4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu mohou být kuličky, válečky, granulovaný materiál či seciální výlňová tělíska, oužívaná v zařízeních ro sdílení hmoty (absorční, desorční či rektifikační kolony). Jako kulové částice se vyrábějí ionexové olymery, oužívané k říravě demineralizované vody, odobu válečků či kuliček mají nař. katalytické materiály obsažené v některých tyech reaktorů. růmyslových zařízeních je množství zracovávaného lynu či kaaliny (tj. výkon zařízení) limitováno na jedné straně výkonem stroje na jejich doravu a na straně druhé tlakovou ztrátou - hydraulickým odorem zařízení. Pro jejich navržení a rovozování je důležitá závislost tlakové ztráty na toku média zařízením a ostatních faktorech, ke kterým atří mezerovitost vrstvy, velikost, tvar a orientace částic, hustota a viskozita rotékajícího média. Mezerovitost vrstvy je definovaná vztahem f B B = B P (4-1) kde B je objem vrstvy, f je objem tekutiny ve vrstvě, P je objem částic ve vrstvě. Další charakteristikou vrstvy je měrný (secifický) ovrch výlně A a B (4-) kde A je ovrch částic tvořících vrstvu o objemu B. Charakter roudění tekutiny ve vrstvě částic je dán hodnotou modifikovaného Reynoldsova kritéria Re d, kde je mimovrstvová rychlost vyočtená z objemového růtoku tekutiny f a říčného růřezu trubky S. f S ek (4-) (4-4) Ekvivalentní rozměr částice d,ek v rovnici (4-) vyočteme odle vztahu d 6 1, ek (4-5) a řičemž ekvivalence je definována tak, že oměr ovrchu všech částic ve vrstvě ku jejich objemu je stejný jako oměr ovrchu a objemu koule o růměru d. Pro částici kulového tvaru se tak d,ek rovná jejímu růměru. Pro tlakovou ztrátu ve vrstvě náhodně uložených (nasyaných) částic, které nemají otvo- 4-1
ry či výrazně neravidelné tvary (kulové částice aod.), je často oužívaným vztahem Ergunova rovnice. rovnici je celková tlaková disiativní ztráta na jednotkové výšce vrstvy součtem ztráty vazkým třením a turbulentní disiací energie h dis 1 k 1 1 k d d kde k 1, k jsou emirické koeficienty. Rovnici (4-6) lze uvést do bezrozměrného tvaru f k k v Re 1 1- (4-6) (4-7) kde f v je modifikovaný součinitel tření (odíl celkové tlakové ztráty a členu definujícího ztrátu energie ve viskozní oblasti toku ). Tento součinitel je definován vztahem d dis f v (4-8) h 1 Emirické konstanty k 1, k mohou být stanoveny lineární regresní analýzou závislosti (4-7). Tato závislost má univerzální latnost ro laminární, řechodný a turbulentní režim toku tekutiny. Pro vrstvu částic, která má roojené kanálky mezi částicemi, nař. syaná vrstva výlňových tělísek ro kolonové aaráty (Raschigovy či Pallovy kroužky aod.) je charakter toku sojité fáze složitý a nelze jej osat zákonitostmi toku soustavou rovnoběžných kanálků. těchto říadech se dooručuje ro tlakovou ztrátu emirická rovnice kde k 1, k h k F (4-9) dis 1 k f jsou emirické konstanty, řičemž k, jak lyne z definice ztrátové výšky v Bernoulliho rovnici. e vztahu (4-9) F f je intenzitní faktor ro kaalinu, definovaný vztahem 0,5 kde je mimovrstvová rychlost kaaliny. II Cíl ráce F f (4-10) 1. Proměření závislosti tlakové ztráty na objemovém toku kaaliny ro dvě zadané trubky.. Regresní analýzou vyhodnotit konstanty k 1, k ; rov.(4-7) a (4-9).. Zakreslení grafů závislostí. III Pois zařízení Na obr. 4-1 je uvedeno schéma zařízení. oda z nádrže 15 se čerá čeradlem 14 řes růtokoměr 1 do trubek obsahujících výlň 1 až. Čeradlo se souští sínačem 11. K růtokoměru je řiojen měřící díl 10 obsahující digitální stunici růtoků v l s -1. ýlň v trub- 4-
8 4 5 6 5 t t 17 9 10 11 1 1 1 14 15 16 7 Obr. 4.1 Zařízení ro měření tlakové ztráty ři roudění výlní 1 až trubky s výlní: 7 uzavírací a regulační šouata 14 čeradlo 1 - keramické Raschigovy kroužky 8 odvzdušňovací ventil aaratury 15 nádrž s vodou - skleněné kuličky 9 sínač ro el. anel zařízení 16 uzavírací ventil - lastové Pallovy kroužky 10 zobrazení růtoku kaaliny 17 teloměr 4 diferenční manometr ro trubku 1 11 sínač motoru čeradla 5 odvzdušňovací ventily manometru 1 zásuvka motoru čeradla 6 zkratovací ventil 1 růtokoměr kách je zdola i shora omezena děrovaným roštem. Průtok vody se reguluje šouaty 7, sloužícími rovněž k uzavření dané sekce, okud se na ní neměří. Tlakový rozdíl vznikající ři růtoku vody vrstvou výlně se měří diferenčními manometry, které jsou trvale řiojeny k tlakovým vývodům na odovídající trubce (nejsou zde uzavírací ventily). Každý manometr je osazen zkratovacím ventilem a dvěma odvzdušňovacími ventily. horní levé části aaratury je umístěn teloměr 17. Tlak v zařízení lze ři odvzdušňování manometrů zvýšit řivřením ventilu 16 na vratném otrubí do zásobní nádrže. Při měření je tento ventil lně otevřen. Elektrické naětí do anelu aaratury se řivádí sínačem 9 na anelu na boční zdi vravo od zařízení. I Postu ráce I.1 Přírava zařízení k měření Nejdříve zkontrolujeme, zda-li je zcela otevřený uzavírací ventil 16, otevřeny zkratovací 4-
ventily na všech manometrech, uzavřena šouata 7 řed každou trubkou, uzavřen odvzdušňovací ventil 8 a uzavřeny odvzdušňovací ventily všech manometrů. Senutím centrálního sínače 9 řivedeme naětí na anel aaratury, tím se rozsvítí dislej růtokoměru 10. Před začátkem měření musíme rovést odvzdušnění měřené trubky a řiojeného manometru. Sustíme čeradlo sínačem 11. Pozvolným otevíráním šouěte 7 řed zadanou trubkou dosáhneme jejího odvzdušnění (nejsou atrné bubliny vzduchu v roudu kaaliny rocházející trubkou). Rozdíl hladin měřící kaaliny v manometru nebude významný díky otevřenému zkratovacímu ventilu. Po odvzdušnění měřené trubky odvzdušníme řiojený manometr. Šouě 7 řed měřenou trubkou je otevřené, kaalina roudí řes vrstvu výlně, odvzdušňovací ventily jsou zavřené, zkratovací ventil manometru je zcela otevřený a manometrická kaalina nevykazuje žádný odstatný rozdíl hladin. Zvolna otevřeme odvzdušňovací ventily a ozorujeme, zda-li nedochází k náhlému nárůstu rozdílu hladin manometrické kaaliny. Pokud ano, odvzdušňovací ventily ihned uzavřeme a zavoláme instruktora. Při odvzdušňování manometru odchází část kaaliny řes odvzdušňovací ventily do boku zásobní nádrže 15. Odvzdušnění je úlné, okud již nejsou atrné rocházející bublinky vzduchu v odvzdušňovacím otrubí. Po odvzdušnění nejrve uzavřeme odvzdušňovací ventily, ak šouě 7 a nakonec zkratovací ventil. Trubka s výlní s řiojeným manometrem je řiravena k měření. I. Měření tlakové ztráty na trubkách s výlní Tlakovou ztrátu vyočítáme z naměřených hodnot h na diferenčním manometru. Je zaotřebí získat 0 hodnot v rozětí od 15 mm do maximálně možné hodnoty na daném manometru. Současně zaisujeme říslušný růtok kaaliny zobrazovaný na anelu růtokoměru. Průtok kaaliny nastavujeme šouětem řed měřenou trubkou. Hodnoty odečítáme o jejich ustálení ři změně růtoku. I. Zakončení ráce Po skončení měření odečteme telotu vody a hodnotu zaíšeme do rotokolu. Uzavřeme všechna šouata 7 a otevřeme zkratovací ventil u měřené trubky. Pokud budeme okračovat s měřením další trubky, ostuujeme stejně, jak bylo osáno v části I.1 a I., tj. řed vlastním měřením odvzdušníme trubku a řiojený manometr. Při celkovém ukončení ráce vyneme čeradlo sínačem 11 a sínačem 9 vyneme naětí na anelu zařízení (zhasne dislej růtokoměru). Do rotokolu zaíšeme hustoty manometrické kaaliny. Předáme zařízení instruktorovi a necháme si odesat rotokol. Bezečnostní oatření 1. Průtok kaaliny zvyšujeme oatrně, aby nedošlo k vylavení měřící kaaliny z diferenčních manometrů.. Manometry odvzdušňujeme zásadně ři otevřeném zkratovacím ventilu ostuným otevíráním odvzdušňovacích ventilů. 4-4
I Zracování naměřených hodnot I.1 Trubka s výlní kuliček Pro výlň tvořenou kuličkami nejrve vyočítáme hodnoty mezerovitosti a měrný ovrch výlně. ycházíme řitom z údajů uvedených v datovém formuláři (růměr trubky a kuliček, očet kuliček). Objem kuliček je dán vztahem d n 6 kde n je očet kuliček. Pro ovrch částic latí A n d (4-11) (4-1) Dosadíme-li vztahy (4-11) a (4-1) do definičních vztahů (4-1), (4-) s tím, že objem vrstvy je roven h d B / 4, obdržíme 1 n d d n d a 4 d h h (4-1) (4-14) Objemový tok řeočítáme na mimovrstvovou rychlost omocí vztahu (4-4) a dosadíme do Reynoldsova čísla (4-). Ze vztahu (4-8) vyčíslíme modifikovaný součinitel tření a ro získaný soubor hodnot Re, f 1 v vyhodnotíme omocí vhodného matematického rogramu lineární regresní analýzou konstanty vztahu (4-7). Hodnoty tlakové ztráty vyočítáme z naměřených hodnot čtení na manometru h omocí vztahu (4-15). ěnujte ozornost srávné hodnotě hustoty manometrické kaaliny m. Regresní římku s exerimentálními hodnotami vytiskneme. dis h m g (4-15) I. Trubka s vrstvou nekulových částic Z naměřených hodnot objemového toku vyčíslíme intenzitní faktor ze vztahu (4-10). Této nezávislé roměnné řiřadíme hodnoty měrné tlakové ztráty vyočtené z rovnice (4-15) a omocí vhodného matematického rogramu vyhodnotíme regresní analýzou konstanty k 1, k ve vztahu (4-9). Regresní křivku s exerimentálními hodnotami vytiskneme. II Symboly a měrný ovrch výlně (vztaženo k objemu vrstvy) m -1 d,ek ekvivalentní růměr částice m f v modifikovaný součinitel tření F f intenzitní faktor m s -1 (kg m - ) 0,5 h výška vrstvy výlně m 4-5
k 1, k regresní konstanty ve vztazích (4-7) a (4-9) n očet částic Re modifikované Reynoldsovo kritérium S říčný růřez trubkou m III Kontrolní otázky 1. Co je to mezerovitost vrstvy a jak její hodnota ovlivňuje ztrátu tlaku ři roudění tekutiny výlní?. Jak se na zařízení měří mimovrstvová střední rychlost tekutiny?. Jak se měří tlaková ztráta a na čem závisí citlivost oužitého řístroje? 4. Jaká technologická zařízení modeluje aaratura v laboratoři? Uveďte říklady! 4-6