k riziku a ve svém důsledku vedlo použití modelu k diverzifikaci portfolia.



Podobné dokumenty
Rovnovážné modely v teorii portfolia

Změna hodnoty pozice v důsledku změn tržních cen.

Změna hodnoty pozice v důsledku změn tržních cen.

Úvod do teorie portfolia. CAPM model. APT model Výhody vs. nevýhody modelů CML SML. Beta faktor

1. Přednáška. Ing. Miroslav Šulai, MBA

FINANČNÍ A INVESTIČNÍ MATEMATIKA 2

3. ANTAGONISTICKÉ HRY

Optimalizace portfolia a míry rizika. Pavel Sůva

Hodnocení pomocí metody EVA - základ

4EK213 LINEÁRNÍ MODELY

Value at Risk. Karolína Maňáková

CAPM atd. Martin Šmíd, listopad 2005

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e

Příručka k měsíčním zprávám ING fondů

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

Příručka k měsíčním zprávám ING fondů

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Lineární programování

Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv. Ing. Gabriela Oškrdalová oskrdalova@mail.muni.

Cvičení z optimalizace Markowitzův model

ANTAGONISTICKE HRY 172

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

KMA/MAB. Kamila Matoušková (A07142) Plzeň, 2009 EFEKTIVNÍ PORFÓLIO V MARKOWITZOVĚ SMYSLU

Stochastická dominance a optimalita portfolií

Finanční trhy. Finanční aktiva

FINANČNÍ A INVESTIČNÍ MATEMATIKA Metodický list č. 1

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Ekonomické modelování pro podnikatelskou praxi

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Bakalářská práce Optimální volba portfolia klasické a alternativní přístupy

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

4EK201 Matematické modelování. 2. Lineární programování

Pravděpodobnost a aplikovaná statistika

Kvantitativní řízení rizik

Matematika pro informatiky

Úvod. Kapitálové statky výrobek není určen ke spotřebě, ale k další výrobě (postupná spotřeba) amortizace Finanční kapitál cenné papíry

Úvod do analýzy cenných papírů. Dagmar Linnertová 5. Října 2009

Univerzita Karlova v Praze. Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Jan Šmejkal. Katedra pravděpodobnosti a matematické statistiky

Téma 2: Časová hodnota peněz a riziko. 2. Riziko ve finančním rozhodování. 1. Časová hodnota peněz ve finančním rozhodování podniku

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

MATEMATICKÁ STATISTIKA - XP01MST

4EK212 Kvantitativní management. 2. Lineární programování

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné.

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Regresní a korelační analýza

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

Aplikovaná numerická matematika

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

4EK213 LINEÁRNÍ MODELY

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

Pojem investování a druhy investic

NMAI059 Pravděpodobnost a statistika

FRP 6. cvičení Měření rizika

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

Úlohy nejmenších čtverců

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

4EK311 Operační výzkum. 2. Lineární programování

Požadavky k opravným zkouškám z matematiky školní rok

10 Funkce více proměnných

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Matematika I 12a Euklidovská geometrie

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR)

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika B101MA1, B101MA2

Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP

Lineární algebra : Metrická geometrie

Poznámky k předmětu Aplikovaná statistika, 4. téma

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

5. Lokální, vázané a globální extrémy

Testování hypotéz o parametrech regresního modelu

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Testování hypotéz o parametrech regresního modelu

Testování statistických hypotéz

Poznámky k předmětu Aplikovaná statistika, 4. téma

AVDAT Mnohorozměrné metody, metody klasifikace

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

LWS při heteroskedasticitě

I. D i s k r é t n í r o z d ě l e n í

Téma 22. Ondřej Nývlt

Regresní a korelační analýza

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Přímka kapitálového trhu

Lineární klasifikátory

0.1 Úvod do lineární algebry

p(x) = P (X = x), x R,

ALGEBRA. Téma 5: Vektorové prostory

0.1 Úvod do lineární algebry

Extrémy funkce dvou proměnných

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Regresní analýza 1. Regresní analýza

