Cvičení 13 Vícekriteriální hodnocení variant a vícekriteriální programování
|
|
- Přemysl Hruška
- před 6 lety
- Počet zobrazení:
Transkript
1 Cvčení 3 Vícekrterální hodnocení varant a vícekrterální programování Vícekrterální rozhodování ) vícekrterální hodnocení varant konkrétní výčet, seznam varant ) vícekrterální programování varanty ve formě omezuících podmínek (všechny fce lneární vícekrterální lneární programování) Vícekrterální hodnocení varant cíl: ) určení kompromsní varanty ) uspořádání varant ) klasfkace varant do tříd Varanta A domnue varantu B pokud sou všechny krterální hodnoty varanty A lepší nebo steně dobré ako krterální hodnoty varanty B Varanta B domnue varantu A pokud sou všechny krterální hodnoty varanty B lepší nebo steně dobré ako krterální hodnoty varanty A Varanta A e nedomnovaná, pokud v množně rozhodovacích varant neexstue žádná, která by domnovala. Ideální varanta X Bazální varanta Odhady vah krtérí: Metoda pořadí - uspořádat k krtérí od nedůležtěšího po neméně důležté - nedůležtěší: k bodů, pak k- bodů,...atd. neméně důležté krtérum bod - váhy: v p p Bodovací metoda - podobná metodě pořadí, en se předpokládá, že rozhodovatel e schopen přřadt každému krtéru konkrétní počet bodů t. pro -té krtérum p bodů, pak pro váhy opět platí: p - v p Fullerův troúhelník - rozhodovatel obdrží troúhelníkové schéma se všem dvocem krtérí - z každé dvoce zvolí rozhodovatel to důležtěší krtérum (např. zakroužkováním) - např. -té krtérum zakroužkue p krát, a pak pro váhy opět platí: p v p
2 Příklad: Stanovení vah krtérí f počet pracovních sl f 2 výkon v MW f 3 nvestční náklady f 4 provozní náklady f 5 počet evakuovaných obcí př výstavbě f 6 stupeň spolehlvost Metoda pořadí: Krtéra f f 2 f 3 f 4 f 5 f 6 Pořadí Hodnoty Váhy 0,05 0,24 0,29 0,9 0,09 0,4 v() = / ( ) = / 2 = 0,05 v(2) = 5/2 = 0,24.. součet vah e vždy edna!!! Bodovací metoda: Krtéra f f 2 f 3 f 4 f 5 f 6 Body Váhy 0, 0,8 0,29 0,6 0,2 0,4 v() = 30 / ( ) = 30 / 280 = 0, v(2) = 50 / 280 = 0,8...
3 Fullerův troúhelník: počet zatrhnutí ednotlvých krtérí: n() =, n(2) = 4, n(3) = 5, n(4) = 3, n(5) =, n(6) =, n (total) = =5 v() = /5 = 0,07 v(2) = 4/5 = 0,26 v(3) = 0,33 v(4) = 0,20 v(5) = 0,07 v(6) = 0,07 Metody vícekrterálního hodnocení varant: Metoda váženého součtu: - konstruue lneární funkc užtku - nahradt hodnoty krterální matce y transformovaným hodnotam y - pro maxmalzační krtéra: y y H D D - celkový užtek varanty A = vážený součet dílčích užtků ednotlvých krtérí: u(a ), varanty lze pak uspořádat podle klesaících hodnot užtku u(a ) v y
4 Příklad: Metody vícekrterálního hodnocení varant Hodnocení vyspělost zemí střední a východní Evropy dle vybraných krtérí. HDP Export Míra nezaměstnanost MIN/MAX MAX MAX MIN Váhy ČR Polsko Slovensko Součet vah není roven edné třeba transformovat na ednotkový vektor: součet vah = = Váhy Všechna krtéra e vhodné převést na maxmalzační MIN změníme na MAX a hodnoty ve sloupc převedeme tak, že y odečteme od maxma v daném sloupc max ze sloupce matce po úpravě: HDP Export Míra nezaměstnanost MAX MAX MAX Váhy ČR Polsko Slovensko určení horních a dolních varant: D() ,00 H() ,70 H()-D() ,7 Třeba normalzovat matc dle vzorce y D y a dopočítat užtek každé varanty H D HDP Export Míra nezaměstnanost MAX MAX MAX Váhy 0,4348 0,273 0,3478 užtek varanty ČR 0,9999 Polsko
