HYDROMECHANIKA 3. HYDRODYNAMIKA
|
|
- Aleš Bureš
- před 8 lety
- Počet zobrazení:
Transkript
1 . HYDRODYNAMIKA Hydrodynamika - část hydromechaniky zabývající se říčinami a důsledky ohybu kaalin. ZÁKLADY PROUDĚNÍ Stavové veličiny roudění Hustota tekutin [kgm - ] Tlak [Pa] Telota T [K] Rychlost [ms - ] Proud tekutiny Proudnice (roudové čáry) - sledují vlastní tok tekutiny; v každém bodě roudnice je směr rychlosti tekutiny k roudnici tečný Průtočný rofil Průtočná locha s [m ] - lošný obsah rovinného řezu kolmého na střední roudnici roudové trubice Bodová rychlost Průřezová rychlost - okamžitá rychlost tekutiny v daném místě růtočné lochy - stanovená jako aritmetický střed bodových rychlostí všech částí tekutiny v růtočné loše. Je ve všech místech růtočné lochy stejně velká a kolmá na růtočnou lochu - -
2 Druhy roudění Sledujeme-li sojité (kontinuální) roudění tekutiny v závislosti na čase, rozlišujeme Ustálené (stacionární) roudění - rychlost a tlak tekutiny v daném místě růtočné lochy je stále stejný a nezávislý na čase. V raxi se realizuje ři růtoku tekutiny otrubím nebo kanály ři stálém zdroji hnací energie roudění Neustálené (nestacionární) roudění roudění, jehož rychlost a tlak v daném místě růtočné lochy mění v závislosti na čase, tj. mění směr nebo velikost, nebo i směr a velikost roudění. V raxi nař. ři ulsujícím růtoku tekutiny, u ístových strojů, ři otvírání a zavírání otrubí aod. Průtoková rovnice S [m ] růtočná locha [m.s - ] růřezová rychlost τ[s] čas l Objemový tok V - objem tekutiny rotékající růtočnou lochou za čas τ. V s. l V s. V m s V m objem tekutiny Objemový tok (růtok) S [m ] růtočná locha l [m] délka trubice τ[s] čas [m.s - ] růřezová rychlost Hmotnostní tok kgs m V. s.. m kg. m hustota tekutiny - -
3 . USTÁLENÝ TOK IDEÁLNÍ TEKUTINY Pohyb tekutin se obecně řídí stejnými zákony jako ohyb těles. Proudění ideální tekutiny vzniká vzájemnou řeměnou mechanické energie Základní rovnice hydrodynamiky - růtoková rovnice - rovnice sojitosti toku (kontinuity) vyjadřuje zákon o zachování hmoty - Bernoulliho rovnice vyjadřuje zákon o zachování a řeměně energie... Průtoková rovnice S [m ] růtočná locha [m.s - ] růřezová rychlost τ[s] čas l Objemový tok V - objem tekutiny rotékající růtočnou lochou za čas τ V s. l V s. V m s V m objem tekutiny Objemový tok (růtok) S [m ] růtočná locha l [m] délka trubice τ[s] čas [m.s - ] růřezová rychlost Hmotnostní tok kgs m V. s.. m kg. m hustota tekutiny - -
4 .. Rovnice sojitosti toku (kontinuity) Zákon o zachování hmoty: hmotnostní tok je ve všech růřezech stejný m m m konst. S.. S.. S. konst S. S. konst. V V konst... Bernoulliho ohybová rovnice vyjadřuje zákon o zachování mechanické energie ro roudící kaalinu. Proudící kaalina má v různých místech roudové trubice různou energii olohovou (tíhovou), kinetickou a tlakovou. Jejich součet ve všech růtočných růřezech je stejný. Jeden druh energie se řeměňuje v jiný Polohová (tíhová) energie závisí na hmotnosti tekutiny m a geodetické výšce h od srovnávací hladiny E g m. g. h Kinetická energie ohybu (osuvného a rotačního) kaliny: Ek Ek Ekr m. I. Při ohybu částic tekutiny je kinetická energie rotačního ohybu zanedbatelná, roto E k m. Tlaková energie Práce síly F W F. l. S. l V. m. E E m