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Simulace. Simulace dat. Parametry

Chyba predikce při rezervování metodou Chain Ladder u korelovaných vývojových trojúhelníků

Transkript:

MARKOWITZŮV MODEL OPTIMÁLNÍ VOLBY PORTFOLIA PŘEDPOKLADY, DATA, ALTERNATIVY Jitka Dupačová - příprava k přednášce pro ČSOB a Analýze investic Za zakladatele moderní teorie portfolia je pokládán H. Markowitz (1952, 1959). Jeho model se týká především investic do portfolia akcií a využívá celé řady zjednodušujících předpokladů: Jde o ideální trh bez transakčních nákladů, bez arbitráže, s neomezenou možností investování i vypůjčovaní za stejnou bezrizikovou úrokovou míru a obchodování s neomezeně dělitelnými dokumenty; obchodují na něm malí racionální investoři, kteří dávají přednost vyšším výnosům před nižšími a menšímu riziku před větším rizikem, využívají shodných informací, a to hodnot očekávaných výnosností akcií a rozptylů a kovariancí těchto výnosností, a investují ve stejném čase pro jedno stejně dlouhé období. Přesto šlo o průlom v tom, že kromě hlediska maximálních výnosností byl zohledněn i investorův vztah k riziku a ve svém důsledku vedlo použití modelu k diverzifikaci portfolia. 1 Odvození základního modelu Uvažujeme investici do J akcií, jednotková investice do j-té z nich dává ve zvoleném období celkovou náhodnou výnosnost ρ j. Rozdělení vektoru ρ výnosností všech uvažovaných akcií je charakterizováno známým vektorem středních hodnot Eρ = r a varianční maticí V = [cov(ρ i, ρ j ), i, j = 1,... J] která obsahuje kovariance mezi výnosnostmi všech dvojic akcií a na hlavní diagonále má rozptyly výnosností jednotlivých akcií. Složení portfolia je určeno váhami x j, j = 1,..., J, které musí splňovat podmínku j x j = 1. Výnos portfolia s váhami x budeme chápat jako střední hodnotu jeho celkové výnosnosti r(x) = x j r j = r x j a riziko tohoto portfolia bude dáno hodnotou rozptylu jeho celkové výnosnosti σ 2 (x) = i,j [cov(ρ i, ρ j )]x i x j = x Vx Podle předpokladů dávají všichni investoři přednost portfoliu s vyšším výnosem a s nižším rizikem. V souladu s tím definujeme Definice 1.1. Portfolio s váhami x je eficientní vzhledem ke střední hodnotě a rozptylu (mean-variance efficient), jestliže neexistují jiné váhy x splňující podmínku j x j = 1, pro které je r(x) r(x ) a současně σ 2 (x) σ 2 (x ) a aspoň jedna z nerovností je ostrá. 1

Definice zůstává v platnosti, i když omezíme volbu vah dalšími podmínkami, např. nezáporností. Portfolia, která vyhovují této definici budeme stručně nazývat eficientní portfolia. Je celá řada možností, jak hledat eficientní portfolia, např. řešením optimalizačních úloh závisejících na parametrech max x X λr x 1 2 x Vx (1) kde λ 0 je parametr modelující investorův vztah k riziku, nebo za podmínek min x X x Vx (2) r x r p kde parametrem je nastavená minimální hodnota r p přijatelné (očekávané) výnosnosti portfolia. Množina X je definována požadavkem j x j = 1 a případně dalšími podmínkami na složení portfolia; my si odvodíme jednotlivá tvrzení pouze za platnosti zmíněného základního požadavku na váhy. Pokud je matice V regulární (to mj. znamená, že žádná akcie není bezriziková) a střední výnosnosti nejsou pro všechny akcie stejné, lze pomocí známých podmínek pro vázaný extrém funkce x Vx snadno odvodit řadu výsledků. Označme jako x G váhy, které minimalizují rozptyl výnosnosti portfolia bez ohledu na jeho očekávanou výnosnost, tj. x G = V 1 1 1 V 1 1 a r min = r(x G ) = r x G odpovídající očekávanou výnosnost portfolia s váhami x G. Tvrzení 1.2. Nechť je V regulární, nechť jsou vektory r, 1 lineárně nezávislé a 1 Vr 0. Pak při libovolně zvolené hodnotě r p r min a) existuje vždy jediný vektor vah x(r p ), který minimalizuje rozptyl výnosnosti portfolia v úloze (2) V 1 r x(r p ) = µ 1 1 V 1 r + µ V 1 1 2 (3) 1 V 1 1 b) vektor x(r p ) nutně splňuje podmínku r x r p jako rovnost. c) hodnoty Lagrangeových multiplikátorů µ 1, µ 2 lze vypočítat vyřešením soustavy omezení r x = r p, 1 x = 1 pro x = x(r p ). Zejména platí, že µ 1 + µ 2 = 1. 2