5 Slovensko 0,080 0, , , Úlohy vícekrterálního programování Příklad: Metody vícekrterálního programování z = 0x + 4x 2 MAX z 2 = 2x + 5x 2 MAX za podmínek: 2x + x 2 5 x + x 2 0 x, x 2 0 váhy účelových funkcí : v() = 0,6; v(2) = 0,4 Řešení nalezneme optmum podle neprve podle první účelové funkce : z OPT = 75 optmální hodnota pro druhou účelovou funkc : z 2 OPT = 44 Prncp agregace účelových funkcí: z = 0,6 (0x + 4x 2) / ,4 (2x + 5x 2) / 44 = 0, 0982x + 0,0775x 2 MAX za podmínek 2x + x 2 5 x + x 2 0 x, x 2 0 Optmum této úlohy vektor x = (5,5), z() = 70, z(2) = 35 e to kompromsní řešení výše uvedené úlohy VLP Kompromsní řešení podle mnmální komponenty: - cíl maxmalzovat mnmální (t. nehorší) hodnotu ze všech účelových funkcí z = δ MAX za podmínek: (0x + 4x 2) / 75 δ (2x + 5x 2) / 44 δ 2x + x 2 5 x + x 2 0
6 δ, x, x 2 0 Optmum této úlohy e δ = 0,859, resp. vektor x = (4,07; 5,93), z() = 64,4 a z(2) = 37,79, hodnotu δ lze nterpretova tak, že maxmální odchylka od deálních hodnot obou účelových funkcí e 4,%. Mnmalzace vzdálenost od deálních hodnot: váha (optmum fce účelová fce) mnmalzovat z = 0,6 (75-0x - 4x 2)/75 + 0,4 (44-2x - 5x 2)/44 2x + x 2 5 x + x 2 0 x, x 2 0 optmum: x = (5,5), z() = 70, z(2) = 35
Vícekriteriální rozhodování. Typy kritérií
Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování
MANAŽERSKÉ ROZHODOVÁNÍ
MANAŽERSKÉ ROZHODOVÁNÍ Téma 14 POSUZOVÁNÍ A HODNOCENÍ VARIANT doc. Ing. Monka MOTYČKOVÁ (Grasseová), Ph.D. Unverzta obrany Fakulta ekonomka a managementu Katedra voenského managementu a taktky Kouncova
Metody vícekriteriálního hodnocení variant a jejich využití při výběru produktu finanční instituce
. meznárodní konference Řízení a modelování fnančních rzk Ostrava VŠB-TU Ostrava, Ekonomcká fakulta, katedra Fnancí 8. - 9. září 200 Metody vícekrterálního hodnocení varant a ech využtí př výběru produktu
Teorie her a ekonomické rozhodování. 10. Rozhodování při jistotě, riziku a neurčitosti
Teore her a ekonomcké rozhodování 10. Rozhodování př stotě, rzku a neurčtost 10.1 Jednokrterální dskrétní model Jednokrterální model rozhodování: f a ) max a Aa, a,..., a ( 1 2 f krterální funkce (zsk,
VÍCEKRITERIÁLNÍ ROZHODOVANÍ
VÍCEKRITERIÁLNÍ ROZHODOVANÍ 1 Obsah Typy modelů vícekriteriálního rozhodování Základní pojmy Typy informací Cíl modelů Užitek, funkce užitku Grafické zobrazení Metody vícekriteriální analýzy variant 2
ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ
ČASOVÁ KOORDINACE SPOJŮ VEŘEJNÉ HROMADNÉ DOPRAVY NA ÚSECÍCH DOPRAVNÍ SÍTĚ THE TIME COORDINATION OF PUBLIC MASS TRANSPORT ON SECTIONS OF THE TRANSPORT NETWORK Petr Kozel 1 Anotace: Předložený příspěvek
1. Nejkratší cesta v grafu
08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost
Lokace odbavovacího centra nákladní pokladny pro víkendový provoz
Markéta Brázdová 1 Lokace odbavovacího centra nákladní pokladny pro víkendový provoz Klíčová slova: odbavování záslek, centrum grafu, vážená excentrcta vrcholů sítě, časová náročnost odbavení záslky, vážená
EKONOMICKO-MATEMATICKÉ METODY
. přednáška EKONOMICKO-MATEMATICKÉ METODY Ekonomcko matematcké metody (též se užívá název operační analýza) sou metody s matematckým základem, využívané především v ekonomcké oblast, v oblast řízení a