5 Bernoulliho rovnice Celková energie roudící kaaliny je ve všech růtočných růřezech stejná h h E Em Em konst. E E E E E g k g k m. g. h m. m. m. g. h m. m. B.r. ro růtok kg tekutiny g. h g. h /. /:m B.r. ve formě tlaků:... g. h. g. h. g. h hydrostatický tlak h v vnější tlak. d dynamický tlak, kde B.r. ve formě výšek - o úravě ředchozí B.r. /:(.g ) h h, kde. g. g. g. g h geodetická výška h g. g. g h h d tlaková výška rychlostní výška - 5 -
6 . USTÁLENÝ TOK SKUTEČNÝCH KAPALIN Proudění skutečných (vazkých) tekutin je vždy rovázeno - ztrátami mechanické energie (část se jí vlivem tření a víření mění v teelnou energii, kterou již zět nedokážeme roměnit) - odorem roti ohybu.. Vazkost tekutin Vazkost = vnitřní tření kaaliny - ůsobí roti jejímu ohybu Při ohybu vznikají následkem vazkosti uvnitř kaaliny tečné síly mezi jednotlivými vrstvami a tedy i tečná naětí Rychlost roudění řechází sojitě od nuly (u stěny) o maximální hodnotu v ose otrubí τ Mírou vazkosti kaalin je dynamická viskozita Netonův zákon viskozity:, kde y Pa tečné naětí mezi sousedními vrstvami kgm s dynamická viskozita y m vzdálenost sousedních vrstev kgm s řírůstek rychlosti mezi sousedními vrstvami kaaliny Kinematická viskozita, kde m s kinematické viskozita (voda: kgm. hustota kaaliny 6 0 m s ) - 6 -
7 Ød zt SPŠ a VOŠ KLADNO.. Proudění skutečné tekutiny Velikost hydraulických odorů (ztrát) závisí na režimu roudění v otrubí, který může být laminární nebo turbulentní. Kritériem je Reynoldsovo číslo Re ideální turbulentní laminární.d Re Rekr 00 - kritické Reynoldsovo číslo ři něm řechází laminární roudění v turbulentní Laminární (vláknové) roudění L max id ReRe kr id max turb Turbulentní roudění, T max id Re Re kr max lam Re řechodová oblast Re 0000 v celé trubici turbulentní roudění.. Hydraulické ztráty - ztráty zůsobené třením tekutiny o stěny otrubí - ztráty zůsobené vířením tekutiny ři růtoku jednotlivými částmi otrubí Ztráty zůsobené třením tekutiny o stěny otrubí zt id zt l l d. d d g L 64 Re l laminární roudění m 0,64 T 4 turbulentní kgm Re ms id zt Pa tlaková ztráta třením tekutiny o stěny otrubí d Pa dynamický tlak odorový součinitel závisí na režimu roudění l délka otrubí d m vnitřní růměr otrubí hustota tekutiny růřezová rychlost tekutiny - 7 -
8 Ztrátu energie lze vyjádřit rovněž ztrátovou výškou, říadně měrnou ztrátovou energií Ztrátová výška h zt l h zt zt g d Měrná ztrátová energie.. zt l ezt Jkg d Místní ztráty - vznikají v jednotlivých částech otrubí rušením ravidelného roudění místnímu vlivy (tvoření vírů ři obtékání řekážek, ři změně růřezu otrubí, změně směru roudění atd.) Místní tlaková ztráta zm zm. d., kde součinitel místní ztráty kgm hustota tekutiny ms růřezová rychlost tekutiny d Pa dynamický tlak Součinitelé místních ztrát Místní ztrátová výška h zm h zm zm g g Měrná místní ztrátová energie e zm zm. Celková tlaková ztráta v otrubí z zi zti li z ( i d i zmi ) i li i d i i - 8 -
