(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení



Podobné dokumenty
1.3.4 Rovnoměrně zrychlený pohyb po kružnici

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_10_FY_B

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

KINEMATIKA. 1. Základní kinematické veličiny

4. KINEMATIKA - ZÁKLADNÍ POJMY

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Tlumené kmity. Obr

2.2.9 Jiné pohyby, jiné rychlosti II

Základy fyziky + opakovaná výuka Fyziky I

EVROPSKÝ SOCIÁLNÍ FOND. Pohyb fyzika PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI. J. Cvachová říjen 2013 Arcibiskupské gymnázium Praha

POHYB TĚLESA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

GRAF 1: a) O jaký pohyb se jedná? b) Jakou rychlostí se automobil pohyboval? c) Vyjádři tuto rychlost v km/h. d) Jakou dráhu ujede automobil za 4 s?

FYZIKA I. Pohyb těles po podložce

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

Obsah: 1 Značky a jednotky fyzikálních veličin 2 _ Převody jednotek 3 _ Pohyb tělesa _ Druhy pohybů _ Rychlost rovnoměrného pohybu...

Kinematika hmotného bodu

Pohyb po kružnici - shrnutí. ω = Předpoklady:

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Počty testových úloh

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

Rovnoměrně zrychlený = zrychlení je stále stejné = velikost rychlosti se každou sekundu zvýší (případně sníží) o stejný díl

Pohyb tělesa (5. část)

1 _ 2 _ 3 _ 2 4 _ 3 5 _ 4 7 _ 6 8 _

Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb

Téma Pohyb grafické znázornění

Dynamika. Dynamis = řecké slovo síla

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Pouť k planetám - úkoly

Slovní úlohy na pohyb

Přípravný kurz z fyziky na DFJP UPa

Úloha VI.3... pracovní pohovor

MECHANIKA - KINEMATIKA

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

Kinematika hmotného bodu

BIOMECHANIKA KINEMATIKA

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

MECHANIKA PRÁCE A ENERGIE

POHYBY TĚLES / GRAF ZÁVISLOSTI DRÁHY NA ČASE - PŘÍKLADY

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

2.2.2 Měrná tepelná kapacita

Jméno a příjmení holka nebo kluk * Třída Datum Škola

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC

Pasivní tvarovací obvody RC

Rovnoměrně zrychlený pohyb v grafech

Test jednotky, veličiny, práce, energie, tuhé těleso

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218

FINANČNÍ MATEMATIKA- ÚVĚRY

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE

min 4 body Podobně pro závislost rychlosti na uražené dráze dostáváme tabulku

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Studijní texty FYZIKA I. Fakulta strojní Šumperk

FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2

1.3.5 Dynamika pohybu po kružnici I

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_A

! " # $ % # & ' ( ) * + ), -

Návrh strojní sestavy

II. Kinematika hmotného bodu

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

1.5.1 Mechanická práce I

Sbírka B - Př

x udává hodnotu směrnice tečny grafu

2.2.8 Jiné pohyby, jiné rychlosti I

(test version, not revised) 9. prosince 2009

1.5.3 Výkon, účinnost

Práce a výkon při rekuperaci

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

2. Kinematika bodu a tělesa

Pokyny k řešení didaktického testu - Dynamika

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Dynamika hmotného bodu. Petr Šidlof

1. Nákladní automobil ujede nejprve 6 km rychlostí 30 km/h a potom 24 km rychlostí 60 km/h. Určete jeho průměrnou rychlost.

Parciální funkce a parciální derivace

58. ročník fyzikální olympiády kategorie G okresní kolo školní rok

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO

FYZIKA. Kapitola 3.: Kinematika. Mgr. Lenka Hejduková Ph.D.

Mechanika - kinematika

7. Slovní úlohy o pohybu.notebook. May 18, Vzdělávací oblast: Matematika a její aplikace. 3. Učivo: Slovní úlohy o pohybu

Zákon zachování energie - příklady

Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle

1.3.2 Rovnoměrný pohyb po kružnici I

KINEMATIKA 5. ROVNOMĚRNÝ POHYB I. Mgr. Jana Oslancová VY_32_INOVACE_F1r0205

POHYBY TĚLES / DRUHY POHYBŮ

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Rovnoměrný pohyb po kružnici

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

Zavádění inovativních metod a výukových materiálů. 05_2_Kinematika hmotného bodu. Ing. Jakub Ulmann

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

n je algebraický součet všech složek vnějších sil působící ve směru dráhy včetně

Průtok. (vznik, klasifikace, měření)

Transkript:

(). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí dopadl na zem výsadkář, jesliže s oevřeným padákem klesal rovnoměrným pohybem rychlosí 2,4 m/s a rychlos věru v horizonálním směru vzhledem k zemi byla 2,8 m/s? 4. Těleso, keré bylo na začáku vklidu, se začalo pohybova rovnoměrně zrychleným pohybem se zrychlením,9 m/s 2. Jak dlouho rvalo, než urazilo dráhu 234 m? () Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 5 m/s je rychlos na konci pohybu, v 0 7, 8 m/s je rychlos na začáku pohybu a 3, 6 s je čas pořebný pro ujeí dráhy. Po dosazení: a 5 m/s 7,8 m/s 3,6 s 2 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 7, 8 m/s.3, 6 s + 2 2 m/s2.(3, 6 s) 2 40 m. 3. Pro skládání rychlosí v navzájem kolmém směru plaí podle Pyhagorovy věy: v v 2 + v2 2 (2, 4 m/s)2 + (2, 8 m/s) 2 3, 69 m/s. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí, proo s 2 a2 2s, odud a 2.234 m 6 s.,9 m/s 2 (2). Načrněe slepý graf závislosi zrychlení ležícího brouka na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od 0,74 s do 7,9 s. 3. V železničním voze rychlíku jedoucího sálou rychlosí 8,6 m/s vrhneme míček, jehož počáeční rychlos vzhledem k vozu je 7,2 m/s Jak velká je počáeční rychlos míčku vzhledem k povrchu Země, jesliže ho vrhneme a) ve směru jízdy, b) proi směru jízdy rychlíku? 4. Hmoný bod koná rovnoměrný pohyb po kružnici s oběžnou dobou 22 s. Určee jeho úhlovou rychlos. (2) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 6, m/s je rychlos na konci pohybu, v 0 9, 63 m/s je rychlos na začáku pohybu a 7, 2 s je čas pořebný pro ujeí dráhy. Po dosazení: a 6, m/s 9,63 m/s 7,2 s 0, 49 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 9, 63 m/s.7, 2 s + 2 ( 0, 49) m/s2.(7, 2 s) 2 57 m. 3. a) Pro skládání rychlosí sejného směru plaí: v v + v 2 8, 6 m/s + 7, 2 m/s 25, 8 m/s. b) Pro skládání rychlosí opačného směru plaí: v v v 2 8, 6 m/s 7, 2 m/s, 4 m/s. 4. Plaí: ω 2π T 6,28 22 s 0, 29 rad/s. (3). Načrněe slepý graf závislosi rychlosi nerovnoměrného pohybu včely na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od,6 s do 5,9 s. 3. Auomobil jede hodinu po dálnici rychlosí o velikosi 9 km/h a další půl hodiny v erénu rychlosí o velikosi 25 km/h. Jaká je velikos průměrné rychlosi auomobilu? 4. Těleso, keré bylo na začáku vklidu, se začalo pohybova rovnoměrně zrychleným pohybem se zrychlením 2,8 m/s 2. Jak dlouho rvalo, než urazilo dráhu 20 m? (3) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 7, m/s je rychlos na konci pohybu, v 0 9, 20 m/s je rychlos na začáku pohybu a 4, 3 s je čas pořebný pro ujeí dráhy. Po dosazení: a 7, m/s 9,20 m/s 4,3 s 0, 49 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 9, 20 m/s.4, 3 s + 2 ( 0, 49) m/s2.(4, 3 s) 2 35 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme dráhy obou úseků s, s 2 ze vzahu s v, edy s 9 km/h. h 9 km, s 2 25 km/h.0, 5 h 3 km. Dosadíme: v p s+s2 9 km+3 km + 2 km/h+0,5 km/h 69, 3 km/h. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí, proo s 2 a2 2s, odud a 2.20 m 9, 3 s. 2,8 m/s 2

(4). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,2 s do 8,0 s. 3. Orienační běžec urazil za prvních 34 s dráhu 30 m, zanásledující 74 s dráhu 240 m. Jaká je velikos jeho průměrné rychlosi za prvních 08 sekund pohybu? (předpokládáme 4. Těleso, keré bylo na začáku vklidu, se začalo pohybova rovnoměrně zrychleným pohybem se zrychlením,4 m/s 2. Jak velkou dráhu urazilo za 9 s? (4) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 8 m/s je rychlos na konci pohybu, v 0 6, 4 m/s je rychlos na začáku pohybu a 5, 8 s je čas pořebný pro ujeí dráhy. Po dosazení: a 8 m/s 6,4 m/s 5,8 s 2, 0 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 6, 4 m/s.5, 8 s + 2 2, 0 m/s2.(5, 8 s) 2 7 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2 30 m+240 m 34 s+74 s 2, 50 m/s. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí, proo s 2 a2 2, 4 m/s2.(9 s) 2 250 m. (5). Načrněe slepý graf závislosi rychlosi sojícího psa na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od 4,4 s do 7,6 s. 3. Auomobil jede hodinu po dálnici rychlosí o velikosi 94 km/h a další půl hodiny v erénu rychlosí o velikosi 36 km/h. Jaká je velikos průměrné rychlosi auomobilu? 4. Vrule leadla se oáčí úhlovou rychlosí 250 rad/s. Jak velkou rychlosí se pohybují body na koncích vrule, jejichž vzdálenos od osy je 2,2 m? (5) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 6, 2 m/s je rychlos na konci pohybu, v 0 7, 8 m/s je rychlos na začáku pohybu a 3, 2 s je čas pořebný pro ujeí dráhy. Po dosazení: a 6,2 m/s 7,8 m/s 3,2 s 0, 50 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 7, 8 m/s.3, 2 s + 2 ( 0, 50) m/s2.(3, 2 s) 2 22 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme dráhy obou úseků s, s 2 ze vzahu s v, edy s 94 km/h. h 94 km, s 2 36 km/h.0, 5 h 8 km. Dosadíme: v p s+s2 94 km+8 km + 2 km/h+0,5 km/h 74, 7 km/h. 4. Plaí: v ωr 250 rad/s.2, 2 m 550 m/s. (6). Načrněe slepý graf závislosi dráhy rovnoměrně zrychleného pohybu ramvaje na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od,2 s do 7,7 s. 3. Mosní jeřáb se pohybuje po dílně ve vodorovném směru rychlosí, m/s, kočka jeřábu se současně pohybuje kolmo na směr pohybu rychlosí 0,75 m/s. Jakou rychlosí se pohybuje ěleso zavěšené na kočce jeřábu vzhledem k dílně? 4. Těleso, keré bylo na začáku vklidu, se začalo pohybova rovnoměrně zrychleným pohybem se zrychlením 4,3 m/s 2. Jak velkou dráhu urazilo za 5 s? (6) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 7 m/s je rychlos na konci pohybu, v 0 4, 4 m/s je rychlos na začáku pohybu a 6, 5 s je čas pořebný pro ujeí dráhy. Po dosazení: a 7 m/s 4,4 m/s 6,5 s, 9 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 4, 4 m/s.6, 5 s + 2, 9 m/s2.(6, 5 s) 2 69 m. 3. Pro skládání rychlosí v navzájem kolmém směru plaí podle Pyhagorovy věy: v v 2 + v2 2 (, m/s)2 + (0, 75 m/s) 2, 3 m/s. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí, proo s 2 a2 2 4, 3 m/s2.(5 s) 2 480 m.

