný s prvním. 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU

ÚLOHY S POLYGONEM. Polygon řetězec úseček, poslední bod je totožný s prvním. 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU ÚLOHY S POLYGONEM Polygon řetězec úseček, poslední bod je totožný s prvním 6 bodů: X1, Y1 až X6,Y6 Y1=X6, Y1=Y6 STANOVENÍ PLOCHY JEDNOHO POLYGONU 3 úsečky (segmenty) v horní části 2 úsečky ve spodní části

Více

Statika soustavy těles v rovině

Statika soustavy těles v rovině Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M

Více

Plánování a rozvrhování

Plánování a rozvrhování Úprava p ednášky byla podpo ena projektem CZ.2.17/3.1.00/33274, který je fnancován Evropským socálním fondem a rozpo tem hlavního m sta Prahy. Evropský socální fond Praha & EU: Investujeme do vaší budoucnost

Více

Algoritmy a struktury neuropočítačů ASN - P11

Algoritmy a struktury neuropočítačů ASN - P11 Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE. 2013 Radka Luštincová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY BAKALÁŘSKÁ PRÁCE 2013 Radka Luštncová VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Název bakalářské práce: Aplkace řezných

Více

Určování únavových vlastností při náhodné amplitudě zatížení

Určování únavových vlastností při náhodné amplitudě zatížení Úvod klapka podložka žvotnostní test spojení klapka-podložka Požadavek zákazníka: - navrhnout a provést zrychlené komponentní testy spoje klapka-podložka - provést objektvní srovnání různých varant z hledska

Více

L8 Asimilace dat II. Oddělení numerické předpovědi počasí ČHMÚ 2007

L8 Asimilace dat II. Oddělení numerické předpovědi počasí ČHMÚ 2007 L8 Asmlace dat II Oddělení numercké předpověd počasí ČHMÚ 007 Plán přednášky Úvod do analýzy Optmální odhad v meteorolog D případ: demonstrace metod; mult-dmensonální případ; Zavedení předběžného pole;

Více

Řešené příklady ze stavební fyziky

Řešené příklady ze stavební fyziky ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Řešené příklady ze stavební fyzky Šíření tepla konstrukcí, tepelná blance prostoru a vlhkostní blance vzduchu v ustáleném stavu doc. Dr. Ing. Zbyněk

Více

SMART CAR: DETEKCE DOPRAVNÍCH ZNAČEK SMART CAR: TRAFFIC SIGNS DETECTION

SMART CAR: DETEKCE DOPRAVNÍCH ZNAČEK SMART CAR: TRAFFIC SIGNS DETECTION VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

Geometrické vyhledávání

Geometrické vyhledávání mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či

Více

Osově namáhaný prut základní veličiny

Osově namáhaný prut základní veličiny Pružnost a pevnost BD0 Osově namáhaný prut základní velčny ormálová síla půsoící v průřezu osově namáhaného prutu se získá ntegrací normálového napětí po ploše průřezu. da A Vzhledem k rovnoměrnému rozložení

Více

LectureV. April 18, celou historii vývoje škálovacího faktoru a Hubleovy konstanty. Otázkou je, jak určit množství hmoty ve vesmíru.

LectureV. April 18, celou historii vývoje škálovacího faktoru a Hubleovy konstanty. Otázkou je, jak určit množství hmoty ve vesmíru. LectureV Aprl 18, 2016 1 Temná hmota V předchozích lekcích sme ukázal, že pokud známe celkové množství hmoty ve vesmíru a eí složení, známe celou hstor vývoe škálovacího faktoru a Hubleovy konstanty. Otázkou

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad 1 Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských

Více

Porovnání GUM a metody Monte Carlo

Porovnání GUM a metody Monte Carlo Porovnání GUM a metody Monte Carlo Ing. Tomáš Hajduk Nejstota měření Parametr přřazený k výsledku měření Vymezuje nterval, o němž se s určtou úrovní pravděpodobnost předpokládá, že v něm leží skutečná

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

IBLIŽNÝCH HODNOT HLEDANÝCH PARAMETR

IBLIŽNÝCH HODNOT HLEDANÝCH PARAMETR Dokumentace knhovny Spatfg v 1.1 Obsah Spatfg OBSAH... 1 1. ÚVOD... 2 2. DEFINICE PROBLÉMU... 2 3. ZVOLENÁ METODA... 3 3.1. METODA ODDĚLENÝCH PARAMETRŮ TVARU A POLOHY... 3 3.2. ALGORITMUS III... 3 3.2.1.

Více

Proces řízení rizik projektu

Proces řízení rizik projektu Proces řízení rzk projektu Rzka jevy a podmínky, které nejsou pod naší přímou kontrolou a ovlvňují cíl projektu odcylky, předvídatelná rzka, nepředvídatelná rzka, caotcké vlvy Proces řízení rzk sled aktvt,

Více

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ

SIMULACE A ŘÍZENÍ PNEUMATICKÉHO SERVOPOHONU POMOCÍ PROGRAMU MATLAB SIMULINK. Petr NOSKIEVIČ Petr JÁNIŠ bstrakt SIMULCE ŘÍZENÍ PNEUMTICKÉHO SERVOPOHONU POMOCÍ PROGRMU MTL SIMULINK Petr NOSKIEVIČ Petr JÁNIŠ Katedra automatzační technky a řízení Fakulta stroní VŠ-TU Ostrava Příspěvek popsue sestavení matematckého

Více

Matematická morfologie

Matematická morfologie / 35 Matematická morfologie Karel Horák Rozvrh přednášky:. Úvod. 2. Dilatace. 3. Eroze. 4. Uzavření. 5. Otevření. 6. Skelet. 7. Tref či miň. 8. Ztenčování. 9. Zesilování..Golayova abeceda. 2 / 35 Matematická

Více

Vkládání pomocí Viterbiho algoritmu

Vkládání pomocí Viterbiho algoritmu Vkládání pomocí Vterbho algortmu Andrew Kozlk KA MFF UK C Vkládání pomocí Vterbho algortmu Cíl: Využít teor konvolučních kódů. Motvace: Vterbho dekodér je soft-decson dekodér. Každému prvku nosče přřadíme

Více

Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.

Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č. Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova

Více