9 ..4 Pohybová Bernoulliho rovnice ro skutečné kaaliny Zahrnujeme do ní ztracenou energii ve výstuním růřezu g. h g. h B.r. ve tvaru tlaků.. g. h. g. h e z. z B.r. ve tvaru výšek h h. g. g. g. g h z.4 USTÁLENÝ VÝTOK KAPALINY Nastává tehdy, jestliže z nádoby vytéká tolik kaaliny, jako do ní řitéká. Volná hladina je stále ve stejné výši.4. Výtok kaaliny otvorem ve dně nádoby a) Výtok ideální tekutiny (beze ztrát) h d =b B.r. ro h 0. g g. g Pro 0 id g b id gh Ideální objemový výtok V S. id V d =b - 9 -
10 b) Výtok skutečné kaaliny se ztrátami skut id d0 d s0 s. id, kde rychlostní součinitel (závisí na tvaru výtokového otvoru a na vazkosti kaaliny) Při výtoku dochází vlivem setrvačnosti k zúžení (kontrakci) roudu, což vyjadřuje součinitel kontrakce ε S d S0 do Celkově lze vyjádřit vliv vnitřního tření v kaalině na zmenšení rychlosti i vliv tvaru výtokového otvoru tzv. výtokovým součinitelem μ V. V id Skutečný objemový tok V.. V id. S id.4. Výtok kaaliny malým otvorem v boční stěně b b h ht h idy g. y ideální výtoková rychlost v hloubce y (rovnice araboly) T b T max Střední výtoková rychlost g. id h T Skutečný objemový tok V. V. S. id id.4. Výtok kaaliny onořeným otvorem id. g. h h h s h V. S. id - 0 -
11 .4.4.Výtok kaaliny velkým otvorem řead řes jez h s h Objemový tok skutečné kaaliny V. S. ids. S. idh b V. Vid. S. ids kde ids je střední ideální výtoková rychlost Určí se z rovnosti obsahu arabolické úseče S h. idh a obdélníku S h. o ids h. idh h. ids ids idh. g. h Pozn. Při výtoku skutečné kaaliny není rychlost u hladiny samozřejmě nulová. Vlivem tření není růběh rychlosti řesně arabolický a v určité vzdálenosti řed jezem dochází ke snížení hladiny.4.5 Výtok kaaliny velkým otvorem od hladinou v boční stěně h h V V V Řešíme tak, jako by šlo o rozdíl výtoku dvěma velkými otvory dosahujícími až k hladině V. S.. g. h. S... g h.. b. h.. g. h.. b. h.. g. h. b. g( h h ) h Je-li otvor umístěn v dostatečné hloubce, lze V τ určit s vyhovující řesností ze střední výtokové rychlosti v těžišti otvoru - -
12 .5. DYNAMICKÉ ÚČINKY PROUDU KAPALINY -rojevují se ůsobením sil na těleso, kolem jehož stěn kaalina roudí Z mechaniky tuhých těles: Věta o změně hybnosti Ft m( v v0) I H Proudící kaalina Vztah mezi imulsem síly a změnou hybnosti kaaliny () F m H m. F m V.. S... S. H - růtoková hybnost (hybnost kaaliny, která roteče rychlostí kontrolním růřezem za s H kg. m. m. m. s kg. m. s N Průtoková hybnost má fyzikální význam a jednotku síly Zákon akce a reakce F F R Síla ůsobící z tělesa na kaalinu Síla, kterou ůsobí kaalina na těleso Věta o změně růtokové hybnosti I F F R. F R H H H m.( ) /:τ m ( ) F Odtud F FR m ( ) síla, kterou ůsobí kaalina na těleso Změna růtokové hybnosti daná (vektorovým) rozdílem růtokové hybnosti tekutiny, jež kontrolní lochu oouští a tekutiny, která do ní vstuuje, je rovna výslednici vnějších sil ůsobících na tekutinu v kontrolní loše Věta o změně momentu růtokové hybnosti M R M H M H M H H. r H. r M F - -