(7). Načrněe slepý graf závislosi rychlosi rovnoměrného pohybu aua na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od, s do 8,3 s. 3. Mosní jeřáb se pohybuje po dílně ve vodorovném směru rychlosí 0,4 m/s, kočka jeřábu se současně pohybuje kolmo na směr pohybu rychlosí,2 m/s. Jakou rychlosí se pohybuje ěleso zavěšené na kočce jeřábu vzhledem k dílně? 4. Těleso, keré bylo na začáku vklidu, se začalo pohybova rovnoměrně zrychleným pohybem se zrychlením 4,8 m/s 2. Jak velkou dráhu urazilo za 2 s? (7) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 5, 9 m/s je rychlos na konci pohybu, v 0 9, 45 m/s je rychlos na začáku pohybu a 7, 2 s je čas pořebný pro ujeí dráhy. Po dosazení: a 5,9 m/s 9,45 m/s 7,2 s 0, 49 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 9, 45 m/s.7, 2 s + 2 ( 0, 49) m/s2.(7, 2 s) 2 55 m. 3. Pro skládání rychlosí v navzájem kolmém směru plaí podle Pyhagorovy věy: v v 2 + v2 2 (0, 4 m/s)2 + (, 2 m/s) 2, 3 m/s. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí, proo s 2 a2 2 4, 8 m/s2.(2 s) 2 350 m. (8). Načrněe slepý graf závislosi dráhy nerovnoměrného pohybu parního válce na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,8 s do 7,3 s. 3. V železničním voze rychlíku jedoucího sálou rychlosí 5,5 m/s vrhneme míček, jehož počáeční rychlos vzhledem k vozu je 8,5 m/s Jak velká je počáeční rychlos míčku vzhledem k povrchu Země, jesliže ho vrhneme a) ve směru jízdy, b) proi směru jízdy rychlíku? 4. Velikos rychlosi auomobilu se zvěšila za 9,7 s ze 4,4 m/s na 20 m/s. Jakou velikos zrychlení měl auomobil? (8) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 7 m/s je rychlos na konci pohybu, v 0 7, 6 m/s je rychlos na začáku pohybu a 4, 5 s je čas pořebný pro ujeí dráhy. Po dosazení: a 7 m/s 7,6 m/s 4,5 s 2 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 7, 6 m/s.4, 5 s + 2 2 m/s2.(4, 5 s) 2 50 m. 3. a) Pro skládání rychlosí sejného směru plaí: v v + v 2 5, 5 m/s + 8, 5 m/s 24, 0 m/s. b) Pro skládání rychlosí opačného směru plaí: v v v 2 5, 5 m/s 8, 5 m/s 7, 0 m/s. 4. Jde o pohyb rov. zrychlený s nenulovou poč. rychlosí. Proo a v v0 20 m/s 4,4 m/s 9,7 s 2 m/s 2. (9). Načrněe slepý graf závislosi dráhy nerovnoměrného pohybu parního válce na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od 2,4 s do 8,9 s. 3. Auomobil jede hodinu po dálnici rychlosí o velikosi 86 km/h a další půl hodiny v erénu rychlosí o velikosi 29 km/h. Jaká je velikos průměrné rychlosi auomobilu? 4. Těleso, keré bylo na začáku vklidu, se začalo pohybova rovnoměrně zrychleným pohybem se zrychlením,9 m/s 2. Jak dlouho rvalo, než urazilo dráhu 25 m? (9) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 5, 6 m/s je rychlos na konci pohybu, v 0 8, 8 m/s je rychlos na začáku pohybu a 6, 5 s je čas pořebný pro ujeí dráhy. Po dosazení: a 5,6 m/s 8,8 m/s 6,5 s 0, 49 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 8, 8 m/s.6, 5 s + 2 ( 0, 49) m/s2.(6, 5 s) 2 47 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme dráhy obou úseků s, s 2 ze vzahu s v, edy s 86 km/h. h 86 km, s 2 29 km/h.0, 5 h 5 km. Dosadíme: v p s+s2 86 km+5 km + 2 km/h+0,5 km/h 67, 3 km/h. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí, proo s 2 a2 2s, odud a 2.25 m 5 s.,9 m/s 2