Vícekriteriální programování příklad
Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)
REGRESNÍ ANALÝZA. 13. cvičení
REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká
APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU
APLIKACE MATEMATICKÉHO PROGRAMOVÁNÍ PŘI NÁVRHU STRUKTURY DISTRIBUČNÍHO SYSTÉMU APPLICATION OF MATHEMATICAL PROGRAMMING IN DESIGNING THE STRUCTURE OF THE DISTRIBUTION SYSTEM Martn Ivan 1 Anotace: Prezentovaný
Pomocné texty pro přípravu ke státním zkouškám
Pomocné texty pro přípravu ke státním zkouškám Jndřch Klapka, Vítězslav Ševčík 1. března 2014 15 Lneární programování, smplexová metoda, způsoby převádění optmalsačního problému na kanoncký tvar (Zde e
ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)
NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než
1. Úvod. Cílem teorie her je popsat situaci, která nás zajímá, jako hru. Klasickým případem
Kvaternon 2/204, 79 98 79 MATICOVÉ HRY V INŽENÝRSTVÍ JAROSLAV HRDINA a PETR VAŠÍK Abstrakt. Následuící text pokrývá eden z cyklů přednášek předmětu Aplkovaná algebra pro nženýry (0AA) na FSI VUT. Text
Postupy při hodnocení variant a výběru nejvhodnějšího řešení. Šimon Kovář Katedra textilních a jednoúčelových strojů
Postupy při hodnocení variant a výběru nejvhodnějšího řešení Šimon Kovář Katedra textilních a jednoúčelových strojů Znáte nějaké postupy hodnocení variant řešení? Vícekriteriální rozhodování Při výběru
SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.
SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí
ý ď Í Ž ú Ž é š é Š Ž Ú ú ú ú š é Š Ž Í Ú ú Í ú ú š é Ž Ú ú ú ý ú ť é ž é Ž ú ó ý ý Ž š é š é Ú ú ý ú ť ú ť ý Ž Í ú ý ů é ý Ž É ú ý ú ů ž ž š ú Í š ý ú ÚÁ Ú é ž ý Ú Ě ú ó ý ý ů Ž ú Ž é Ý Ž Ž Ž Í Ú Ž é
Matematické metody rozhodování
Mateatcké etody rozhodování Lteratra: [] J. Fotr, M. Píšek: Eaktní etody ekonockého rozhodování. Acadea, Praha 986. [2] J. Fotr, J. Dědna: Manažerské rozhodování. Skrpta VŠE, Praha 993. [3] R. Hšek, M.
Využití logistické regrese pro hodnocení omaku
Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost
2 Rozhodovací problém
Rozhodovaí problém Rozhodovaí problém je problém s víe možným řešením. Jde tedy o problémy se kterým se setkáváme v běžném žvotě. Základním krokem každého rozhodování je proes volby, tedy poszování jednotlvýh
7 Kardinální informace o kritériích (část 1)
7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru
VÝZNAM TEORIE DUALITY V OPERAČNÍ ANALÝZE THEORY OF DUALITY IN OPERATIONAL ANALYSIS. ZÍSKAL Jan. Abstract
VÝZNAM EORIE DUALIY V OPERAČNÍ ANALÝZE HEORY OF DUALIY IN OPERAIONAL ANALYSIS ZÍSKAL Jan Abstract hs paper summarzes knowledge from lterature and results of research n dual theor at the Department of sstems
Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2
Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky
9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese
cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování
Dopravní plánování a modelování (11 DOPM )
Department of Appled Mathematcs Faculty of ransportaton Scences Czech echncal Unversty n Prague Dopravní plánování a modelování (11 DOPM ) Lekce 5: FSM: rp dstrbuton Prof. Ing. Ondře Přbyl, Ph.D. Ing.