13 .5. Proudový motor Předoklad: m o tlak okolí m m F FR H H H F FR m ( ).5. Výtok z uzavřené nádoby (raketový motor) F R H = 0 F H H H, kde F FR m.. S..5. Působení roudu na nehybnou desku (ředoklad úlného odklonu roudu) x: F FR H 0 S m. Hybnost je vektorová veličina, očítáme tedy s její složkou ve směru ůsobící síly Kontrolní locha na vstuu i výstuu je stejný tlak - -
14 .5.4 Pohybující se deska (loatka vodní kolo kola) u unášivá rychlost desky relativní rychlost tekutiny vzhledem k desce c absolutní rychlost tekutiny vzhledem k evnému bodu v okolí H S c u c u.. je relativní růtoková hybnost x: F FR H m. m ( c ), kde 0 u Vodní kolo Teoretický výkon P F. u m ( c u). u P max ři c u c c c c Pmax F. m ( c ). m. 4 Teoreticky dosažitelná účinnost: c m. P max 4 0, P c, kde ř m. P ř Ek m. c c m. říkon (ohybová en. roudu. kaaliny za s).5.5 Nehybná zakřivená deska F x F R H.cos H.cos.. S. V říadě, že 0. cos F x.. S., to znamená, že síla ři úlném obrácení roudu je oroti rovinné desce dvojnásobná. Toho se využívá u loatky eltonovy turbíny - 4 -
15 .5.6 Peltoltonova loatka a) V klidu c c c F H H x F m. c( cos ) m H m. c c. cos b) Pohyb loatky unášivou rychlostí u F H m. ( cos ) m.( c u ).( cos ) Výkon eltonovy turbíny P F. u m ( c u).( cos ). u c Max.výkon ři u, 0 Účinnost eltonovy turbíny c m. P teor Př c m. max c c Pmax id m.( c )( ). c Pmax id m..5.7 Proudění rotujícím kanálem Hydrodynamická síla ůsobící na loatku vyvolává moment moment růtokové hybnosti Výsledný moment je dán rozdílem momentů růtokových hybností na vstuu a výstuu M M H M H M H, M H... momenty růtokové hybnosti na vstuu (oloměru r ) a výstuu (oloměru r ). Tyto momenty jsou dány součinem oloměru a složky vektoru růtokové hybnosti do směru kolmého na oloměr, tj. do směru obvodové rychlosti u (ři resektování účinku vší roteklé vody) - 5 -
16 M m c ur r m cur Pracovní rovnice turbíny rvní turbínová věta (Eulerova) M m ( c r c ) u ur /. W mgh P M. m ( cu u cuu ) m. Y Y gh J. kg P H ( c m g g měrná energie a uu cuu ) je teoretický sád ideální výkon turbíny, kde Eulerova rovnice latí rovněž ro čeradla, kde růtok má oačný smysl P M. m ( ucu ucu ) teoretický výkon čeradla - 6 -
MECHANIKA KAPALIN A PLYNŮ
MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI
Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny
U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně
1141 HYA (Hydraulika)
ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů
Mechanika tekutin. Tekutiny = plyny a kapaliny
Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.
PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným
PROCESY V TECHNICE BUDOV cvičení 1, 2
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AKULTA APLIKOVANÉ INORMATIKY PROCESY V TECHNICE BUDOV cvičení, část Hana Charvátová, Dagmar Janáčová Zlín 03 Tento studijní materiál vznikl za finanční odory Evroského sociálního
Teoretické otázky z hydromechaniky
Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká
Mechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.
BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,
Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
6. Mechanika kapalin a plynů
6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich
PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl
Hydrostatika F S. p konst F S. Tlak. ideální kapalina je nestlačitelná l = konst. Tlak v kapalině uzavřené v nádobě se šíří ve všech směrech stejně
Hdrostatika Tlak S N S Pa m S ideální kaalina je nestlačitelná l = konst Tlak kaalině uzařené nádobě se šíří e šech směrech stejně Pascalů zákon Každá změna tlaku kaalině uzařené nádobě se šíří nezměněná
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.
8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S
Výsledný tvar obecné B rce je ve žlutém rámečku
Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné
Hydrostatika a hydrodynamika
Hydrostatika a hydrodynamika Zabýáme se kaalinami, ne tuhými tělesy HS Ideální tekutina Hydrostatický tlak Pascalů zákon Archimédů zákon A.z. - ážení HD Ronice kontinuity Bernoullioa ronice Pitotoa trubice
Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles
Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
K141 HY3V (VM) Neustálené proudění v potrubích
Neustálené roudění v tlakových otrubích K4 HY3 (M) Neustálené roudění v otrubích 0 ÚOD Ustálené roudění ouze rostorové změny Neustálené roudění nejen rostorové, ale i časové změny vznik ři jakýchkoliv
CVIČENÍ č. 7 BERNOULLIHO ROVNICE
CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem
p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země
Hladinové (rovňové) plochy Plochy, ve kterých je stálý statický tlak. Při posunu po takové ploše je přírůstek tlaku dp = 0. Hladinová plocha musí být všude kolmá ke směru výsledného zrychlení. Tlak v kapalině,
Hydromechanické procesy Hydrostatika
Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice
, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu
7..03, Brno Připravil: Tomáš Vítěz Petr Trávníček Mechanika tekutin Úvod do předmětu strana Mechanika tekutin Zabývá se podmínkami rovnováhy kapalin a plynu v klidu, zákonitostmi pohybu kapalin a plynu,
7. MECHANIKA TEKUTIN - statika
7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné
Mechanika kapalin a plynů
Mechanika kapalin a plynů Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tekutiny Tlak Tlak v kapalině vyvolaný vnější silou Tlak v kapalině vyvolaný tíhovou silou Tlak v kapalině vyvolaný
Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů
Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela
Základy fyziky + opakovaná výuka Fyziky I
Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné
4 Ztráty tlaku v trubce s výplní
4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM
CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 0.11.14 Mechanika tekumn 1/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.
Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny
Síla, vzájemné silové působení těles
Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny
125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY
BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala
Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie.
Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. 37. Škrcení plynů a par 38. Vznik tlakové ztráty při proudění tekutiny 39. Efekty při proudění vysokými rychlostmi 40.
Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob
Tekutiny Dorava tekutin Filtrace Princi iltrace Povrchová vs. hloubková iltrace» Dělení evných částic od tekutiny na orézní iltrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka Tyy
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
Proudění vody v potrubí. Martin Šimek
Proudění vody v potrubí Martin Šimek Zadání problému Umělá vlna pro surfing Dosavadní řešení pomocí čerpadel Sestrojení modelu pro přívod vody z řeky Vyčíslení tohoto modelu Zhodnocení výsledků Návrh systému
Příklady - rovnice kontinuity a Bernouliho rovnice
DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho
Fyzika - Kvinta, 1. ročník
- Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální
4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako
1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti
Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.
Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny
Otázky pro Státní závěrečné zkoušky
Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR
Hydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL
NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL 1. ZADÁNÍ Navrhněte růměr a výztuž vrtané iloty délky L neosuvně ořené o skalní odloží zatížené v hlavě zadanými vnitřními silami (viz
PROCESY V TECHNICE BUDOV cvičení 3, 4
UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = =
MECHANIKA TEKUTIN I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tekutiny zahrnují kapaliny a plyny. Společnou vlastností tekutin je, že částice mohou být snadno od sebe odděleny (nemají vlastní
FYZIKA. Hydrodynamika
Brno 2007 1 Jak je z obrázku patrné, původní studijní pomůcka (opora) vznikla v roce 1992 pro opakování středoškolské fyziky. Pro výrobu byl použit autorský systém Genie, jehož výstupem jsou DOSové aplikace.