d) Získané váhy x(r p ) jsou lineární funkcí r p, takže odpovídající rozptyl výnosnosti portfolia σ 2 (x(r p )) je kvadratickou funkcí r p a očekávaná výnosnost portfolia r(x(r p )) je lineární funkcí r p. Důkaz je snadný a z tvrzení 1.2 plyne celá řada známých důsledků: V rovině dvojic [r(x), σ 2 (x)] leží minimální rozptyly výnosnosti portfolia na parabole. Její větev, na které leží maximální možné očekávané výnosnosti portfolia při dané hodnotě rozptylu, je t.zv. eficientní hranice (mean-variance efficient frontier); odpovídá hledaným eficientním portfoliím, resp. optimálním řešením úlohy (2) pro různé nastavené hodnoty r p r min ; viz obrázek 1. Pro dvě eficientní portfolia s váhami x p, xˆp minimalizujícími rozptyl výnosnosti portfolia při odlišných nastavených mezích očekávaných výnosností r p, rˆp platí, že i každá jejich lineární kombinace αx p + (1 α)xˆp je eficientní, a to při parametru αr p + (1 α)rˆp. Vzorec (3) spolu s uvedeným důsledkem mají svou ekonomickou interpretaci známou jako Tobinova věta o separaci (two-fund separation theorem, Tobin 1958): Všechna eficientní portfolia lze vyjádřit jako lineární kombinaci dvou eficientních portfolií x G = V 1 1 1 V 1 1 a x 1 = V 1 r 1 V 1 r 2 Obměny základního modelu 1. Uvažujme navíc možnost investice do bezrizikového aktiva, j = 0, s výnosností r 0 a současně i možnost neomezeného vypůjčování za bezrizikovou úrokovou míru r 0. Váha bezrizikového aktiva v portfoliu bude x 0 = 1 J j=1 x j. Stačí tedy dosadit a pracovat jenom s váhami rizikových aktiv, x j, j = 1,..., J. Zavedeme rozdíly R j = r j r 0, R p = r p r 0 a uvědomíme si, že varianční matice rozdílů ρ j r 0, j = 1,..., J je opět V. Předpokládáme, že R p r min. Váhy rizikových aktiv v portfoliu dostaneme jako řešení úlohy min x Vx za podmínek J R j x j R p (4) j=1 (Podmínka na součet vah již v úloze není a pro optimální řešení bude podmínka na očekávanou výnosnost opět splněna jako rovnost.) Výsledné váhy jsou x = R pv 1 R R V 1 R 3

