Hodnocení únavové odolnosti svařovaných konstrukcí

Podobné dokumenty
Přístupy predikce únavové životnosti svařovaných konstrukcí

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

Navrhování konstrukcí z korozivzdorných ocelí

IOK L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3. Materiál. Institut ocelových konstrukcí, s.r.o

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN A ASME

12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK.

Výpočet skořepiny tlakové nádoby.

POSOUZENÍ ŽIVOTNOSTI SVAŘOVANÉ ŽEBROVANÉ HŘÍDELE GENERÁTORU

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky

České vysoké učení technické v Praze, Fakulta strojní. Pevnost a životnost Jur II. Pevnost a životnost. Jur II

Hliníkové a nerezové konstrukce

Nelineární problémy a MKP

MOŽNOSTI OPRAVY VAD KOTLOVÝCH TĚLES VE SVARECH PLÁŠŤ - NÁTRUBEK

Aktuální trendy v oblasti modelování

Dynamická pevnost a životnost Přednášky

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM

Část 5.8 Částečně obetonovaný spřažený ocelobetonový sloup

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

Pevnost a životnost Jur III

KONTROLA PEVNOSTI KOSTRY KAPOTY DIESEL ELEKTRICKÉ LOKOMOTIVY

OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )

Příloha č. 1. Pevnostní výpočty

Část 3: Analýza konstrukce. DIF SEK Část 3: Analýza konstrukce 0/ 43

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza modelu s vrubem

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2

ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

VYZTUŽOVÁNÍ PORUCHOVÝCH OBLASTÍ ŽELEZOBETONOVÉ KONSTRUKCE: NÁVRH VYZTUŽENÍ ŽELEZOBETONOVÉHO VAZNÍKU S VELKÝM OTVOREM

Tvorba výpočtového modelu MKP

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

Mechanika s Inventorem

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM

Náhradní ohybová tuhost nosníku

Nová konstrukce srdcovky s kuželovými vložkami

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha

Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování

Pevnost a životnost Jur III

Posouzení piloty Vstupní data

MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM

Pojednání ke státní doktorské zkoušce. Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE

Příloha-výpočet motoru

Posouzení mikropilotového základu

SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

Kontraktantní/dilatantní

1 Použité značky a symboly

Výpočtová i experimentální analýza vlivu vrubů na omezenou životnost součástí

Šroubovaný přípoj konzoly na sloup

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

10. Elasto-plastická lomová mechanika

5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík

I. Přehled norem pro ocelové konstrukce ČSN EN Úvod

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

1 Úvod do konstruování 3 2 Statistické zpracování dat 37 3 Volba materiálu 75 4 Analýza zatížení a napětí Analýza deformací 185

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku

ROZVOJ CREEPOVÉ DEFORMACE A POŠKOZENÍ KOMORY PŘEHŘÍVÁKU Z CrMoV OCELI

5 Analýza konstrukce a navrhování pomocí zkoušek

FEM ANALYSIS OF HOSE SPRNIG CLAMP DEFORMATION BEHAVIOUR

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Prvky betonových konstrukcí BL01 3. přednáška

POSUDEK POLOTUHÝCH STYČNÍKŮ METODOU SBRA

Posouzení a optimalizace nosného rámu studentské formule

Dynamická pevnost a životnost Přednášky

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica)

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

Libor Kasl 1, Alois Materna 2

TA Sanace tunelů - technologie, materiály a metodické postupy Zesilování Optimalizace

Mechanika s Inventorem

Prvky betonových konstrukcí BL01 3. přednáška

Sylabus přednášek OCELOVÉ KONSTRUKCE. Princip spolehlivosti v mezních stavech. Obsah přednášky. Návrhová únosnost R d (design resistance)

Výpočtové a experimentální řešení provozní pevnosti a únavové životnosti karosérií trolejbusů a autobusů

Martin NESLÁDEK. 14. listopadu 2017

Dřevo hoří bezpečně chování dřeva a dřevěných konstrukcí při požáru

Výzkumné centrum spalovacích motorů a automobilů Josefa Božka - 5. kolokvium Josefa Božka 2009, Praha,

MKP v Inženýrských výpočtech

Použitelnost. Žádné nesnáze s použitelností u historických staveb

Novinky v ocelových a dřevěných konstrukcích se zaměřením na styčníky. vrámci prezentace výstupů Evropského projektu INFASO + STYČNÍKY KULATIN

HODNOCENÍ PŘÍPUSTNOSTI VAD MONTÁŽNÍCH SVARŮ HORKOVODŮ. Ondrej Bielak, BiSAFE, s.r.o., Malebná 1049, Praha 4,,

133YPNB Požární návrh betonových a zděných konstrukcí. 4. přednáška. prof. Ing. Jaroslav Procházka, CSc.

PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ

Sylabus přednášek OCELOVÉ KONSTRUKCE. Postupná plastifikace I průřezu. Obsah přednášky. Příklad využití klasifikace spojitý nosník.

Kritéria porušení laminy

Prvky betonových konstrukcí BL01 5. přednáška

ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC

Summer Workshop of Applied Mechanics. Vliv mechanického zatížení na vznik a vývoj osteoartrózy kyčelního kloubu

Jednoduchá metoda pro návrh ocelobetonového stropu

HODNOCENÍ PEVNOSTI A ŽIVOTNOSTI ŠROUBŮ DLE NORMY ASME BPV CODE, SECTION VIII, DIVISION 2

ÚVOD DO MODELOVÁNÍ V MECHANICE

8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

Problematika navrhování železobetonových prvků a ocelových styčníků a jejich posuzování ČKAIT semináře 2017

OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T APLIKOVANÁ MECHANIKA. Teorie pružnosti

Transkript:

Hodnocení únavové odolnosti svařovaných konstrukcí Jurenka Josef, Ph.D. Odbor pružnosti a pevnosti Ústav mechaniky, biomechaniky a mechatroniky Fakulta strojní, ČVUT v Praze Josef.jurenka@fs.cvut.cz TechSoft Engineering, spol. s r.o. jurenka@techsoft-eng.cz

Obsah 1) Svařované konstrukce a metody predikce životnosti 2) Využití MKP při predikci únavového poškození a) Predikce únavové životnosti na základě nominálních napětí b) Predikce únavové životnosti na základě hot-spot napětí c) Predikce únavové životnosti na základě vrubových elastických napětí v koření/patě svaru d) Predikce únavové životnosti na základě lokálních elastických napětí v koření/patě svaru 3) Aplikace programů ANSYS při predikci únavového poškození svařovaných konstrukcí - ANSYS ncode DesignLife SEAM WELD, SPOT WELDS 2

1) Svařované konstrukce a metody predikce životnosti 3

Zvláštnosti svařovaných konstrukcí Nehomogenity materiálu: Mikrotrhliny, dutiny, neprůvary, přeložky, výpaly. Zbytková napětí v povrchové vrstvě: V oblasti svaru dosahují až meze kluzu a prudce klesají v jeho okolí. Geometrie svaru: Poloměry v patě a u kořene svaru, sklon obrysu svaru. Tyto vlivy se zohledňují statistickým vyhodnocením únavových zkoušek, zkoušky na reálných vzorcích předpokládají, že uvedené vlivy jsou zahrnuty a pokryty křivkami životnosti. Specifika modelování MKP: 2D, 3D modely bez svaru, se svarovými detaily. 4

Postupy predikce únavového poškození Posouzení podle standardů: ČSN 05 0120 - Výpočet svarových spojů strojních konstrukcí. ČSN 73 1401 - Navrhování ocelových konstrukcí. ČSN EN 1993-1 Navrhování ocelových konstrukcí. Eurocode 3. IIW (International Institue of Welding) - Recommendations for fatigue design of welded joints and components (IIW document XIII-1965-03 / XV-1127-03, 2005 Update) Posouzení na základě speciálních metodik: Metodika Volvo implementovaná v ANSYS ncode DesignLife SEAM WELDS Metodika Rupp, Störzel and Grubisic - SPOTWELDS Metodika Radaj, Seeger, Olivier - ANSYS ncode DesignLife nebo ANSYS Fatigue module Metodika FEMFAT Posouzení na základě vlastních únavových zkoušek. 5

Postupy predikce únavového poškození Rozsah použití: Konstrukce svařené z válcovaných nebo tažených polotovarů z refiticko-perlitické nebo bainitické oceli s maximální mezí kluzu f y = 960 MPa a austenitických korozivzdorných ocelí a slitin Al. Nelze použít v oblasti nízkocyklové únavy. Nelze použít v případě působení korozního prostředí a zvýšených teplot v oblasti creepu. 6

Definice používaných vztažných napětí Přístupy k predikci životnosti jsou poplatné uvažované (vypočtené) napjatosti: Lokální elastická napětí (FIN K) Vrubová napětí (Notch stresses) Hot-spot napětí Extrapolovaná (tvarová) napětí (Structural stresses) Oblast nominálních napětí (Nominal stress approach) 7

Postupy predikce únavového poškození Popis namáhání materiálu Popis únavové životnosti Stanovení únavové životnosti Nominální napětí v daném průřezu Tvarové napětí (hot-spot) v oblasti paty svaru Efektivní vrubové napětí v oblasti paty (kořene) svaru Lokální napětí elastické napětí, resp. faktor intenzity napětí S-N křivky vyjádřené pomocí nominálních napětí S-N křivky vyjádřené pomocí hot-spot napětí S-N křivky vyjádřené pomocí vrubových napětí Odolnost proti šíření únavových trhlin vyjádřená pomocí materiálových charakteristik růstových zákonů Kumulace únavového poškození (Palmgren-Miner) Predikce šíření únavových trhlin Sčítání inkrementálních přírůstků (Parisův zákon) 8

MKP modelování svařovaných konstrukcí Nosníkové modely: Vhodné pouze pro výpočty nominálních napětí, resp. silových účinků Nominální přístupy (příhradové konstrukce) Skořepinové modely: Vhodné pro výpočet hot-spot napětí + využití v rámci některých speciálních postprocesingových metodik (ncode) Bez modelování svarů (konstrukční uzel není namáhán ohybem) S modelování svarů: Modelování pouze konce svaru Modelování celého svaru Modelování svaru pomocí tuhých vazeb Modelování svaru zvýšením tuhosti příslušných skořepinových elementů Objemové modely: Vhodné pro výpočty lokálních napětí Přístupy přes vrubová napětí a lokální elastická napětí FIN K Modely s hrubou výpočetní sítí je možné využít pro výpočet hot-spot napětí. Modely s jemnou výpočetní sítí a uvažováním efektivního zaoblení paty svaru je možné použít pro výpočet vrubových napětí možnost hodnotit kumulaci únavového poškození v rámci standardních únavových postprocesorů (ANSYS Fatigue module, ncode, PragTic, apod.) Výpočet FIN K vyžaduje modelování trhlin speciální metodiky a postupy. 9

2a) Predikce únavové životnosti na základě nominálních napětí 10

Predikce únavové životnosti na základě nominální napětí Výpočet pomocí analytických vztahů nebo pomocí MKP Jmenovitá nominální napětí: Modifikovaná nominální napětí: N 11

Predikce únavové životnosti na základě nominální napětí Volba S-N křivek konstrukčním uzlům podle International Institue of Welding FAT třídy S-N křivek: 12

Predikce únavové životnosti na základě nominální napětí Volba S-N křivek konstrukčním uzlům podle International Institue of Welding FAT třídy S-N křivek: 13

Predikce únavové životnosti na základě nominální napětí Každá S-N křivka je charakterizována únavovou životnosti detailu na bázi 2 10 6 cyklů a danou hladinou rozkmitu napětí XX a odpovídá pravděpodobnosti porušení 2,3% křivka FATXX. V případě normálového namáhání svaru je sklon S-N křivek m = 3 a mez únavy je definována na bázi 1 10 7 cyklů. V případě smykového namáhání svaru je sklon S-N křivek m = 5 a mez únavy odpovídá bázi 1 10 8 cyklů. V případě namáhání konstrukčního uzlu vysokým počtem cyklů není definována mez únavy. Vodorovná část S-N křivky je nahrazena šikmou se sklonem m = 22. Kumulace únavového poškození je určena pomocí Palmgen-Minerova sumačního pravidla. FAT56 14

Predikce únavové životnosti na základě nominální napětí Predikce probíhá podle S-N křivek přiřazených jednotlivým třídám konstrukčních detailů FAT. S-N křivky zahrnují následující faktory typické pro svařované konstrukce: Koncentraci napětí od makrogeometrie konstrukčního uzlu. Koncentraci napětí od tvaru svaru a imperfekcí svarového spoje spojené s uvažovanou technologií svařování. Směr působení nominálních napětí. Zbytková napětí od svařování. Metalurgické podmínky. Parametry svařovacího procesu a finálních úprav. Třída kvality provedení svařování B podle ISO 5817. V rámci S-N křivek jednotlivých tříd FAT jsou zahrnuty určité geometrické nepřesnosti. V případě významnějších geometrických úchylek je nominální napětí zvětšeno o faktor k m,eff. 15

Predikce únavové životnosti na základě nominální napětí MKP modely neobsahují svarové detaily (objemové, skořepinové a nosníkové modely): Stanovení nominálních napětí 16

2b) Predikce únavové životnosti na základě (tvarových) hot-spot napětí 17

Predikce únavové životnosti na základě hot-spot napětí Stanovení pomocí MKP výpočtu nebo experimentálně (tenzometricky): N b) a) Napětí podél hrany konstrukce (nezávisí na tloušťce desky t) Napětí po ploše konstrukce (závisí na tloušťce desky t) 18

Predikce únavové životnosti na základě hot-spot napětí Postup výpočtu hot-spot napětí na základě MKP analýz (IIW): Velikost elementů a) 0,4 t x t b) < 4 x 4 mm a) 0,4 t x t a) t x t b) 10 x 10 mm MKP výpočet Typ a) napětí závisí na tloušťce Typ b) - napětí nezávisí na tloušťce Napětí v rohových uzlech σhs 1,67 σ0,4 t 0, 67 σ 1, 0 t Napětí v rohových uzlech σhs 2,52 σ0,4 t 2,24 σ0,9 t 0, 72 σ 1, 4 t Napětí v mid-side uzlech σhs 1,50 σ0,5 t 0, 50 σ 1, 5 t Napětí v rohových uzlech 3 σ σ σ σhs 4mm 3 8mm 12mm Napětí v mid-side uzlech σhs 1,50 σ5mm 0, 50 σ15 mm 19

Predikce únavové životnosti na základě hot-spot napětí Postup výpočtu na základě experimentu (tenzometrického měření): Experiment Typ a) Typ b) Dva tenzometry Tři tenzometry εhs 1,67 ε0,4 t 0, 67 ε1, 0 t Tři tenzometry εhs 2,52 ε0,4 t 2,24 ε0,9 t 0, 72 ε 1, 4 t εhs 3 ε4mm 3 ε8mm ε12 mm Přepočet na napětí: σ E hs ε hs 20

Predikce únavové životnosti na základě hot-spot napětí Volba S-N křivek konstrukčním uzlům podle International Institue of Welding FAT třídy S-N křivek: Stejná sada křivek FAT S-N křivek jako v případě nominálních napětí 21

Predikce únavové životnosti na základě hot-spot napětí Volba S-N křivek konstrukčním uzlům podle International Institue of Welding FAT třídy S-N křivek: Stejná sada křivek FAT S-N křivek jako v případě nominálních napětí 22

Path-2 Predikce únavové životnosti na základě hot-spot napětí MKP modely (ne)obsahují svarové detaily (objemové, skořepinové modely): 23

Predikce únavové životnosti na základě hot-spot napětí MKP modely (ne)obsahují svarové detaily (objemové, skořepinové modely): Předpokládá se, že únavová trhlina bude iniciována právě na konci svaru. [Niemi] [Fayard] M. Aygül: Fatigue Analysis of Welded Structures Using the Finite Element Method, Chalmers university of technology, Gothenburg, Sweden 2012 24

Predikce únavové životnosti na základě hot-spot napětí MKP modely (ne)obsahují svarové detaily (objemové, skořepinové modely): [Niemi] Přístup umožňuje zahrnout jak geometrii svaru, tak i jeho tuhost. Pata svaru může být provařena. Elementy by měly být druhého řádu. Tloušťka svarových elementů by měla odpovídat tloušťce svaru. M. Aygül: Fatigue Analysis of Welded Structures Using the Finite Element Method, Chalmers university of technology, Gothenburg, Sweden 2012 [Fayard] Doporučeny jsou lineární elementy. Kořen svaru není provařen. Hot-spot napětí lze odečítat přímo v těžišti přilehlých elementů. [Niemi, Eriksson] Tuhost styčníku má větší význam než geometrický tvar svaru. Pro aplikaci je nutné upravit MKP síť ve styčníku podle obr. U přeplátování je kolmé spojení realizováno tuhou vazbou. 25

2c) Predikce únavové životnosti na základě vrubových elastických napětí v kořeni/patě svaru 26

Predikce únavové životnosti na základě vrubových elastických napětí v kořeni/patě svaru Elastická (fiktivní) napětí v kořeni/patě svaru. Pro zahrnutí statistické povahy a rozptylu parametrů popisujících tvar svarů a chování materiálu byl navržen postup, na základě kterého je skutečný tvar svaru nahrazen efektivním. Pro konstrukční ocele a slitiny Al byl stanoven efektivní rádius zaoblení paty, resp. kořene svaru o velikosti R1 (platí pro konstrukce s tloušťkou stěny větší než 5 mm). Vypočtená napětí jsou srovnávána s jedinou S-N křivkou FAT225 (IIW). 27

Predikce únavové životnosti na základě vrubových elastických napětí v kořeni/patě svaru Hypotéza průměrných napětí (the stress averaging approach) Neuber. Fricke W., "Guideline for Fatigue Assessment by Notch Stress Analysis for Welded Structures", IIW Doc. XIII-2240r1-08/XV-1289r1-08, 2008. 28

Predikce únavové životnosti na základě vrubových elastických napětí v kořeni/patě svaru Aplikace tohoto přístupu vyžaduje detailní modelování svarových spojů: 29

Predikce únavové životnosti na základě vrubových elastických napětí v kořeni/patě svaru Při predikci únavového poškození se předpokládá, že únavová trhlina je iniciována v patě nebo v kořeni svaru v místě zaoblení. Navržené efektivní zaoblení paty, resp. kořene svaru R1 je použitelné pro konstrukce s tloušťkou stěny t 5 mm (t 5 mm R0,05; FAT630). Do výpočtu lze zahrnout další významné geometrické úchylky a imperfekce pomocí MKP modelování. Efektivní napětí je třeba chápat jako smluvní (modelové zaoblení R1), nelze je tedy měřit přímo na konstrukci. N 30

Predikce únavové životnosti na základě vrubových elastických napětí v kořeni/patě svaru Pro velikost efektivního zaoblení R1 (konstrukční ocele a Al slitiny) a standardní kvalitu provedení svaru jsou doporučeny (IIW) S-N křivky třídy FAT225, resp. FAT71 pro ocele, resp. Al slitiny. V těchto S-N křivkách je zahrnut vliv zbytkového napětí. 31

Predikce únavové životnosti na základě vrubových elastických napětí v kořeni/patě svaru Další modifikaci únavových křivek (FAT225) lze provést s ohledem na následující faktory: Střední napětí (zbytkového napětí) Tloušťka stěny (S-N křivky jsou definovány pro tloušťku 25 mm) Finální úpravy svarových spojů (broušení; otryskávání) Zvýšené teploty (vliv teploty 100 až 600 C) Korozní prostředí Konkrétní podobu uvedených modifikací je možné najít v příslušných normativech (IIW). 32

Predikce únavové životnosti na základě vrubových elastických napětí v kořeni/patě svaru MKP modelování submodeling (požadavek jemné MKP sítě): 33

Predikce únavové životnosti na základě vrubových elastických napětí v kořeni/patě svaru MKP modelování submodeling (požadavek jemné MKP sítě): 34

Predikce únavové životnosti na základě vrubových elastických napětí v kořeni/patě svaru MKP modelování submodeling (požadavek jemné MKP sítě): M. Aygül: Fatigue Analysis of Welded Structures Using the Finite Element Method, Chalmers university of technology, Gothenburg, Sweden 2012 35

Aplikace programů ANSYS při predikci únavového poškození svařovaných konstrukcí Fatigue module Kumulace únavového poškození se provádí podle S-N křivky FAT225 (IIW recommendation). FAT225 36

Aplikace programů ANSYS při predikci únavového poškození svařovaných konstrukcí Fatigue module Experimentální validace relevance S-N křivky FAT225: 37

Aplikace programů ANSYS při predikci únavového poškození svařovaných konstrukcí Fatigue module Experimentální validace relevance S-N křivky FAT225: 38

Rekapitulace Výhody Jednoduché výpočty Poměrně značné historické zkušenosti Často používané a aplikované na poměrně rozsáhlý soubor konstrukčních detailů Jsou dostupná potřebná experimentální data a analytické vztahy Vhodné pro predikci únavového poškození kumulovaného v patě, resp. v kořeni svaru Je potřeba méně S-N křivek Přijatelně přesné Jednoduché výpočty Zahrnutí geometrických parametrů svarových spojů Aplikace trubkové konstrukce Jediná S-N křivka Možno zahrnout geometrické parametry svařovaného spoje a imperfekce Predikce únavového poškození kumulovaného v patě, resp. kořeni svaru. Nevýhody Přístup přes nominální napětí Přístup přes hot-spot napětí Přístup přes vrubová napětí Predikce závislá na kategorizaci konstrukčních detailů Nelze zahrnout libovolné geometrické parametry a imperfekce Méně přesné v případech komplexních konstrukčních uzlů Vliv tloušťky nelze zahrnout Výsledky jsou závislé na hustotě a provedení MKP sítě Různé způsoby vyhodnocení napětí Vliv tloušťky nelze zahrnout Použitelné pouze v případech, kdy dochází k iniciaci únavových trhlin v patě svaru Podkladem predikce jsou výsledky MKP analýz Výsledky jsou závislé na hustotě MKP sítě a efektivním zaoblení paty svaru Poměrně náročné na modelování rozsáhlé MKP modely 39

2d) Predikce únavové životnosti na základě lokálních elastických napětí v kořeni/patě svaru 40

Predikce únavové životnosti na základě lokálních elastických napětí v kořeni/patě svaru V blízkosti svaru (kořen/pata) je uvažován defekt typu trhlina ostrý vrub. Posouzení životnosti je založeno na výpočtu faktoru intenzity napětí K. Výpočet FIN K na základě analyticko-empirických vztahů (např. IIW) nebo pomocí MKP (ANSYS, MSC, ABAQUS apod.). 41

Predikce únavové životnosti na základě lokálních elastických napětí v kořeni/patě svaru Příklady tabelovaných analyticko-empirických vztahů pro výpočet FIN K (IIW recommendation): K π a σmem Ymem Mk, mem σben Yben Mk, ben 42

Predikce únavové životnosti na základě lokálních elastických napětí v kořeni/patě svaru Predikce únavového poškození je založena na sčítání inkrementálních přírůstků délky trhliny, které jsou vypočteny pomocí tzv. Parisova vztahu: da dn m da m C0 ΔK, pokus ΔK ΔKth 0 N C0 ΔK da dn a fin a ini Doporučené hodnoty parametrů růstových zákonů: Doporučené parametry predikčních modelů (IIW recommendation) Materiál Ocele Al slitiny C 0 1,58 10-11 [m, MPa m] 1,27 10-9 [m, MPa m] m 3 3 K th 6,0-4,56 R > 2 2,0-1,5 R > 0,7 43