Regresní a korelační analýza
Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska
Úvod Terminologie Dělení Princip ID3 C4.5 CART Shrnutí. Obsah přednášky
Obsah přednášky. Úvod. Termnologe 3. Základní dělení 4. Prncp tvorby, prořezávání a použtí RS 5. Algortmus ID3 6. C4.5 7. CART 8. Shrnutí A L G O RI T M Y T E O R I E Stromové struktury a RS Obsah knhy
ELEKTRONICKÉ OBCHODOVÁNÍ - SROVNÁNÍ ZEMÍ EU V LETECH S VYUŽITÍM METOD VÍCEKRITERIÁLNÍHO HODNOCENÍ VARIANT
ELEKTRONICKÉ OBCHODOVÁNÍ - SROVNÁNÍ ZEMÍ EU V LETECH 2008-2009 S VYUŽITÍM METOD VÍCEKRITERIÁLNÍHO HODNOCENÍ VARIANT Martna Kuncová ÚVOD Internet e v dnešní době slovem, které bývá zmňováno v souvslost
VYSOKÉ U ENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ U ENÍ TECHNICKÉ V BRN BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS MATEMATICKÝ MODEL ROZPO TU MATHEMATICAL
Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.
Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10
SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regulární systém hustot Vychází se z: -,, P - pravděpodobnostní prostor -, R neprázdná množna parametrů - X X 1,, náhodný vektor s sdruženou hustotou X n nebo s sdruženou pravděpodobnostní
4 Kriteriální matice a hodnocení variant
4 Kriteriální matice a hodnocení variant V teorii vícekriteriálního rozhodování pracujeme s kritérii, kterých je obecně k, a s variantami, kterých je obecně p. Hodnotu, které dosahuje varianta i pro j-té
Metody výběru variant
Metody výběru variant Používají se pro výběr v případě více variant řešení stejného problému Lze vybírat dle jednoho nebo více kritérií V případě více kritérií mohou mít všechna stejnou důležitost nebo
MULTIKRITERIÁLNÍ ROZHODOVÁNÍ KOMPLEXNÍ HODNOCENÍ ALTERNATIV
PŘEDNÁŠKA 6 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ KOMPLEXNÍ HODNOCENÍ ALTERNATIV Multikriteriální rozhodování Možnosti řešení podle toho, jaká je množina alternativ pokud množina alternativ X je zadaná implicitně
3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
Umělé neuronové sítě a Support Vector Machines. Petr Schwraz
Umělé neuronové sítě a Support Vector Machnes Petr Schraz scharzp@ft.vutbr.cz Perceptron ( neuron) x x x N f() y y N f ( x + b) x vstupy neuronu váhy jednotlvých vstupů b aktvační práh f() nelneární funkce
Pružnost a plasticita II
Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz
Rozhodovací procesy 8
Rozhodovací procesy 8 Rozhodování za jistoty Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 VIII rozhodování 1 Rozhodování za jistoty Cíl přednášky 8: Rozhodovací analýza Stanovení
VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH
VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH THE CHOICE OF EVALUATION CRITERIA IN PUBLIC PROCUREMENT Martn Schmdt Masarykova unverzta, Ekonomcko-správní fakulta m.schmdt@emal.cz Abstrakt: Článek zkoumá
4EK201 Matematické modelování. 10. Teorie rozhodování
4EK201 Matematické modelování 10. Teorie rozhodování 10. Rozhodování Rozhodování = proces výběru nějaké možnosti (varianty) podle stanoveného kritéria za účelem dosažení stanovených cílů Rozhodovatel =
ANTAGONISTICKE HRY 172
5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí
NÁVRH MATEMATICKÉHO MODELU PRO OPTIMALIZACI VYTVÁŘENÍ SMĚSÍ SPALITELNÝCH ODPADŮ PRO SPALOVNY. PETR BYCZANSKI a a KAREL OBROUČKA b.