(0). Načrněe slepý graf závislosi dráhy rovnoměrného pohybu cyklisy na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 4,0 s do 7,6 s. 3. Auomobil jede hodinu po dálnici rychlosí o velikosi 00 km/h a další půl hodiny v erénu rychlosí o velikosi 28 km/h. Jaká je velikos průměrné rychlosi auomobilu? 4. Těleso, keré bylo na začáku vklidu, se začalo pohybova rovnoměrně zrychleným pohybem se zrychlením 4, m/s 2. Jak dlouho rvalo, než urazilo dráhu 23 m? (0) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 7 m/s je rychlos na konci pohybu, v 0 0, 0 m/s je rychlos na začáku pohybu a 3, 6 s je čas pořebný pro ujeí dráhy. Po dosazení: a 7 m/s 0,0 m/s 3,6 s 2 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 0, 0 m/s.3, 6 s + 2 2 m/s2.(3, 6 s) 2 50 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme dráhy obou úseků s, s 2 ze vzahu s v, edy s 00 km/h. h 00 km, s 2 28 km/h.0, 5 h 4 km. Dosadíme: v p s+s2 00 km+4 km + 2 km/h+0,5 km/h 76 km/h. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí, proo s 2 a2 2s, odud a 2.23 m 0 s. 4, m/s 2 (). Načrněe slepý graf závislosi rychlosi rovnoměrně zrychleného pohybu rolejbusu na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,0 s do 6,7 s. 3. Orienační běžec urazil za prvních 26 s dráhu 36 m, zanásledující 62 s dráhu 269 m. Jaká je velikos jeho průměrné rychlosi za prvních 88 sekund pohybu? (předpokládáme 4. Těleso, keré bylo na začáku vklidu, se začalo pohybova rovnoměrně zrychleným pohybem se zrychlením,5 m/s 2. Jak velkou dráhu urazilo za 4 s? () Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 5 m/s je rychlos na konci pohybu, v 0 6, 0 m/s je rychlos na začáku pohybu a 4, 7 s je čas pořebný pro ujeí dráhy. Po dosazení: a 5 m/s 6,0 m/s 4,7 s 2 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 6, 0 m/s.4, 7 s + 2 2 m/s2.(4, 7 s) 2 50 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2 36 m+269 m 26 s+62 s 3, 5 m/s. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí, proo s 2 a2 2, 5 m/s2.(4 s) 2 50 m. (2). Načrněe slepý graf závislosi dráhy nerovnoměrného pohybu parního válce na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 0,57 s do 8,2 s. 3. Jakou rychlosí dopadl na zem výsadkář, jesliže s oevřeným padákem klesal rovnoměrným pohybem rychlosí 2,3 m/s a rychlos věru v horizonálním směru vzhledem k zemi byla 3,5 m/s? 4. Servačník koná 440 oáček za minuu. Určee velikos normálového zrychlení bodů servačníku, keré jsou ve vzdálenosi 7,5 cm od osy oáčení. (2) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 8 m/s je rychlos na konci pohybu, v 0 3, m/s je rychlos na začáku pohybu a 7, 6 s je čas pořebný pro ujeí dráhy. Po dosazení: a 8 m/s 3, m/s 7,6 s 2, 0 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 3, m/s.7, 6 s + 2 2, 0 m/s2.(7, 6 s) 2 8 m. 3. Pro skládání rychlosí v navzájem kolmém směru plaí podle Pyhagorovy věy: v v 2 + v2 2 (2, 3 m/s)2 + (3, 5 m/s) 2 4, 2 m/s. 4. Plaí: a d ω 2 r (2πf) 2 r (6, 28.7, 3 s ) 2.0, 075 m 60 m/s 2. (3). Načrněe slepý graf závislosi zrychlení ležícího brouka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,0 s do 7,0 s. 3. Auomobil jede hodinu po dálnici rychlosí o velikosi 00 km/h a další půl hodiny v erénu rychlosí o velikosi 28 km/h. Jaká je velikos průměrné rychlosi auomobilu? 4. Těleso, keré bylo na začáku vklidu, se začalo pohybova rovnoměrně zrychleným pohybem se zrychlením 3,8 m/s 2. Jak dlouho rvalo, než urazilo dráhu 23 m?

(3) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 6 m/s je rychlos na konci pohybu, v 0 6, 0 m/s je rychlos na začáku pohybu a 5, 0 s je čas pořebný pro ujeí dráhy. Po dosazení: a 6 m/s 6,0 m/s 5,0 s 2, 0 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 6, 0 m/s.5, 0 s + 2 2, 0 m/s2.(5, 0 s) 2 55 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme dráhy obou úseků s, s 2 ze vzahu s v, edy s 00 km/h. h 00 km, s 2 28 km/h.0, 5 h 4 km. Dosadíme: v p s+s2 00 km+4 km + 2 km/h+0,5 km/h 76 km/h. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí, proo s 2 a2 2s, odud a 2.23 m 8, 0 s. 3,8 m/s 2 (4). Načrněe slepý graf závislosi dráhy rovnoměrně zrychleného pohybu ramvaje na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 4, s do 8,8 s. 3. Orienační běžec urazil za prvních 26 s dráhu 29 m, zanásledující 64 s dráhu 288 m. Jaká je velikos jeho průměrné rychlosi za prvních 90 sekund pohybu? (předpokládáme 4. Hmoný bod koná rovnoměrný pohyb po kružnici o poloměru 30 cm s frekvencí 4, Hz. Určee velikos rychlosi hmoného bodu. (4) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 20 m/s je rychlos na konci pohybu, v 0 0, 2 m/s je rychlos na začáku pohybu a 4, 7 s je čas pořebný pro ujeí dráhy. Po dosazení: a 20 m/s 0,2 m/s 4,7 s 2 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 0, 2 m/s.4, 7 s + 2 2 m/s2.(4, 7 s) 2 70 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2 29 m+288 m 26 s+64 s 3, 5 m/s. 4. Plaí: v 2πrf 2.3, 4.0, 30 m.4, s 7, 7 m/s. (5). Načrněe slepý graf závislosi dráhy nerovnoměrného pohybu parního válce na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 0,8 s do 8,8 s. 3. Orienační běžec urazil za prvních 34 s dráhu 3 m, zanásledující 70 s dráhu 287 m. Jaká je velikos jeho průměrné rychlosi za prvních 04 sekund pohybu? (předpokládáme 4. Vrule leadla se oáčí úhlovou rychlosí 90 rad/s. Jak velkou rychlosí se pohybují body na koncích vrule, jejichž vzdálenos od osy je 2,0 m? (5) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 20 m/s je rychlos na konci pohybu, v 0 2, 36 m/s je rychlos na začáku pohybu a 8, 6 s je čas pořebný pro ujeí dráhy. Po dosazení: a 20 m/s 2,36 m/s 8,6 s 2, m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 2, 36 m/s.8, 6 s + 2 2, m/s2.(8, 6 s) 2 98 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2 3 m+287 m 34 s+70 s 3, 06 m/s. 4. Plaí: v ωr 90 rad/s.2, 0 m 380 m/s. (6). Načrněe slepý graf závislosi zrychlení ležícího brouka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,6 s do 8,6 s. 3. Nákladní auomobil jede 5 km rychlosí ovelikosi 67 km/h a 6,7 km rychlosí ovelikosi 36 km/h. Jaká je velikos jeho průměrné rychlosi? (předpokládáme přímočarý pohyb) 4. Vrule leadla se oáčí úhlovou rychlosí 250 rad/s. Jak velkou rychlosí se pohybují body na koncích vrule, jejichž vzdálenos od osy je,4 m?

(6) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 9 m/s je rychlos na konci pohybu, v 0 7, 2 m/s je rychlos na začáku pohybu a 6, 0 s je čas pořebný pro ujeí dráhy. Po dosazení: a 9 m/s 7,2 m/s 6,0 s 2, 0 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 7, 2 m/s.6, 0 s + 2 2, 0 m/s2.(6, 0 s) 2 79 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme časy obou úseků, 2 ze vzahu s v, edy 5 km 67 km/h 0, 22 h, 6,7 km 2 36 km/h 0, 9 h. Dosadíme: v p s+s2 5 km+6,7 km + 2 0,22 km/h+0,9 km/h 53 km/h. 4. Plaí: v ωr 250 rad/s., 4 m 350 m/s. (7). Načrněe slepý graf závislosi dráhy rovnoměrného pohybu cyklisy na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od 2,8 s do 5,5 s. 3. Orienační běžec urazil za prvních 35 s dráhu 36 m, zanásledující 59 s dráhu 252 m. Jaká je velikos jeho průměrné rychlosi za prvních 94 sekund pohybu? (předpokládáme 4. Hmoný bod koná rovnoměrný pohyb po kružnici o poloměru 76 cm s frekvencí 5,9 Hz. Určee velikos rychlosi hmoného bodu. (7) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 7, 3 m/s je rychlos na konci pohybu, v 0 8, 6 m/s je rychlos na začáku pohybu a 2, 7 s je čas pořebný pro ujeí dráhy. Po dosazení: a 7,3 m/s 8,6 m/s 2,7 s 0, 48 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 8, 6 m/s.2, 7 s + 2 ( 0, 48) m/s2.(2, 7 s) 2 2 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2 36 m+252 m 35 s+59 s 3, m/s. 4. Plaí: v 2πrf 2.3, 4.0, 76 m.5, 9 s 28 m/s. (8). Načrněe slepý graf závislosi rychlosi rovnoměrného pohybu aua na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od 3,2 s do 6,8 s. 3. Jakou rychlosí dopadl na zem výsadkář, jesliže s oevřeným padákem klesal rovnoměrným pohybem rychlosí 2,2 m/s a rychlos věru v horizonálním směru vzhledem k zemi byla 3,0 m/s? 4. Velikos rychlosi auomobilu se zvěšila za s ze 5,8 m/s na 20 m/s. Jakou velikos zrychlení měl auomobil? (8) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 6, 6 m/s je rychlos na konci pohybu, v 0 8, 4 m/s je rychlos na začáku pohybu a 3, 6 s je čas pořebný pro ujeí dráhy. Po dosazení: a 6,6 m/s 8,4 m/s 3,6 s 0, 50 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 8, 4 m/s.3, 6 s + 2 ( 0, 50) m/s2.(3, 6 s) 2 27 m. 3. Pro skládání rychlosí v navzájem kolmém směru plaí podle Pyhagorovy věy: v v 2 + v2 2 (2, 2 m/s)2 + (3, 0 m/s) 2 3, 72 m/s. 4. Jde o pohyb rov. zrychlený s nenulovou poč. rychlosí. Proo a v v0 20 m/s 5,8 m/s s m/s 2. (9). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 0,88 s do 7,9 s. 3. Mosní jeřáb se pohybuje po dílně ve vodorovném směru rychlosí 0,98 m/s, kočka jeřábu se současně pohybuje kolmo na směr pohybu rychlosí, m/s. Jakou rychlosí se pohybuje ěleso zavěšené na kočce jeřábu vzhledem k dílně? 4. Hmoný bod koná rovnoměrný pohyb po kružnici s oběžnou dobou 5 s. Určee jeho úhlovou rychlos. (9) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 8 m/s je rychlos na konci pohybu, v 0 3, 8 m/s je rychlos na začáku pohybu a 7, 0 s je čas pořebný pro ujeí dráhy. Po dosazení: a 8 m/s 3,8 m/s 7,0 s 2, 0 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 3, 8 m/s.7, 0 s + 2 2, 0 m/s2.(7, 0 s) 2 76 m. 3. Pro skládání rychlosí v navzájem kolmém směru plaí podle Pyhagorovy věy: v v 2 + v2 2 (0, 98 m/s)2 + (, m/s) 2, 5 m/s. 4. Plaí: ω 2π T 6,28 5 s 0, 42 rad/s. (20). Načrněe slepý graf závislosi dráhy rovnoměrně zrychleného pohybu ramvaje na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2, s do 5,7 s. 3. Nákladní auomobil jede 7 km rychlosí ovelikosi 79 km/h a 7,2 km rychlosí ovelikosi 46 km/h. Jaká je velikos jeho průměrné rychlosi? (předpokládáme přímočarý pohyb) 4. Těleso, keré bylo na začáku vklidu, se začalo pohybova rovnoměrně zrychleným pohybem se zrychlením 3,5 m/s 2. Jak velkou dráhu urazilo za 8 s?

(20) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 3 m/s je rychlos na konci pohybu, v 0 6, 2 m/s je rychlos na začáku pohybu a 3, 6 s je čas pořebný pro ujeí dráhy. Po dosazení: a 3 m/s 6,2 m/s 3,6 s 2 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 6, 2 m/s.3, 6 s + 2 2 m/s2.(3, 6 s) 2 40 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme časy obou úseků, 2 ze vzahu s v, edy 7 km 79 km/h 0, 22 h, 7,2 km 2 46 km/h 0, 6 h. Dosadíme: v p s+s2 7 km+7,2 km + 2 0,22 km/h+0,6 km/h 64 km/h. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí, proo s 2 a2 2 3, 5 m/s2.(8 s) 2 570 m. (2). Načrněe slepý graf závislosi zrychlení ležícího brouka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od,5 s do 7,7 s. 3. Auomobil jede hodinu po dálnici rychlosí o velikosi 99 km/h a další půl hodiny v erénu rychlosí o velikosi 42 km/h. Jaká je velikos průměrné rychlosi auomobilu? 4. Hmoný bod koná rovnoměrný pohyb po kružnici s oběžnou dobou 4 s. Určee jeho úhlovou rychlos. (2) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 7 m/s je rychlos na konci pohybu, v 0 5, 0 m/s je rychlos na začáku pohybu a 6, 2 s je čas pořebný pro ujeí dráhy. Po dosazení: a 7 m/s 5,0 m/s 6,2 s, 9 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 5, 0 m/s.6, 2 s + 2, 9 m/s2.(6, 2 s) 2 68 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme dráhy obou úseků s, s 2 ze vzahu s v, edy s 99 km/h. h 99 km, s 2 42 km/h.0, 5 h 2 km. Dosadíme: v p s+s2 99 km+2 km + 2 km/h+0,5 km/h 80, 0 km/h. (22). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od 2,7 s do 6,9 s. 3. Auomobil jede hodinu po dálnici rychlosí o velikosi 96 km/h a další půl hodiny v erénu rychlosí o velikosi 28 km/h. Jaká je velikos průměrné rychlosi auomobilu? 4. Vrule leadla se oáčí úhlovou rychlosí 200 rad/s. Jak velkou rychlosí se pohybují body na koncích vrule, jejichž vzdálenos od osy je 2, m? (22) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 6, 6 m/s je rychlos na konci pohybu, v 0 8, 7 m/s je rychlos na začáku pohybu a 4, 2 s je čas pořebný pro ujeí dráhy. Po dosazení: a 6,6 m/s 8,7 m/s 4,2 s 0, 50 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 8, 7 m/s.4, 2 s + 2 ( 0, 50) m/s2.(4, 2 s) 2 32 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme dráhy obou úseků s, s 2 ze vzahu s v, edy s 96 km/h. h 96 km, s 2 28 km/h.0, 5 h 4 km. Dosadíme: v p s+s2 96 km+4 km + 2 km/h+0,5 km/h 73, 3 km/h. 4. Plaí: v ωr 200 rad/s.2, m 420 m/s. (23). Načrněe slepý graf závislosi rychlosi rovnoměrného pohybu aua na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od 4,2 s do 6,4 s. 3. Nákladní auomobil jede 3 km rychlosí ovelikosi 75 km/h a 5,7 km rychlosí ovelikosi 32 km/h. Jaká je velikos jeho průměrné rychlosi? (předpokládáme přímočarý pohyb) 4. Sřela proběhne hlavní vojenské pušky za 0,023 s a nabude rychlosi ovelikosi 526 m/s. Jak velké má zrychlení? 4. Plaí: ω 2π T 6,28 4 s 0, 45 rad/s.

(23) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 6, 8 m/s je rychlos na konci pohybu, v 0 7, 9 m/s je rychlos na začáku pohybu a 2, 2 s je čas pořebný pro ujeí dráhy. Po dosazení: a 6,8 m/s 7,9 m/s 2,2 s 0, 50 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 7, 9 m/s.2, 2 s + 2 ( 0, 50) m/s2.(2, 2 s) 2 6 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme časy obou úseků, 2 ze vzahu s v, edy 3 km 75 km/h 0, 7 h, 5,7 km 2 32 km/h 0, 8 h. Dosadíme: v p s+s2 3 km+5,7 km + 2 0,7 km/h+0,8 km/h 53 km/h. 4. Jde o pohyb rov. zrychlený s nulovou poč. rychlosí (v 0 0m/s). Proo a v v0 526 m/s 0 m/s 0,023 s 2, 3.0 4 m/s 2. (24). Načrněe slepý graf závislosi rychlosi sojícího psa na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,7 s do 8,3 s. 3. Auomobil jede hodinu po dálnici rychlosí o velikosi 94 km/h a další půl hodiny v erénu rychlosí o velikosi 37 km/h. Jaká je velikos průměrné rychlosi auomobilu? 4. Hmoný bod koná rovnoměrný pohyb po kružnici s oběžnou dobou,0 s. Určee jeho úhlovou rychlos. (24) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 9 m/s je rychlos na konci pohybu, v 0 7, 4 m/s je rychlos na začáku pohybu a 5, 6 s je čas pořebný pro ujeí dráhy. Po dosazení: a 9 m/s 7,4 m/s 5,6 s 2, m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 7, 4 m/s.5, 6 s + 2 2, m/s2.(5, 6 s) 2 74 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme dráhy obou úseků s, s 2 ze vzahu s v, edy s 94 km/h. h 94 km, s 2 37 km/h.0, 5 h 9 km. Dosadíme: v p s+s2 94 km+9 km + 2 km/h+0,5 km/h 75, 3 km/h. (25). Načrněe slepý graf závislosi zrychlení rovnoměrně zrychleného pohybu leadla na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 0,39 s do 7,4 s. 3. Mosní jeřáb se pohybuje po dílně ve vodorovném směru rychlosí 0,49 m/s, kočka jeřábu se současně pohybuje kolmo na směr pohybu rychlosí 0,70 m/s. Jakou rychlosí se pohybuje ěleso zavěšené na kočce jeřábu vzhledem k dílně? 4. Hmoný bod koná rovnoměrný pohyb po kružnici o poloměru 79 cm s frekvencí 5,2 Hz. Určee velikos rychlosi hmoného bodu. (25) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení rabanu podle vzahu a, kde v 7 m/s je rychlos na konci pohybu, v 0 2, 78 m/s je rychlos na začáku pohybu a 7, 0 s je čas pořebný pro ujeí dráhy. Po dosazení: a 7 m/s 2,78 m/s 7,0 s 2, 0 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 2, 78 m/s.7, 0 s + 2 2, 0 m/s2.(7, 0 s) 2 68 m. 3. Pro skládání rychlosí v navzájem kolmém směru plaí podle Pyhagorovy věy: v v 2 + v2 2 (0, 49 m/s)2 + (0, 70 m/s) 2 0, 85 m/s. 4. Plaí: v 2πrf 2.3, 4.0, 79 m.5, 2 s 26 m/s. (26). Načrněe slepý graf závislosi zrychlení ležícího brouka na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od 2,7 s do 5,5 s. 3. Auomobil jede hodinu po dálnici rychlosí o velikosi 0 km/h a další půl hodiny v erénu rychlosí o velikosi 42 km/h. Jaká je velikos průměrné rychlosi auomobilu? 4. Velikos rychlosi auomobilu se zvěšila za 4 s ze 6,0 m/s na 30 m/s. Jakou velikos zrychlení měl auomobil? 4. Plaí: ω 2π T 6,28,0 s 0, 63 rad/s.

(26) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 7, 3 m/s je rychlos na konci pohybu, v 0 8, 7 m/s je rychlos na začáku pohybu a 2, 8 s je čas pořebný pro ujeí dráhy. Po dosazení: a 7,3 m/s 8,7 m/s 2,8 s 0, 50 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 8, 7 m/s.2, 8 s + 2 ( 0, 50) m/s2.(2, 8 s) 2 22 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme dráhy obou úseků s, s 2 ze vzahu s v, edy s 0 km/h. h 0 km, s 2 42 km/h.0, 5 h 2 km. Dosadíme: v p s+s2 0 km+2 km + 2 km/h+0,5 km/h 87 km/h. 4. Jde o pohyb rov. zrychlený s nenulovou poč. rychlosí. Proo a v v0 30 m/s 6,0 m/s 4 s 2 m/s 2. (27). Načrněe slepý graf závislosi zrychlení rovnoměrného pohybu lokomoivy na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od 3, s do 6,6 s. 3. Orienační běžec urazil za prvních 34 s dráhu 30 m, zanásledující 65 s dráhu 280 m. Jaká je velikos jeho průměrné rychlosi za prvních 99 sekund pohybu? (předpokládáme 4. Vrule leadla se oáčí úhlovou rychlosí 240 rad/s. Jak velkou rychlosí se pohybují body na koncích vrule, jejichž vzdálenos od osy je 2,0 m? (27) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 6, 7 m/s je rychlos na konci pohybu, v 0 8, 5 m/s je rychlos na začáku pohybu a 3, 5 s je čas pořebný pro ujeí dráhy. Po dosazení: a 6,7 m/s 8,5 m/s 3,5 s 0, 5 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 8, 5 m/s.3, 5 s + 2 ( 0, 5) m/s2.(3, 5 s) 2 27 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2 30 m+280 m 34 s+65 s 3, m/s. 4. Plaí: v ωr 240 rad/s.2, 0 m 480 m/s. (28). Načrněe slepý graf závislosi zrychlení ležícího brouka na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od,5 s do 5,6 s. 3. Mosní jeřáb se pohybuje po dílně ve vodorovném směru rychlosí 0,88 m/s, kočka jeřábu se současně pohybuje kolmo na směr pohybu rychlosí 0,99 m/s. Jakou rychlosí se pohybuje ěleso zavěšené na kočce jeřábu vzhledem k dílně? 4. Servačník koná 580 oáček za minuu. Určee velikos normálového zrychlení bodů servačníku, keré jsou ve vzdálenosi cm od osy oáčení. (28) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 7, 2 m/s je rychlos na konci pohybu, v 0 9, 25 m/s je rychlos na začáku pohybu a 4, s je čas pořebný pro ujeí dráhy. Po dosazení: a 7,2 m/s 9,25 m/s 4, s 0, 50 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 9, 25 m/s.4, s + 2 ( 0, 50) m/s2.(4, s) 2 34 m. 3. Pro skládání rychlosí v navzájem kolmém směru plaí podle Pyhagorovy věy: v v 2 + v2 2 (0, 88 m/s)2 + (0, 99 m/s) 2, 32 m/s. 4. Plaí: a d ω 2 r (2πf) 2 r (6, 28.9, 7 s ) 2.0, m 40 m/s 2. (29). Načrněe slepý graf závislosi rychlosi rovnoměrně zrychleného pohybu rolejbusu na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od,5 s do 5,5 s. 3. Auomobil jede hodinu po dálnici rychlosí o velikosi 86 km/h a další půl hodiny v erénu rychlosí o velikosi 37 km/h. Jaká je velikos průměrné rychlosi auomobilu? 4. Hmoný bod koná rovnoměrný pohyb po kružnici s oběžnou dobou s. Určee jeho úhlovou rychlos.

(29) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 7, 3 m/s je rychlos na konci pohybu, v 0 9, 25 m/s je rychlos na začáku pohybu a 4, 0 s je čas pořebný pro ujeí dráhy. Po dosazení: a 7,3 m/s 9,25 m/s 4,0 s 0, 49 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 9, 25 m/s.4, 0 s + 2 ( 0, 49) m/s2.(4, 0 s) 2 33 m. 3. Velikos průměrné rychlosi počíáme podle hesla: celková dráha děleno celkový čas, edy v p s+s2 + 2. Dopočíáme dráhy obou úseků s, s 2 ze vzahu s v, edy s 86 km/h. h 86 km, s 2 37 km/h.0, 5 h 9 km. Dosadíme: v p s+s2 86 km+9 km + 2 km/h+0,5 km/h 70, 0 km/h. 4. Plaí: ω 2π T 6,28 s 0, 57 rad/s. (30). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf B závislosi rychlosi pohybu říkolky Velorex na Vypočěe dráhu, kerou Velorex urazil v čase od 4, s do 8, s. 3. Mosní jeřáb se pohybuje po dílně ve vodorovném směru rychlosí 0,83 m/s, kočka jeřábu se současně pohybuje kolmo na směr pohybu rychlosí, m/s. Jakou rychlosí se pohybuje ěleso zavěšené na kočce jeřábu vzhledem k dílně? 4. Velikos rychlosi auomobilu se zvěšila za 9,6 s ze 6,8 m/s na 20 m/s. Jakou velikos zrychlení měl auomobil? (30) Řešení. Řešení máe v sešiě. 2. Nejprve spočeme zrychlení velorexu podle vzahu a, kde v 6, 0 m/s je rychlos na konci pohybu, v 0 8, 0 m/s je rychlos na začáku pohybu a 4, 0 s je čas pořebný pro ujeí dráhy. Po dosazení: a 6,0 m/s 8,0 m/s 4,0 s 0, 50 m/s 2. Ujeou dráhu spočeme ze vzahu: s v 0 + 2 a2 8, 0 m/s.4, 0 s + 2 ( 0, 50) m/s2.(4, 0 s) 2 28 m. 3. Pro skládání rychlosí v navzájem kolmém směru plaí podle Pyhagorovy věy: v v 2 + v2 2 (0, 83 m/s)2 + (, m/s) 2, 4 m/s. 4. Jde o pohyb rov. zrychlený s nenulovou poč. rychlosí. Proo a v v0 20 m/s 6,8 m/s 9,6 s m/s 2.