a x 0 = 1 j x j pro investice do bezrizikového aktiva. Odpovídající minimální rozptyl výnosnosti portfolia je a poměr R p σ P (x) σ 2 p(x ) = R 2 p R V 1 R je t. zv. Sharpova míra portfolia. Řešením odpovídající úlohy (4) o vázaném extrému zjistíme, že i v tomto případě lze eficientní portfolia representovat jako lineární kombinací dvou portfolií - bezrizikového (s váhami x 0 = 1 a x j = 0 pro j 0) a t.zv. tečného eficientního portfolia složeného pouze z akcií, tedy s váhami x T, které splňují dodatečnou podmínku J j=1 x j = 1. Odpovídající hodnota očekávané výnosnosti R p (nad danou bezrizikovou výnosnost r 0 ), kterou je třeba nastavit, a výsledný minimální rozptyl vyjdou jako R p = r(x T ) r 0 = R V 1 R R V 1 1 a σ 2 p(x T ) = R V 1 R (R V 1 1) 2 Pro eficientní portfolia s váhami x se graficky znázorňuje závislost směrodatné odchylky výnosnosti portfolia na nastavené hodnotě r p jako přímka kapitálového trhu (CML - capital market line) r(x) = r 0 + r(x T ) r 0 σ(x) σ(x T ) která prochází bodem odpovídajícím bezrizikovému portfoliu a bodem pro portfolio akcií s váhami x T ; viz obrázek 2. Pro toto portfolio platí, že dává maximální možnou Sharpovu míru portfolia a v rovnovážném modelu (např. CAPM) je lze interpretovat jako tržní portfolio. 2. Podmínky nezápornosti a případná další lineární omezení znamenají pouze složitější diskusi podmínek optimality, ale povaha výsledků se nemění. Pro diskusi výsledků je výhodnější pracovat s úlohou ve tvaru (1). Váhy je možné získat numericky použitím libovolného software pro úlohu kvadratického programování. Z hlediska dimenze řešené úlohy jsou nejmenší úlohy o alokaci prostředků mezi agregované třídy aktiv, dále pak vlastní úloha o volbě portfolia a největší úlohy vznikají při sledování tržního indexu. Doporučení, jak investovat, však není jednoznačné. Konečné rozhodnutí - volba jednoho z eficientních portfolií - je v rukou investora. 3 Vstupní data Možnost úspěšného použití Markowitzova modelu závisí na tom, jsou-li splněny předpoklady modelu, a také na vstupních datech, tedy na středních hodnotách výnosností akcií a na 4

varianční matici výnosností. Jisté je, že nelze pracovat jenom s rozptyly výnosností jednotlivých akcií, ale že právě hodnoty kovariancí mohou podstatně přispět k účinné diversifikaci portfolia. Pokud mají investoři k disposici dosti dlouhé časové řady výnosností sledovaného souboru akcií, nabízí se použití průměrných výnosností a také odhadů rozptylů a kovariancí z těchto pozorování. Pro kvalitní odhady momentů je třeba použít dosti dlouhé řady pozorování, dlouhé historické řady však často nejsou stacionární. Pro vysvětlení kovarianční struktury výnosností se proto někdy používá faktorových modelů. V takovém případě předpokládáme, že výnosnosti jednotlivých akcií se řídí modelem ρ j = α j + β j F + ɛ j (5) kde ɛ j jsou náhodné odchylky od modelu nekorelované s faktorem F, mají nulové střední hodnoty, rozptyly σɛj 2 a náhodné odchylky pro různé dvojice akcií jsou nekorelované. Základní představa, že korelace mezi výnosnostmi jsou způsobeny odezvou na situaci na celém trhu, vede k interpretaci faktoru F jako rozdílu výnosnosti trhu akcií a výnosnosti bezrizikového aktiva F = ρ M r 0. Výnosnosti jednotlivých akcií pak mají dvě složky - systematickou danou vazbou na výnosnost trhu a specifickou. Tato představa souhlasí s modelem CAPM. Na základě modelu (5) a uvedených statistických předpokladů dostaneme snadno střední hodnoty, rozptyly a kovariance (r M, σm 2 značí střední výnosnost a rozptyl výnosnosti tržního portfolia): r j r 0 = α j + β j (r M r 0 ), σ 2 j = varρ j = β 2 j σ 2 M + σ 2 ɛj (6) kde r M r 0 se interpretuje jako prémie za riziko trhu (market risk premium) a v jk = cov(ρ j, ρ k ) = β j β k σ 2 M, cov(ρ j, ρ M ) = β j σ 2 M Odtud plyne β j = cov(ρ j, ρ M ) σ 2 M Koeficienty β j, α j a rozptyly se odhadují z dat, výnosnost trhu je representována výnosností vhodného indexu. Pro rovnovážný stav trhu jsou v (5) míry nerovnovážnosti α j = 0 pro všechny akcie a závislost středních výnosností akcie na střední výnosnosti tržního portfolia se znázorňuje graficky jako přímka trhu cenných papírů (SML - security market line). Odhadnuté hodnoty β se používají pro charakterizaci rizika akcií vzhledem k tržnímu riziku i k samotné konstrukci portfolia. Faktorový model také objasňuje, proč nelze očekávat, že diversifikace portfolia bude neomezeně snižovat riziko: na výnosnosti akcií působí také vliv trhu, tržní riziko, které Markowitzův model neeliminuje. Riziko trhu však lze snížit vhodnou volbou portfolia s ohledem na hodnoty β. Pokud dostupná informace nestačí pro dosti přesné odhady středních hodnot výnosností, jejich rozptylů a kovariancí ani pro faktorový model, navrhují se někdy zjednodušené postupy. Tak na příklad lze z předpokládaných hodnot minimálních a maximálních možných 5

výnosností r j,min, r j,max odhadnout střední výnosnost jako r j = 1/2[r j,min + r j,max ], rozptyl jako σj 2 = 1/16[r j,min r j,max ] 2 a kovariance spočítat z expertních odhadů korelací a z odhadnutých rozptylů. Ukazuje se však, že výsledky Markowitzova modelu jsou velmi citlivé vzhledem ke středním hodnotám výnosností, méně již vzhledem k jejich varianční matici (Chopra a Ziemba 1993, Dupačová 1996). Příčina souvisí s chováním optimálních řešení úloh kvadratického programování (1) nebo (2) v závislosti na parametrech. Uvažujme úlohu odpovídající úloze (1) max x X p x 1/2x Vx (7) kde p je parametr, V je pozitivně definitní matice a X je neprázdná polyedrická množina, např. X = { x R+ Ax J b }. (V našem speciálním případě je p = λr.) Množinu X lze rozložit na konečný počet relativně otevřených stěn, které jsou definovány množinami indexů aktivních omezení; vnitřek množiny X je chápán jako otevřená stěna odpovídající prázdné množině indexů. Parametrický prostor R J vektorů p lze odpovídajícím způsobem rozložit na konečný počet disjunktních množin stability charakterizovaních tím, že pro libovolný prvek p dané množiny stability leží optimálmí řešení x(p) úlohy (7) ve stejné stěně množiny X. Přitom v dané množině stability je x(p) lineární funkce parametru p a je diferencovatelná ve všech vnitřních bodech této množiny. Pro p, které leží na hranici některé množiny stability, optimální řešení x(p) již diferencovatelné není. Optimální hodnota ϕ(p) účelové funkce v (7) je počástech lineární a kvadratická funkce parametru p a díky předpokladu o pozitivní definitnosti matice V je i diferencovatelná s výjimkou případu, kdy by koeficienty aktivních omezení byly lineárně závislé. Tento výsledek vysvětluje relativní stabilitu optimální hodnoty i v případech, kdy je optimální řešení velmi citlivé na malé změny parametru: To jsou právě případy, kdy parametr p leží na hranici některé množiny stability. Podobnou možnost nelze vyloučit ani ve speciálním případě, kdy p = λr při pevném vektoru r a parametru λ 0, tedy při sledování eficientní hranice. Příklad 3.1. Uvažujme jednoduchou úlohu kvadratického programování max { } p 1 x 1 + p 2 x 2 1/2x 2 1 x 1 x 2 x 2 2 na množině X = {x 1, x 2 x 1 0, x 2 0, x 1 + x 2 1}. Množinu X lze rozložit na relativně otevřené stěny Σ 1,..., Σ 7, viz obrázek 3. Odpovídající množiny stability σ(σ k ), k = 1,..., 7 jsou znázorněny na obrázku 4. Uvažujme nyní p 1 = p 2 = 1. Pro tuto hodnotu parametru leží optimální řešení ve vrcholu Σ 3, ale malé změny souřadnic způsobí, že se posune do přilehlých stěn Σ 6 nebo Σ 7, případně dovnitř množiny X - tj. do stěny Σ 1. Odpovídající změny optimální hodnoty a první souřadnice x 1 (p) optimálního řešení jsou znázorněny pro p 1 = 1 a p 2 0 na obrázku 5. Podobná situace nastává i pro dvojici p 1 = 1, p 2 = 2. Z hlediska investora může jít o nestabilní chování optimálních vah - extrémní rozhodnutí investovat vše do prvního aktiva (vrchol Σ 3 nebo Σ 4 ) se může snadno změnit v investování do obou rizikových aktiv (stěna Σ 7 ) nebo v investování do obou rizikových aktiv i do bezrizikového aktiva (stěna Σ 1 ). 6

S ohledem na vliv výchozích předpokladů modelu a na problémy při získávání dat to znamená, že rozhodování založené na váhách získaných řešením Markowitzova modelu je třeba navíc detailně analyzovat. Problémy narůstají, pokud se podle Markowitzova modelu hledá celá posloupnost rozhodování v čase. Markowitzův model je statický a numerické studie dokumentují, že na něm založené výsledky se zhoršují s rostoucím horizontem pro rozhodování a také s rostoucím počtem časových intervalů, na které je aplikován; viz např. případová studie Cariñho et al. (1994). 4 Alternativní přístupy 1. V souvislosti s Markowitzovým modelem se často diskutují i asymetrické míry rizika, např. King (1993) nebo kvadratická semivariance. Jejich význam je zřetelný zvláště při snaze použít Markowitzův model pro rozhodování o portfoliu aktiv a pasiv, kde se za výnosnost pokládá rozdíl mezi výnosností aktiv a výnosností pasiv. Někteří autoři uvažují také aplikace podobného postupu na obligace; tam však nelze očekávat příliš velký efekt, protože trh obligací se chová odlišně; zejména lze jen stěží počítat s negativní korelací výnosností. Další zajímavou otázkou jsou důsledky investic velkých investorů, které mohou ovlivnit střední hodnoty a výnosnosti jednotlivých akcií. 2. Konno a Yamazaki (1991) navrhli a aplikovali model, který kvantifikuje riziko portfolia pomocí střední absolutní odchylky od očekávané výnosnosti a tím se mj. vyhýbá problému odhadování varianční matice. Model můžeme zapsat analogicky jako (2) (případně (4)) min E ρ j x j r j x j (8) x X j j za podmínek r j x j r p j Toto kriterium dá teoreticky shodné složení portfolia jako při minimalizaci rozptylu výnosnosti (úloha (2)), pokud se výnosnosti akcií řídí normálním rozdělením. Autoři navrhují odhadovat střední hodnoty průměry z historických pozorování; pak je možné vzniklou úlohu řešit jako úlohu lineárního programování. Situace se nezmění, ani tehdy, rozlišují-li se odchylky nad/pod střední výnosnost, platí obdoba věty o separaci a i v tomto modelu lze zkonstruovat přímku trhu cenných papírů. Jednodušší struktura vstupních dat i sama metoda řešení se zdají být velmi slibné. Dosud však zřejmě nebyla testována citlivost výsledků na vstupní data. 3. Současně s Markowitzem se zabýval zahrnutím rizika do finančních rozhodování také Roy (1952). Navrhl maximalizovat pro x X pravděpodobnost P (ρ x r p ), 7

kde r p značí minimální uvažovanou výnosnost portfolia. Pro ρ N (r, V) lze úlohu převést na tvar r(x) r p max ; x X σ(x) odvoďte a porovnejte s maximalizací Sharpovy míry portfolia! Další používané kriterium má tvar max {r(x) P x X (ρ x r p ) 1 α}, pro dané α (0, 1) a r p. Pro ρ N (r, V) má tato úloha tvar Kvantilové kriterium max {r(x) r(x) + x X Φ 1 (α)σ(x) r p }. maximalizovat r p za podmínek x X, P (ρ x r p ) 1 α pro zvolené α (0, 1) je příbuzné s kvantifikací rizika pomocí value at risk, VaR. Odvoďte jeho tvar za předpokladu ρ N (r, V)! 4. Konkurencí pro uvedené typy modelů jsou přístupy založené na uznávaném kriteriu maximalizace středního užitku z výnosnosti portfolia. Takový model má tvar max x X E u( j ρ j x j ) kde u je investorem zvolená užitková funkce. Maximalizace středního užitku z výnosnosti portfolia má řadu výhod před postupy, které vycházejí z Markowitzova modelu: Lze ji použít pro různá rozdělení, pro různé druhy cenných papírů, zahrnout transakční náklady, zobecnit pro dynamické modely, respektovat vazbu aktiv a pasiv, atp. Optimální portfolio zde však závisí na volbě užitkové funkce a pro její volbu nelze dát obecný návod. Pochopitelně se studovala otázka, kdy dává (8) eficientní portfolia ve smyslu Markowitzově (viz např. Elton a Gruber 1987, Müller 1994): Je tomu tak zejména v případě, že výnosnosti mají normální rozdělení a užitková funkce je neklesající a konkávní, nebo pro kvadratickou užitkovou funkci. Pokud jsou výrazné odchylky od normálního rozdělení, výsledky se liší. V takovém případě však (na rozdíl od maximalizace středního užitku z výnosnosti) Markowitzův model odhlíží od informace o momentech vyššího řádu vypovídajících např. o asymetrii rozdělení výnosností a přirozeně pak jeho výsledky nelze přeceňovat. 8

Literatura D. R. Cariño et al., The Russell - Yasuda Kassai model: An asset/liability model for a Japanese insurance company using multistage stochastic programming. Interfaces 24 (1994) 29 49. W. K. Chopra a W. T. Ziemba, The effect of errors in means, variances and covariances on optimal portfolio choice. J. Portfolio Mgt. 19 (1993) 6 11. T. Cipra, Praktický průvodce finanční a pojistnou matematikou, Edice HZ, Praha 1995. G. M. Constantinides a A. G. Malliaris, Portfolio theory. In: Finance, Vol 9 of Handbooks in OR & MS (ed. R. Jarrow et al.), Elsevier 1995, p. 1 30. J. Dupačová, Stochastické optimalizační modely v bankovnictví, Ekonomicko - Matematický Obzor 27 (1991) 201 234. J. Dupačová, Uncertainty about input data in portfolio management. In: Modelling techniques for financial markets and bank management (M. Bertocchi et al., eds.), Physica Verlag 1996, pp. 17 33. E. J. Elton a M. J. Gruber, Modern Portfolio Theory and Investment Analysis. Wiley, New York 1987 (3. vydání). A. J. King, Asymmetric risk measures and tracking models for portfolio optimization under uncertainty. Annals of Oper. Res. 45 (1993) 165 178. H. Konno a H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Sci. 37 (1991) 519 531. H. M. Markowitz, Portfolio Selection. J. of Finance 7 (1952) 77 91. H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investments. Wiley, New York, 1959. H. H. Müller, Modern portfolio theory: Some main results. ASTIN Bulletin 19 (1994) 9 27. A. D. Roy, Safety-first and the holding of assets. Econometrica 20 (1952) 431 439. J. Tobin, Liquidity preference as behavior toward risk. Review of Economic Studies 25 (1958) 68 85. 9