Chem. Lsty 101, 668 67 (007) Laboratorní přístroe a postupy NÁVRH MATEMATICKÉHO MODELU PRO OPTIMALIZACI VYTVÁŘENÍ SMĚSÍ SPALITELNÝCH ODPADŮ PRO SPALOVNY PETR BYCZANSKI a a KAREL OBROUČKA b a Ústav geonky
Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl
Optimalizace úvěrových nabídek EmbedIT 7.11.2013 Tomáš Hanžl Obsah Spotřebitelský úvěr Popis produktu Produktová definice v HC Kalkulace úvěru Úloha nalezení optimálního produktu Shrnutí Spotřebitelský
Rozhodovací procesy v ŽP VÍCEKRITERIÁLNÍ HODNOCENÍ
Rozhodovací procesy v ŽP Variantní řešení Metoda funkce užitku (vyhodnocení vhodnosti variant) katalog kritérií váha kritérií VÍCEKRITERIÁLNÍ transformační funkce HODNOCENÍ Katedra hydromeliorací a krainného
vektor a vrátili jiný vektor. Měli-li jsme jistou pozorovatelnou A, dostali jsme jejím změřením
Operátor hustoty Popsueme-l vývo uzavřeného kvantového systému, vystačíme s většnou s pomem čstého stavu. Jedná se o vektor v Hlbertově prostoru H, který e danému kvantovému systému přdružen. Na daném
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
MATEMATICKÁ TEORIE ROZHODOVÁNÍ
MTMTICKÁ TORI ROZODOVÁNÍ odklady k soustředění č. 3 ráce s neurčtostí Většna našch znalostí o reálném světě je zatížena ve větší č menší míře neurčtostí. Na druhou stranu, schopnost rozhodovat se v stuacích,
7. přednáška Systémová analýza a modelování. Přiřazovací problém
Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů
ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB. Vladimír Hanta 1, Ivan Gros 2
ŘEŠENÍ PROBLÉMU LOKALIZACE A ALOKACE LOGISTICKÝCH OBJEKTŮ POMOCÍ PROGRAMOVÉHO SYSTÉMU MATLAB Vladmír Hanta 1 Ivan Gros 2 Vysoká škola chemcko-technologcká Praha 1 Ústav počítačové a řídcí technky 2 Ústav
Obsah přednášky 1. Bayesův teorém 6. Naivní Bayesovský klasifikátor (NBK)
Obsah přednášky 1. Bayesův teorém 2. Brutální Bayesovský klasfkátor (BBK) 3. Mamální aposterorní pravděpodobnost (MA) 4. Optmální Bayesovský klasfkátor (OBK) 5. Gbbsův alortmus (GA) 6. Navní Bayesovský
VŠB - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky. Diplomová práce. 2014 Michal Běloch
VŠB - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky Katedra aplkované matematky Dplomová práce 204 Mchal Běloch VŠB - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky Katedra
2. Posouzení efektivnosti investice do malé vtrné elektrárny
2. Posouzení efektvnost nvestce do malé vtrné elektrárny Cíle úlohy: Posoudt ekonomckou výhodnost proektu malé vtrné elektrárny pomocí základních metod hodnocení efektvnost nvestních proekt ako sou metoda
podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y
4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.
Optimalizační přístup při plánování rekonstrukcí vodovodních řadů
Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT
ení spolehlivosti elektrických sítís
VŠB - TU Ostrava Fakulta elektrotechniky a informatiky Katedra elektroenergetiky, Katedra informatiky Inteligentní metody pro zvýšen ení spolehlivosti elektrických sítís (Program MCA8 pro výpočet metodami
1 Měření paralelní kompenzace v zapojení do trojúhelníku a do hvězdy pro symetrické a nesymetrické zátěže
1 Měření paralelní kompenzace v zapoení do troúhelníku a do hvězdy pro symetrické a nesymetrické zátěže íle úlohy: Trofázová paralelní kompenzace e v praxi honě využívaná. Úloha studenty seznámí s vlivem
PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
Softwarová podpora matematických metod v ekonomice a řízení
Softwarová podpora matematckých metod v ekonomce a řízení Petr Sed a Opava 2013 Hrazeno z prostředků proektu OPVK CZ.1.07/2.2.00/15.0174 Inovace bakalářských studních oborů se zaměřením na spoluprác s
6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu
6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a
minimalizaci vzdálenosti od ideální varianty
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Metody vícekriteriálního rozhodování založené na minimalizaci vzdálenosti od ideální
Podmíněná pravděpodobnost, spolehlivost soustav
S1 odmíněná pravděpodobnost, spolehlvost soustav odmíněná pravděpodobnost, spolehlvost soustav Lbor Žák odmíněná pravděpodobnost Nechť,, 0, podmíněná pravděpodobnost evu vzhledem k evu : S akou pravděpodobností
LINEÁRNÍ PROGRAMOVÁNÍ
LINEÁRNÍ PROGRAMOVÁNÍ Lneární programování e druh matematckého programování. Matematcký model se skládá z:. účelové funkce. omezuících podmínek (vlastní omezení a podmínk nezápornost) Účelová funkce omezuící
Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.
Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky
Pružnost a plasticita II
Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 000/00 Michal Marvan 3. Matice lineárního zobrazení V této přednášce budeme používat indexy dvoího druhu:
{ } SYNTÉZA TABULEK PŘECHODŮ 1. NEALGEBRAICKÉ METODY
SNTÉZA TABULEK PŘECHODŮ. NEALGEBRAICKÉ METOD a) GINSBURGOVA METODA Využívá tzv. korespondencí mez vstupním a výstupním slovem př dané vstupní a výstupní abecedě. Jnak řečeno, vyhodnocuí se ednotlvé odezvy
Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r
Simplexová metoda Simplexová metoda, je jedním ze způsobů, jak řešit úlohy lineárního programování. Tato metoda vede k cíly, nelezení optimálního řešení, během konečného počtu kroků, pokud se při prvním
Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.
Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n
VÍCEKRITERIÁLNÍ VÝBĚR PROJEKTŮ DO PORTFOLIA MULTICRITERIAL PROJECTS SELECTION INTO THE PORTFOLIO
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY Ing. Petr Pňos VÍCEKRITERIÁLNÍ VÝBĚR PROJEKTŮ DO PORTFOLIA MULTICRITERIAL PROJECTS SELECTION INTO THE PORTFOLIO
Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů
Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech
SW aplikace MOV přednášky
SW aplace MOV Šubrt KOSA Systémová podpora proetů Teore grafů Proetové řízení I, II zápočet: alespoň bodů z průběžných testů 75% účast na cvčení obhaoba proetů v MS Proect pef.czu.cz/osa Témata. :. seznámení
4EK211 Základy ekonometrie
4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 8 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 7 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,
Zadání příkladů. Zadání:
Zdání příkldů Zdání: ) Popšte oblst vužtí plánovných expermentů ) Uveďte krtér optmlt plánů ) Co sou Hdmrdov mtce ké mí vlstnost? ) Co sou. fktorové plán k e lze vužít? 5) Blok čtverce - oblst ech vužtí
Operační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu.
Operační výzkum Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
Vícekriteriální rozhodování za jistoty
Kapitola 1 Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou
MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE
OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování
Teoretický souhrn k 2. až 4. cvičení
SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko
Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly
Plánování proektu 3. dubna 2018 1 Úvod 2 Reprezentace proektu 3 Neomezené zdroe 4 Variabilní doba trvání 5 Přidání pracovní síly Problémy plánování proektu Zprostředkování, instalace a testování rozsáhlého
Chemické reaktory. Chemické reaktory. Mikrokinetika a Makrokinetika. Rychlost vzniku složky reakcí. Rychlost reakce
» Počet fází» homogenní» heteogenní (víefázové)» Chemká eake» nekatalytké» katalytké» boeaktoy (fementoy)» Chaakte toku» deálně míhané» s pístovým tokem» s nedokonalým míháním Mkoknetka a Makoknetka» Výměna
Sdílení tepla. Úvod - Přehled. Sdílení tepla mezi termodynamickou soustavou a okolím je podmíněno rozdílností teplot soustavy T.
7.4.0 Úvod - Přehled Sdílení tepla Sdílení tepla mez termodynamckou soustavou a okolím je podmíněno rozdílností teplot soustavy T s a okolí T o. Teplo mez soustavou a okolím se sdílí třem základním způsoby:
PE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová
PE 30 Podiková ekoomika Garat: Eva KISLINGEROVÁ Téma Metody mezipodikového srováváí Eva Kisligerová Téma Eva Kisligerová Vysoká škola ekoomická v Praze 003 - Mezipodikové srováváí Poprvé 956- koferece
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN
ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší
K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR
K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR Vlastimil Kratochvíl * Příspěvek obsahuje popis vlastností některých postupů, využitelných pro transformaci souřadnic mezi geodetickými systémy
VZÁJEMNÁ POLOHA DVOU PŘÍMEK
VZÁJEMNÁ POLOHA DVOU PŘÍMEK VZÁJEMNÁ POLOHA DVOU PŘÍMEK p: a x b y c 0 q: a x b y c 0 ROVNOBĚŽNÉ PŘÍMKY (RŮZNÉ) nemají žádný společný bod, můžeme určit jejich vzdálenost, jejich odchylka je 0. Normálové
PROBLEMATIKA OCEŇOVÁNÍ NEDODANÉ ENERGIE V PRŮMYSLU
Seres on Advanced Economc Issues Faculty of Economcs, VŠB-TU Ostrava Lukáš Prokop Zdeněk Medvec Zdeněk Zmeškal PROBLEMATIKA OCEŇOVÁNÍ NEDODANÉ ENERGIE V PRŮMYSLU Ostrava, 2009 Lukáš Prokop & Zdeněk Medvec
skladbu obou směsí ( v tunách komponenty na 1 tunu směsi):
Klíčová slova: simplexová metoda 1 Simplexová metoda Postup výpočtu: 1. Nalezení výchozího řešení. 2. Test optima: pokud je řešení optimální výpočet končí, jinak krok 3. 3. Iterační krok, poté opět test
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
METODIKA STANOVENÍ DÉLKY A ROZSAHU PRŮZKUMŮ CHOVÁNÍ ÚČASTNÍKŮ SILNIČNÍHO PROVOZU S OHLEDEM NA EFEKTIVNÍ VYNAKLÁDÁNÍ FINANČNÍCH PROSTŘEDKŮ
METODIKA STANOVENÍ DÉLKY A ROZSAHU PRŮZKUMŮ CHOVÁNÍ ÚČASTNÍKŮ SILNIČNÍHO PROVOZU S OHLEDEM NA EFEKTIVNÍ VYNAKLÁDÁNÍ FINANČNÍCH PROSTŘEDKŮ Centrum dopravního výzkumu, v.v.. výzkumná, vývoová a expertní
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Příklady modelů lineárního programování
Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených
Výběr lokality pro bydlení v Brně
Mendelova univerzita v Brně Provozně ekonomická fakulta Výběr lokality pro bydlení v Brně Projekt do předmětu Optimalizační metody Martin Horák Brno 5 Mendelova univerzita v Brně Provozně ekonomická fakulta
Postup prací při sestavování nároků vlastníků
Postup prací při sestavování nároků vlastníků Obsah 1. Porovnání výměr... 1 2. Výpočet opravného koeficientu... 2 3. Výpočet výměr podle BPEJ... 2 4. Výpočet vzdálenosti... 2 5. Sestavení nárokového listu...
PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO
PROBLEMATIKA INTELIGENTNÍHO AUTOMATICKÉHO MAPOVÁNÍ WEBOVÝCH STRÁNEK ŘIMNÁČ MARTIN 1, ŠUSTA RICHARD 2, ŽIVNŮSTKA JIŘÍ 3 Katedra řídcí technky, ČVUT-FEL, Techncká 2, Praha 6, tel. +42 224 357 359, fax. +
Jednokriteriální rozhodování za rizika a nejistoty
Jeokrterálí rozoováí za rzka a estoty U eokrterálíc úlo e vžy pouze eo krtérum optmalty, a to buď maxmalzačí ebo mmalzačí. araty rozoováí sou zaáy mplctě - pomíkam, které musí být splěy (vz úloy leárío
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
11 Analýza hlavních komponet
11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti