Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1.



Podobné dokumenty
Centrovaná optická soustava

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

Optika pro mikroskopii materiálů I

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky

9. Geometrická optika

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

Bodový zdroj světla A vytvoří svazek rozbíhajících se paprsků, které necháme projít optickou soustavou.

Maticová optika. Lenka Přibylová. 24. října 2010

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Zobrazení čočkou

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení. PaedDr. Jozef Beňuška jbenuska@nextra.sk

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop zobrazování optickými soustavami.

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

M I K R O S K O P I E

3. OPTICKÉ ZOBRAZENÍ

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

6. Geometrická optika

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

25. Zobrazování optickými soustavami

Podpora rozvoje praktické výchovy ve fyzice a chemii

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Optika nauka o světle

Fyzika 2 - rámcové příklady Geometrická optika

3. Optika III Přímočaré šíření světla

Optika. Zápisy do sešitu

Odraz světla na rozhraní dvou optických prostředí

5.2.8 Zobrazení spojkou II

Výfučtení: Jednoduché optické soustavy

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Název: Čočková rovnice

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202

ZOBRAZOVÁNÍ ZRCADLY. Mgr. Jan Ptáčník - GJVJ - Septima - Optika

ZOBRAZENÍ ČOČKAMI. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Jaroslav Trnka. Úvod 3

4. Statika základní pojmy a základy rovnováhy sil

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202

Zákon lomu světla (Snellův zákon) lze matematicky vyjádřit vztahem: , n2. opticky řidšího do prostředí opticky hustšího, láme se ke kolmici.

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

ZÁKLADNÍ ZOBRAZOVACÍ METODY

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla

Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

Kótované promítání. Úvod. Zobrazení bodu

Přednáška č.14. Optika

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

11. Geometrická optika

Elementární křivky a plochy

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Zákon odrazu. Úhel odrazu je roven úhlu dopadu, přičemž odražené paprsky zůstávají v rovině dopadu.

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

Parametrická rovnice přímky v rovině

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

OPTIKA - NAUKA O SVĚTLE

Cyklografie. Cyklický průmět bodu

Momenty setrvačnosti a deviační momenty

Vady optických zobrazovacích prvků

1.13 Klasifikace kvadrik

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

ZÁKLADNÍ PLANIMETRICKÉ POJMY

7.ročník Optika Lom světla

Krafková, Kotlán, Hiessová, Nováková, Nevímová

OPTIKA -p vodní význam NAUKA O SV TLE

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Analytická geometrie lineárních útvarů

KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI

1 Základní pojmy a vztahy

Funkce - pro třídu 1EB

5.2.5 Vypuklé zrcadlo

RELIÉF. Reliéf bodu. Pro bod ležící na s splynou přímky H A 2 a SA a reliéf není tímto určen.

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY

3.2.4 Huygensův princip, odraz vlnění

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Analytická geometrie kvadratických útvarů v rovině

Obecný Hookeův zákon a rovinná napjatost

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/

Funkce pro studijní obory

Další plochy technické praxe

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII

M - Příprava na 1. čtvrtletku pro třídu 4ODK

14. přednáška. Přímka

MATEMATIKA. Problémy a úlohy, v nichž podrobujeme geometrický objekt nějaké transformaci

Transkript:

nauka o optickém zobrazování pracuje s pojmem světelného paprsku úzký svazek světla, který by vycházel z malého osvětleného otvoru v limitním případě, kdy by se jeho příčný rozměr blížil k nule a stejně tak i vlnová délka světla čili v geometrické optice nepřihlížíme ke konečné vlnové délce a předpokládáme přímočaré šíření světla stejně tak neuvažujeme koherentní skládání vln, takže v úvahách o intenzitě se užívá prosté superpozice ( nezávislost paprsků) toto zjednodušení vyhovuje pro rozsáhlou část geometrické optiky včetně teorie optických soustav. Jde-li však o zkoumání struktury optických obrazů a o otázky rozlišovací schopnosti, pozbývá pojem paprsku jako geometrické přímky svůj dobrý smysl a je nutno vyjít z vlnové teorie, konkrétně z teorie ohybu V optických soustavách se chod paprsků modiikuje lomem a odrazem: zákony odrazu a lomu pro izotropní prostředí a index lomu průhledného prostředí jsou téměř jedinými yzikálními pojmy v geometrické optice vše ostatní je geometrie Odraz a lom na rovinné ploše zákon odrazu α = α n α α zákon lomu sinα = nsinβ, n β n kde n = je relativní index lomu n Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n R =. Zobrazení rovinným zrcadlem je znázorněno na obr.. Čárkované body dostaneme prodloužením paprsků vstupujících do oka za rovinu zrcadla. Bod A je zdánlivým (virtuálním) obrazem bodu A. Body A, A jsou symetricky sdruženy podle roviny zrcadla. zrcadlové obrazy pravotočivý šroub se zobrazí jako levotočivý Zobrazování rovinným zrcadlem je jediné optické zobrazování, které nemá žádné vady!

Obr.. Zobrazení rovinným zrcadlem. Zobrazení lámavou plochou už není bodové, je nutno brát v úvahu disperzi indexu lomu (ta způsobuje tzv. barevnou (chromatickou) vadu) a jednak to, že poloha obrazu závisí na tom, pod jakým úhlem pozorujeme předmět v druhém prostředí (obr..). Obr.. Zobrazení lomem. Neexistuje společný průsečík více než dvou svazků, a proto ani neexistuje opravdový obraz předmětového bodu P. Pro získání alespoň zřetelného obrazu se musíme omezit na tzv. paraxiální paprsky svírající s optickou osou zobrazovací soustavy pouze malý úhel (pro lámavou plochu je optická osa obvykle kolmicí k rozhraní). Pro paraxiální paprsky lze zákon lomu psát ve tvaru nα n β π neboť sinα tgα α pro α V případě paraxiálních paprsků je rozmazání (distribuce průsečíků různých paprsků) malé. takže lze určit přibližnou polohu obrazového bodu jako průsečíku dvou paprsků, z nichž jeden je kolmý k rozhraní.

Obr. 3. Paraxiální a neparaxiální paprsky. Zdánlivá hloubka Obr. 4. Zdánlivá hloubka předmětu ve vodě. Protože x x tgα = a tg β = y y x x bude pro paraxilání paprsky platit n = n y y a proto obraz O předmětového bodu P pozorujeme ve zdánlivé hloubce n y y n Pro předmět ve vodě ( n =, 33 ) pozorovaný ze vzduchu ( n = ) tedy bude y y,75y, 33 čili předměty pod vodou se nám jeví blíže než ve skutečnosti jsou. bodové (stigmatické) zobrazení P( x, y, z) P ( x, y, z ) kde PP, je dvojice sdružených bodů ( P je bod v předmětovém a P v obrazovém prostoru) přiřazení bod předmětového prostoru bod obrazového prostoru 3

přímka v předmětovém prostoru přímka v obrazovém prostoru rovina v předmětovém prostoru rovina v obrazovém prostoru kolineace (kolineární zobrazení) hovoříme o sdružených (konjugovaných) bodech, přímkách a rovinách budeme se zabývat pouze osově symetrickými soustavami (tím např. vyloučíme válcové čočky), kde osa symetrie je xx, (splývají) potom budou souřadnice y a z respektive y a z ekvivalentní a můžeme se omezit pouze na řešení v rovinách ( xy ) a ( xy ) v případě složených soustav se omezíme pouze na centrované soustavy (tj. soustavy, jejichž osy symetrie splývají) Budeme používat tuto znaménkovou konvenci (vzdálenosti jsou orientované, nesou tedy i znaménko):. kladný směr os xx, je dán směrem paprsků vstupujících do soustavy (zleva doprava),. souřadné soustavy xyz,, a x, y, z mají shodnou točivost, orientované vzdálenosti měřené od optické osy ve směru k ní kolmém přísluší znaménko kladné (záporné), jeli koncový bod nad (pod) optickou osou, 3. úhly budeme odečítat od osy k paprsku, budeme brát pouze ostré úhly, kladný směr otočení bude proti směru pohybu hodinových ručiček, σ > σ < xx, 4. poloměr křivosti lámavé nebo odrazné plochy měříme vždy od vrcholu V ke středu S; r > je-li vypuklá strana obrácena k dopadajícím paprskům. r > r < V S S V xx, Deinujme příčné (laterální) zvětšení soustavy jako poměr y-ových souřadnic sdružených bodů v obrazovém a předmětovém prostoru Z = y y 4

a úhlové (angulární) zvětšení soustavy jako poměr tangent úhlů, které sdružené paprsky (obrazový a předmětový) svírají s optickou osou tgσ σ ξ = případně ξ = pro malé úhly tgσ σ Kardinální body zobrazovací soustavy ohniska (předmětové) jeho obrazem je úběžná bod obrazového prostoru (,,) (obrazové) je obrazem úběžného bodu předmětového prostoru (,,) ohniskové roviny ( ϕϕ, ) kolmé k optické ose, kterou protínají v ohniscích ohniska nejsou sdružena navzájem, obrazové ohnisko není obecně obrazem předmětového ohniska a vice versa. hlavní body H (předmětový) a H (obrazový) průsečíky hlavních rovin s osami x a x, hlavní roviny ( χχ, ) jsou navzájem sdružené roviny kolmé k ose, jež odpovídají dvojicím sdružených bodů, pro něž je příčné zvětšení Z = (úsečka délky y kolmá k optické ose v hlavní rovině χ předmětového prostoru se zobrazí v hlavní rovině χ jako stejně dlouhá úsečka směřující na touž stranu, tedy y = y uzlové body sdružené body UU, ležící na optické ose, pro které je úhlové zvětšení ξ =, paprsku jdoucímu v předmětovém prostoru bodem U a svírajícím s optickou osou úhel α přísluší v obrazovém prostoru sdružený paprsek jdoucí druhým uzlovým bodem U a svírající s optickou osou úhel σ = σ. Sdružené paprsky procházející uzlovými body jsou tedy navzájem rovnoběžné ohniskové vzdálenosti orientované vzdálenosti ohnisek od hlavních bodů měřené vždy od ohniska k hlavnímu bodu, tedy = H = H Obecné transormační vztahy (zobrazovací rovnice) pro kolineární zobrazení mají tvar x = kde = a x+ b y+ c z+ d i =,,,3 i i i i i ax + by + cz + d čili např. x = ax+ by+ cz+ d Omezíme-li se na roviny ( xy) a ( xy) 3 y = z = atd., potom obecné zobrazovací rovnice mají tvar 5

ax+ by+ d x = ax+ by+ d Z osové symetrie vyplývá, že záměna y b = b = Při záměně y y bude y y a tedy a = d = ax+ by+ d y = ax+ by+ d y neovlivní x a tedy Transormační vztahy se nám tedy zjednodušují na tvar ax + d by x = y = ax+ d ax+ d d dx a odtud x = ax a Ohniskové roviny ϕ : ax( ) ax + d ad ad y y = y = b b a x a d ϕ : ( ) + = konjugovaný bod leží v ax a = konjugovaný bod leží v protínají osu x ( x ) v bodech x( ) = d a a x = a ( ) Posuneme počátky souřadných soustav do ohnisek respektive, tj. přejdeme od soustav ( xy, ) a ( x, y ) k soustavám ( XY, ) a ( X, Y ), ve kterých X( ) X ( ) což odpovídá transormačním vztahům Potom ax + d = ax y = Y ax a = ax y = Y by b Y Y = y = = ax+ d a X ax d a + d ax a a aax ad ad x = = = = + ax + d + a ax+ d ax ax aa X ad + ad + = Tedy ax a ax da ad da ad b a odtud X = = a X a b a X = ; = 6

b Označme a = da ad = ab Potom zobrazovací rovnice pro kolineární zobrazení nabývají tzv. Newtonova tvaru XX = (a) Y = Y X (b) Y = Y X (c) kde X = Y = ; X = Y =, tj. počátky předmětové i obrazové souřadné soustavy leží v příslušných ohniscích. Potom = X( H) = X ( H ) ϕ χ χ ϕ P x s H U H U s x P xx, Obr. 5. Schematické znázornění zobrazovací soustavy. Typy optických soustav > < > < spojná katoptrická duté zrcadlo spojná dioptrická spojná čočka rozptylná katoptrická vypuklé zrcadlo rozptylná dioptrická rozptylná čočka Přejděme k souřadným soustavám s počátky v hlavních bodech. Transormační vztahy jsou x = s+ x = s + Dosazením do první Newtonovy zobrazovací rovnice 7

xx s+ s + = = ( )( ) dostáváme tzv. čočkovou rovnici + + = s s Ze zbývajících Newtonových rovnic získáme další transormační vztahy y = y = y x s + y = y = y x s + Pozn.: Důsledkem námi zvolené znaménkové konvence je, že u čoček jsou zásadně ohniskové vzdálenosti, opačných znamének a v čočkové rovnici je opačné znaménko u absolutního členu proti běžné čočkové rovnici uváděné v elementárních textech. () ϕ χ χ ϕ y y = y A σ H H σ xx, A x x s s Obr. 6. K odvození úhlového zvětšení. Zbývá určit polohu uzlových bodů. Z obr. 6 je zřejmé, že y y tgσ = a tg x σ = x Pro úhlové zvětšení tedy platí tgσ x x x ξ = = = = tgσ x x nebo (dosazením za x z Newtonovy rovnice) ξ = x 8

a pro uzlové body potom z deinice ( ξ = ) platí xu ( ) = a x ( U ) = Jestliže tedy známe polohu ohnisek, a ohniskové vzdálenosti,, je tím jednoznačně určena i poloha dalších kardinálních bodů soustavy H, H a UU,, s jejichž pomocí můžeme zkonstruovat obraz libovolného bodu P( x, y ). Pro geometrickou konstrukci obrazu mimoosového bodu P můžeme užít paprsky znázorněné na obr. 7.. Paprsku, který jde bodem P rovnoběžně s osou a protíná hlavní rovinu χ v bodě (, y ), odpovídá paprsek vycházející z bodu (, y) ohniskem. hlavní roviny χ a procházející. Paprsku, který vychází z bodu P do ohniska a protíná hlavní rovinu χ v bodě (, y ), odpovídá paprsek rovnoběžný s osou ve vzdálenosti y. 3. Paprsku 3, který vychází z bodu P a protíná osu v uzlovém bodě U, odpovídá paprsek 3 vycházející z uzlového bodu U a jdoucí rovnoběžně s původním paprskem. Všechny tři paprsky,,3 se protínají v bodě P, který je obrazem bodu P. Pro konstrukci obrazového bodu samozřejmě stačí dva z paprsků. ϕ χ χ ϕ P y 3 H U H U xx, 3 y P x( U) = ( ) x U = Obr. 7. Geometrická konstrukce obrazu mimoosového bodu. Centrované soustavy Obraz vytvořený jednou optickou soustavou může sloužit jako předmět pro další soustavu. Z vlastností kolineárního zobrazení přitom vyplývá, že soustavu složenou ze soustav 9

jednodušších lze nahradit jedinou výslednou soustavou, jež je rovněž kolineární. Zabývat se budeme pouze tzv. centrovanými soustavami, složenými ze soustav s totožnými osami. Pro jednoduchost uvažujme dvě soustavy dané polohami ohnisek,,, a ohniskovými vzdálenostmi,,, (obr. 8). ϕ ϕ ϕ ϕ ϕ ϕ P y x x x x P y x x ( ) P y ( ) x x xx, Obr. 7. Dvě centrované zobrazovací soustavy.. soustava. soustava xx = xx = y y y y = y = x x y = x y y = x Postupujeme tak, že pomocí dvojí transormace popsané Newtonovými rovnicemi pro. a. soustavu najdeme ohniska výsledné soustavy jako body sdružené s osovými body x a x. Poté najdeme transormační rovnice obecného osového bodu a převedeme do tvaru Newtonových rovnic, čímž získáme ohniskové vzdálenosti, složené soustavy. Vzájemnou polohu dvou centrovaných soustav charakterizujeme tzv. optickým intervalem, který udává orientovanou vzdálenost měřenou od obrazového ohniska první soustavu k předmětovému ohnisku druhé soustavy. x ( ) = = = x ( ) (paprsek vstupující do. soustavy rovnoběžně s osou protíná osu v ohnisku a potom je zobrazen. soustavou do bodu, který z deinice musí být obrazovým ohniskem složené soustavy ).

Obdobně pro předmětové ohnisko složené soustavy x ( ) = = x ( ) Dále musí platit (viz obr. 8) v w = x H x a odtud Obdobně ( ) ( ) w = v, + v + x ( H ) = ( x ( ) ) = = = w + + w x( H) = ( x ( ) ) = = = v + Tedy shrnuto pro složenou centrovanou soustavu dostáváme x ( ) = x ( ) = (3) = = (4) Ze vztahů výše je zřejmé, že dvě spojné soustavy (, ) > > s kladným optickým intervalem dávají rozptylnou výslednou soustavu ( < ) a se záporným optickým intervalem výslednou soustavu spojnou. χ χ χ χ x ( ) v v w w ( ) x Obr. 8. Chod paprsků centrovanou kombinací dvou zobrazovacích soustav. Nyní když známe hlavní rysy geometrického popisu kolineárních zobrazovacích soustav, začneme se zabývat konkrétními zobrazovacími soustavami a otázkou, nakolik se reálné soustavy mohou přiblížit ideálnímu modelu. Kolineární zobrazení libovolně velkých

rovinných předmětů kolmých k optické ose libovolně širokými svazky paprsků nelze yzikálními prostředky přesně realizovat. Jediným zobrazovacím prvkem lze dosáhnout kolineárního zobrazení jen tehdy, omezíme-li se na body ležící tak blízko optické osy, že lze siny a tangenty úhlů, které paprsky svírají s osou, nahradit oblouky a vzdálenosti od osy délkami kruhových oblouků se středy ležícími na optické ose. Takové paprsky nazýváme paraxiální a prostor, v němž lze paprsky považovat za paraxiální se nazývá Gaussův nitkový prostor. Jedinou výjimkou je rovinné zrcadlo, u něhož je zobrazení kolineární i při libovolně širokých svazcích. Lom a odraz na kulové ploše Lámavá kulová plocha o poloměru r ohraničuje dvě prostředí o indexech lomu N a N (obr. 9). Jestliže se omezíme na paraxiální paprsky (Gaussův nitkový prostor), budou všechny úhly malé a nemusíme činit rozdíl mezi úhlem, jeho sinem či tangentou. B A N α N β h σ ω σ V S A xx, s < r > s > B Obr. 9. Zobrazení lomem na kulové ploše. Podle obr. 9 platí (s respektováním správného znaménka úhlu v souladu s konvencí) α = σ ω ω = σ β β = σ ω h σ s Zákon lomu pro malé úhly a odtud N = N r s r s h σ s h ω r h h N + α σ ω = = = s r = r s N β σ ω h h + s r r s

N N N N + = (5) s s r Tato rovnice neobsahuje h a ukazuje, že zobrazení osového bodu je za uvedených předpokladů bodové. Ze vztahu výše vyjádříme s s resp. s Nrs Nrs s = s = (6) N N s Nr N N s + Nr ( ) + ( ) Transormační rovnici pro mimoosový bod (souřadnice y) dostaneme myšleným pootočením celé konstrukce na obr. 9 kolem středu křivosti S o takový úhel, aby se bod A bočně posunul o vzdálenost y (stále v Gaussově prostoru). Z obr. 9 plyne y r s = y r s a dosazením za s dostaneme hledaný transormační vztah Nry y = N N s+ Nr ( ) Rovnice (6) a (7) splňují požadavky kolineární transormace, a tedy zobrazení kulovou lámavou plochou je (v paraxiálním prostoru!) kolineární. Nyní určíme polohu kardinálních bodů lámavé kulové plochy. obrazové ohnisko ( s ) Nrs Nr Nr nr s ( ) = = = = ( N N) s+ Nr r N N n ( N N) + N s (7) kde jsme označili n relativní index lomu Podobně pro předmětové ohnisko ( s ) N n =. N ( ) s Pro hlavní roviny platí Nr r = = N N n = = a tedy s( H) s ( H ) ( ) ( ) y r s H = = y r s H Hlavní roviny v případě kulové lámavé plochy splývají a procházejí vrcholem plochy V. Ohniskové vzdálenosti potom jsou Nr r H = s( H) s( ) = s( ) = = (8a) N N n 3

Nr nr H = s ( H ) s ( ) = s ( ) = = N N n uzlové body xu ( ) = x ( U ) ( ) ( ) ( ) (8b) = x= s+ x = s + r nr su ( ) = xu ( ) = ( + ) = = r n n s U = x U = + = r Uzlové body splývají se středem křivosti kulové lámavé plochy. To je pochopitelné, protože paprsky procházející středem křivosti se lomem neodchylují, sdružené paprsky leží v téže přímce. Vraťme se k rovnici (5) N N N N = s s r Nr Nr = N N s N N s ( ) ( ) a s užitím (5a) a (5b) dostáváme čočkovou rovnici () + = s s nebo transormací do soustav s počátky v ohniscích ( s = x ; s = x ) + = x x a po roznásobení dostaneme Newtonovu rovnici (a) xx = tedy opravdu se za daných předpokladů jedná o kolineární zobrazení. Příčné zvětšení (s užitím vztahů (), (8a) a (8b)) y s Ns Z = = = = y x s+ s Ns Tedy pokud n ( N N) r nr > > a r > bude = > a = < jedná se o spojnou n n > a <, naopak při r < půjde o rozptylnou soustavu soustavu dioptrickou ( ) dioptrickou ( a ) < <. Výsledky odvozené pro lámavou kulovou plochu lze použít i pro sérická zrcadla, jestliže do odvozených vztahů dosadíme N = N respektive n=. 4

světlo n > V H H S U U xx, > r > < Obr.. Lámavá plocha jako spojná soustava dioptrická. světlo n > S U U V H H xx, < r < > Obr.. Lámavá plocha jako rozptylná soustava dioptrická. Potom ze vztahů (8a) a (8b) dostáváme pro ohniskové vzdálenosti sérického zrcadla r = = (9) Ohniska tedy splývají a leží vždy na polovině vzdálenosti mezi vrcholem a středem křivosti, u dutého zrcadla ( r < ) před zrcadlem a u vypuklého zrcadla ( ) r > za zrcadlem. Stejně jako u lámavé plochy hlavní roviny splývají a procházejí vrcholem a uzlové body splývají se středem křivosti. Čočková rovnice () pro sérické zrcadlo nabývá tvaru + = s s r () světlo V H H S U U xx, < r > Obr.. Vypuklé (konvexní) sérické zrcadlo. 5

světlo S U U V H H xx, > r < Obr. 3. Duté (konkávní) sérické zrcadlo. Příčné zvětšení sérického zrcadla y s Z = (neboť N = N ) y s Vlastnosti zobrazení dutým sérickým zrcadlem ( r, ) < >, vždy je s < : a) < s< < s < skutečný (reálný), převrácený, zmenšený b) s = s = skutečný, převrácený, stejně velký c) < s< < s < skutečný, převrácený, zvětšený d) s = s = e) s< s > s zdánlivý (neskutečný, virtuální), vzpřímený, zvětšený Vlastnosti zobrazení vypuklým sérickým zrcadlem ( r, ) > <, vždy je s < : ať je předmět kdekoli, obraz bude zdánlivý, vzpřímený, zmenšený, < s < Zvláštním případem kulového zrcadla je rovinné zrcadlo ( r = ). Je zřejmé, že také ohniskové vzdálenosti jsou nekonečné. Ze zobrazovací rovnice () plyne, že s = s, čili předmět a obraz leží souměrně na opačných stranách rovinného zrcadla. Obraz je vždy zdánlivý, vzpřímený a stejně velký jako předmět, neboť ze vztahu pro příčné zvětšení plyne y s Z = = y s Zobrazení rovinným zrcadlem je jediné optické zobrazení, které nrmá žádné vady. Čočky Čočkou budeme rozumět centrovanou složenou optickou soustavu tvořenou dvěma lámavými sérickými plochami (nebudeme se tedy zabývat asérickými čočkami), z nichž nejvýše jedna může mít rovinná ( r = ) omezujícími prostředí o indexu lomu N. Předpokládáme-li stejné 6

prostředí na obou stranách čočky (o indexu lomu N ), potom relativní index lomu na přední straně čočky bude n= N N a na zadní straně čočky n = N N = n, tedy pro ohniskové vzdálenosti platí Nr r = = N N n Nr nr = = N N n Nr nr = = N N n Nr r = = N N n = Nr = N N Nr N N N N N Nr = N N H H = = Nr = N N xx, = d Obr. 4. Tlustá čočka. Optický interval (viz obr. 4) je ( ) ( ) + ( ) nr nr n r r d n r r n = = ( d) = + + d = + d = n n n n Ohniskové vzdálenosti čočky potom budou nrr n = = + ( n ) n( r r) d( n ). Tedy = nrr n = = + ( n ) n( r r) d( n ) (ovšem pouze pokud je na obou stranách čočky stejné prostředí!). Potom ale xu ( ) = = a ( ) x U = = a tedy hlavní a uzlové body čočky splývají, H U, H U. Pro tenkou čočku ( d r, r ) = bude rr ( n )( r r) ( r) n r n, potom 7

nebo ( ) ( n ) d D= n + ( n ) r r nrr r r kde D je optická mohutnost čočky (= reciproká ohnisková vzdálenost) udávaná v dioptriích. S ohledem na vztah () nabývá čočková rovnice () tvar () ( n ) d + + ( n ) + = s s r r nrr () který se v případě tenké čočky zjednoduší na + + ( n ) = s s r r U tenké čočky vrcholy matematicko splývají ( d ), splývají i hlavní roviny a hlavní body. U čoček spojných máme >, < a u rozptylných <, >. U spojných čoček leží předmětové ohnisko před čočkou a obrazové za čočkou, u rozptylných je tomu naopak, obrazové ohnisko leží před a předmětové za čočkou. Diskutujme výraz () pro tenkou čočku: předpokládejme n > spojky > > r r > r r. r > buď a) r > r nebo b) r <. r < > r > r (3) rozptylky < < r r. r > < r < r. r < buď a) r < r nebo b) r > Příčné zvětšení tenké čočky y s Z = y s Vlastnosti zobrazení spojnou čočkou ( > ), vždy je s < : a) < s< < s < skutečný, převrácený, zmenšený b) s = s = skutečný, převrácený, stejně velký c) < s< < s < skutečný, převrácený, zvětšený d) s = s = 8

e) s< > s, s > s zdánlivý, vzpřímený, zvětšený Vlastnosti zobrazení rozptylnou čočkou ( < ), vždy je s < : ať je předmět kdekoli, obraz bude zdánlivý, vzpřímený, zmenšený, > s > s Centrovaná soustava dvou tenkých čoček ve vzdálenosti v (obr. 5) potom optický interval bude ( ) a výsledná optická mohutnost takové soustavy bude v D = = + = v = + v v Obr. 4. Dvě tenké čočky. Budou-li dvě čočky v těsném kontaktu ( v ), bude D= + = D + D tedy výsledná optická mohutnost bude prostým součtem optických mohutností. Vady (aberace) zobrazování sérická (otvorová) vada vzniká při zobrazení osového bodu širokým svazkem paprsků. U spojné čočky paprsky, které procházejí blízko osy, se protínají dále od čočky, než paprsky procházející okrajem čočky 9

Obr. 5. Sérická vada. astigmatismus a zklenutí obrazu vzniká při zobrazení mimoosového bodu. Světlo procházející čočkou podél vodorovné osy AB je okusováno do bodu S (sagitální ohnisko), zatímco světlo od stejného předmětu procházející čočkou podél svislé osy CD je okusováno do bodu T (tangenciální ohnisko). Obrazem bodu jsou tedy dvě úsečku (okály), ve kterých se protínají svazky paprsků ležících v rovině sagitální a tangenciální okály (obr. 5). Jejich vzdálenost měřená ve směru paprsků je tzv. astigmatický rozdíl. Obr. 6. Astigmatismus. koma vzniká při zobrazení mimoosového bodu širokým svazkem. Místo bodového obrazu vzniká klínovitě se rozbíhající světlá skvrna na širší straně oválně ohraničená. Pojmenování této vady souvisí s podobností tvaru skvrny s tvarem komety.

Obr. 7. Koma. zkreslení obrazu projevuje se tím, že přímky mimoběžné s osou se zobrazují jako křivky. Podle tvaru zakřivení mluvíme o soudkovitém a poduškovitém zkreslení. Souvisí to se závislostí příčného zvětšení na vzdálenosti od osy. Mají-li vnější části předmětu větší příčné zvětšené, vzniká zkreslení poduškovité, je-li naopak příčné zvětšení větší na kraji obrazu, vzniká zkreslení soudkovité. Obr. 8. Poduškovité zkreslení obrazu. barevná (chromatická) vada vyskytuje se pouze u rerakčních (lámavých) soustav, neboť vzniká v důsledku disperze. Protože se světlo různé barvy láme různě, obrazový bod vytvořený světlem jedné barvy nekoinciduje s odpovídajícím obrazovým bodem vytvořeným světlem jiné barvy. Tento rozdíl se projevuje nejvíce u barev, jež se nacházejí na okrajích spektra, tedy červené a ialové. ialové paprsky se lámou více než červené, a tak se svazek paprsků rovnoběžný s optickou osou láme do řady ohnisek, z nichž nejblíže spojné čočce leží

ohnisko rovněž ohnisko pro ialovou barvu a nejdále ohnisko č pro barvu červenou. U rozptylky leží blíže než ohnisko č, avšak ve směru dopadu světla je jejich pořadí opačné (u spojky leží za čočkou, u rozptylky před čočkou). Díky tomu je možné vhodnou kombinací spojky z korunového skla a rozptylky z disperznějšího materiálu (lintového skla) barevnou vadu alespoň částečně odstranit (achromatizace optické soustavy). Obr. 9. Chromatická vada. Pro mimoosový bod způsobuje rekvenční závislost ohniskové vzdálenosti rekvenční závislost příčného zvětšení (transverzální chromatická aberace).