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní
Vodohospodářské stavby BS001 Hydraulika 1/3
CZ..07/..00/5.046 Posílení kvality bakalářskéo studijnío proramu Stavební Inženýrství Vodoospodářské stavby BS00 Hydraulika /3 Fyzikální vlastnosti kapalin, Hydrostatika a plování těles, Hydrodynamika
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V HYDROMECHANIKA
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost
Inženýrství chemicko-farmaceutických výrob
Tekutiny Dorava tekutin Filtrace 1 Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrační koláč Filtrační řeážka Filtrát Povrchová vs. hloubková filtrace
Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin.
Tekutiny Dorava tekutin Filtrace Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka 1 Povrchová vs. hloubková filtrace
VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad
Proudění ideální kapaliny
DUM Základy přírodních věd DUM III/-T3-9 Téma: Rovnice kontinuity Střední škola Rok: 0 03 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Proudění ideální kapaliny Rovnice kontinuity toku = spojitosti toku
čas t s 60s=1min rychlost v m/s 1m/s=60m/min
TEKUTINOVÉ MECHANIMY UČEBNÍ TEXTY PRO VÝUKU MECHATRONIKY OBAH: Hydraulika... 3 Základní veličiny a jednotky... 3 Molekulové vlastnosti tekutin... 3 Tlak v kapalinách... 4 Hydrostatický tlak... 6 Atmosférický
Základy hydrauliky vodních toků
Základy hydrauliky vodních toků Jan Unucka, 014 Motivace pro začínajícího hydroinformatika Cesta do pravěku Síly ovlivňující proudění 1. Gravitace. Tření 3. Coriolisova síla 4. Vítr 5. Vztlak (rozdíly
ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1
ZADÁNÍ Č. Potrubí růměru a élky l je nalněno voou ři atmosférickém tlaku. Jak velký objem V je nutno vtlačit o otrubí ři tlakové zkoušce, aby se tlak zvýšil o? Potrubí ovažujte za tué, měrná motnost voy
Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou
Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání
Mechanika tekutin Tekutost Nemají stálý tvar pružné při změně objemu stlačitelné Kapaliny stálý objem, málo stlačitelné volnou hladinu Plyny nemají
Mechanika tekutin FyzikaII základní pojmy Mechanika tekutin studuje podmínky rovnováhy a zákonitosti pohybu kapalin, plynů a pevných těles do nich ponořených Vlastnosti: Částice tekutiny jsou od sebe ve
Vzorové příklady - 4.cvičení
Vzoroé říklady -.cičení Vzoroý říklad.. V kruhoém řiaděči e mění růřez z hodnoty = m na = m (obrázek ). Ve tuním růřezu byla ři utáleném roudění změřena růřezoá rychlot = m. -. Vyočítejte růtok a růřezoou
Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.
PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis
Ilustrační animace slon a pírko
Disipativní síly Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Určeno pro základní kurz biomechaniky studentů FTVS UK, školní rok 2008/2009 Disipativní síly
Pokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát).
Laminární proudění je jeden z typů proudění reálné, tedy vazké, tekutiny. Laminární proudění vzniká obecně při nižších rychlostech (přesněji Re). Proudnice laminárního proudu jsou rovnoběžné a vytvářejí
nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ
HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm
TERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
Předpjatý beton Přednáška 6
Předjatý beton Přednáška 6 Obsah Změny ředětí Okamžitým ružným řetvořením betonu Relaxací ředínací výztuže Přetvořením oěrného zařízení Rozdílem telot ředínací výztuže a oěrného zařízení Otlačením betonu
MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin
Průtoky. Q t Proteklé množství O (m 3 ) objem vody, který proteče průtočným profilem daným průtokem za delší čas (den, měsíc, rok)
PRŮTOKY Průtoky Průtok Q (m 3 /s, l/s) objem vody, který proteče daným průtočným V profilem za jednotku doby (s) Q t Proteklé množství O (m 3 ) objem vody, který proteče průtočným profilem daným průtokem
Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 14.12.14 Mechanika tekuln 12/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy,
Senzory průtoku tekutin
Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:
Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu
Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT
Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kaplana
Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kalana Měření růtokové, účinnostní a říkonové charakteristiky onorného čeradla Vyracovali:
1 Vlastnosti kapalin a plynů
1 Vlastnosti kapalin a plynů hydrostatika zkoumá vlastnosti kapalin z hlediska stavu rovnováhy kapalina je v klidu hydrodynamika zkoumá vlastnosti kapalin v pohybu aerostatika, aerodynamika analogicky
E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO
Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum
Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření průtoku 17.SPEC-t.4 ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další pokračování o principech měření Průtok je určen střední
Počítačová dynamika tekutin (CFD) Turbulence
Počítačová dynamika tekutin (CFD) Turbulence M. Jahoda Turbulence 2 Turbulentní proudění vzniká při vysokých Reynoldsových číslech (Re>>1); je způsobováno komplikovanou interakcí mezi viskózními a setrvačnými
ZÁKLADNÍ POZNATKY Hydrostatika Kapaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná napětí, jsou dokonale pružné.
ZÁKLDNÍ POZNTKY Hydrostatika Kaaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná naětí, jsou dokonale ružné. Tlak v kaalině F, F. S S tlaková síla Pascalův zákon : Tlak je na všech místech
Úvod. K141 HYAR Úvod 0
Úvod K141 HYAR Úvod 0 FYZIKA MECHANIKA MECH. TEKUTIN HYDRAULIKA HYDROSTATIKA HYDRODYNAMIKA Mechanika tekutin zabývá se mechanickými vlastnostmi tekutin (tj. silami v tekutinách a prouděním tekutin) poskytuje
ZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
Hydraulika a hydrologie
Hydraulika a hydrologie Cvičení č. 1 - HYDROSTATIKA Příklad č. 1.1 Jaký je tlak v hloubce (5+P) m pod hladinou moře (Obr. 1.1), je-li průměrná hustota mořské vody ρ mv = 1042 kg/m 3 (měrná tíha je tedy
2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5
Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4
38. VZNIK TLAKOVÉ ZTRÁTY PŘI PROUDĚNÍ TEKUTINY Jiří Škorpík
38. VZNIK TLAKOVÉ ZTRÁTY PŘI PROUDĚNÍ TEKUTINY Jiří Škorpík Laminární proudění viskozita 1 Stanovení ztráty při laminárním proudění 3 Proudění turbulentní Reynoldsovo číslo 5 Stanovení střední rychlosti
11. Mechanika tekutin
. Mechanika tekutin.. Základní poznatky Pascalův zákon Působí-li na tekutinu vnější tlak pouze v jednom směru, pak uvnitř tekutiny působí v každém místě stejně velký tlak, a to ve všech směrech. Hydrostatický
Senzory průtoku tekutin
Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:
TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný
ČERPADLA Ing. Ondřej ZAVILA, Ph.D.
VŠB TU Ostrava, FBI ČERPADLA Ing. Ondřej ZAVILA, Ph.D. OBSAH: 1) DEFINICE a ROZDĚLENÍ čerpadel (obecně) ) DEFINICE a ROZDĚLENÍ čerpadel (v oblasti požární ochrany) 3) Legislativní základ 4) Význam použití
Základní pojmy a jednotky
Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar
Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8
Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................
Základy elektrických pohonů, oteplování,ochlazování motorů
Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon
Příkon míchadla při míchání nenewtonské kapaliny
Míchání suspenzí Navrhněte míchací zařízení pro rozplavovací nádrž na vápenný hydrát. Požadovaný objem nádrže je 0,8 m 3. Největší částice mají průměr 1 mm a hustotu 2200 kg m -3. Objemová koncentrace
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny