73. AKUSTICKÝ SEMINÁŘ ČsAS Zámecký hotel Třešť, Dr. Richtra 234 Třešť 9. až 11. října 2006



Podobné dokumenty
Výpočet hluku ze silniční dopravy

Vyjádření k oznámení záměru Letiště Vodochody pro zjišťovací řízení v rámci posuzování vlivů na životní prostředí (EIA)

D11, stavba 1101, km 0,0 exit Jirny, modernizace dálnice na šestipruhové uspořádání

HLUKOVÁ STUDIE Výpočet hladin akustického tlaku liniových zdrojů hluku, porovnání s hyg. limity

Akustická měření. Michaela Špačková, 1.S

Ing. Jan Mareš, G r e i f a k u s t i k a s.r.o. Měření hluku tepelných čerpadel vzduch - voda

šíření hluku mezi jednotlivýmí prostory uvnitř budovy, např mezi sousedními byty, mezi jednotlivými hotelovými pokoji apod.

Ticho, prosím! Odborné semináře zaměřené na akustiku budov

Protokol o měření hluku

AKUSTICKÁ STUDIE. č.p. 80, k.ú. Netřebice u Nymburka Posouzení hluku z provozu tepelného čerpadla

JEDNODUCHÝCH STAVEBNÍCH KONSTRUKCÍ. Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014

Akustická studie z nákladní dopravy CARTHAMUS a.s. Přísečná, nová obslužná komunikace

Hluk ze silniční dopravy Hygienické limity hluku Změny v hodnocení hluku

OBYTNÁ ZÓNA LOKALITA ZAHRÁDKY

MĚŘENÍ AKUSTICKÝCH VELIČIN. Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014

OBVODOVÝ PLÁŠŤ NA BÁZI DŘEVA ENVILOP Z POHLEDU STAVEBNÍ AKUSTIKY

Akustická studie. Hygienická laboratoř, s.r.o. Plucárna 1, Hodonín mobil , fax/tel ,

Dopady SOKP na životní prostředí a problematika hluku. Ing. Eva Tylová

AKUSTICKÝ POSUDEK. Objednatel ALFAPLAN s.r.o. Stará Pohůrka České Budějovice

Zdravotní ústav se sídlem v Pardubicích Centrum hygienických laboratoří

II/150 Havlíčkův Brod ul. Dolní, Žižkova, Na Ostrově

ÚZEMNÍ PLÁN Š T Ě M Ě CH Y

AKUSTICKÉ VADY A PORUCHY NA STAVBÁCH

Zkušební laboratoř EKOLA group

NEPRŮZVUČNOST A KROČEJOVÝ ZVUK

Dostavba sportovní haly ZŠ Černošice - Mokropsy VacL. Akustická studie. Zpracováno v období: Září 2012.

Hluková mapa města Tábor

Protokol o zkoušce č. 160/14

EXPERIMENTÁLNÍ METODY I 10. Měření hluku

AKUSTICKÝ POSUDEK. Posouzení dělicích mezibytových stěn na akci BD V Závětří. Objednatel ALFAPLAN s.r.o. Stará Pohůrka České Budějovice

Akustická studie. Hygienická laboratoř, s.r.o. Plucárna 1, Hodonín mobil , fax/tel ,

Název stavby : Přístavba objektu MŠ Chodovická v areálu škol Ratibořická a Chodovická, ul.chodovická 1900,Praha 20 Horní Počernice

kde a, b jsou konstanty závislé na střední frekvenci (viz tab. 5.1).

Ing. Barbora Hrubá, Ing. Jiří Winkler Kat. 225 Pozemní stavitelství 2014

Nové požadavky na zvukoměrnou techniku a jejich dopad na hygienickou praxi při měření hluku. Ing. Zdeněk Jandák, CSc.

AKUSTICKÁ STUDIE. Ing. arch. Tomáš Slavík, Komenského nám. 17, Brandýs nad Orlicí

1 Hodnocení hlukové situace v prostoru navrhované změny 2798/00

Protokol o zkoušce č. 173/12

VYHODNOCENÍ VÝSLEDKŮ MĚŘENÍ HLUKU SROVNÁNÍ STAVU PŘED A PO REALIZACI PROTIHLUKOVÝCH OPATŘENÍ

VÝPOČET TEPELNÝCH ZTRÁT

Hluková studie. Lakovna ZAKO Turčín spol. s r.o. Provodov. ZK RNDr. Zuzana Kadlecová Stříbrná 549, Zlín

Sdružení sportovních aktivit Šumava. Hluková studie

Zkušební laboratoř EKOLA group

Ticho, prosím! Odborné semináře zaměřené na akustiku budov

Hluková studie. Objednatel: Posuzovaný objekt: Ing. Aleš Jiráska. Poradenství v oboru technická akustika IČO: Duben

K O M P R A H, s. r. o. Masarykova 141, MODŘICE IČO: , tel: , HLUKOVÁ STUDIE

Ing. Kozel Ing. Kozel Mgr. Reichlová RNDr. Bosák 0 04/ vydání

AKUSTICKÁ STUDIE č. 358F/2/2017. pro záměr. Starý Mateřov Obytné území u hřiště (Zelená čtvrť)

VYHLÁŠKA č. 523/2006 Sb. ze dne 21. listopadu 2006,

RNDr.Jiří Matěj, poradenská a konzultační činnost v akustice Machátova 13, Olomouc, tel: ,IČ: S T U D I E

spol. s r.o. Zlín Útvar Měření emisí a pracovního prostředí Zkušební laboratoř č akreditovaná ČIA podle ČSN EN ISO/IEC 17025:2005

HLUKOVÁ STUDIE č. 1408S85

523/2006 Sb. VYHLÁŠKA

Protokol o zkoušce č. 198/13

VYJÁDŘENÍ. Palackého třída, náměstí Jana Pernera, Pardubice. Měření hluku z dopravy porovnání výsledků zkoušek

AKUSTICKÝ POSUDEK - PRACOVNÍ VERZE

Akustická studie č. 63/14

K O M P R A H, s. r. o. Masarykova 141, MODŘICE IČO: , tel: , HLUKOVÁ STUDIE

Hluk z dopravy v lokalitě B5 Batelov

Ochrana před hlukem. Ochrana před hlukem

VÝPOČET TEPELNÝCH ZTRÁT

Urbanistická akustika

1 Hodnocení hlukové situace v prostoru navrhované změny 2793/00

Návrh postupu pro stanovení četnosti překročení 24hodinového imisního limitu pro suspendované částice PM 10

5/3.5.2 ZÁTùÎ HLUKEM A VIBRACEMI

s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Akustické vlastnosti l e d e n

Protokol o zkoušce č. 258/13

NAŘÍZENÍ VLÁDY. ze dne 15. června 2016, kterým se mění nařízení vlády č. 272/2011 Sb., o ochraně zdraví před nepříznivými účinky hluku a vibrací

TICHÉ BYDLENÍ. Pavel Rubáš. Akustický štítek jako grafický ukazatel akustického komfortu bydlení. Zdravý život bez hluku

technické poradenství snižování hluku a vibrací, měření, konzultace

Územní studie Kounická Český Brod

Obr.1 Hluk při výtoku tlakového vzduchu z trysky [1]

NAŘÍZENÍ VLÁDY ze dne 15. června 2016, kterým se mění nařízení vlády č. 272/2011 Sb., o ochraně zdraví před nepříznivými účinky hluku a vibrací

AKUSTICKÝ POSUDEK. Hluková zátěž okolí ulice Ďáblická v letech 2000 a 2017

Hluková studie. aktualizovaná studie. Objednatel: Posuzovaný objekt: Ing. Aleš Jiráska. Poradenství v oboru technická akustika IČO:

Zkušební laboratoř EKOLA group

AKUSTICKÉ CENTRUM. Stavba logistického areálu Goodman Zdiby Logistics Centre Zdiby. Zakázka č Datum vydání:

D35, 3507 Litomyšl Janov

Bytový dům Vrábská 2243 Brandýs nad Labem VacL/01. Zkušební laboratoř ATELIER DEK akreditovaná

Příloha 1. Výstup pod Baštou. - propojení ulic Palackého a Podhorské (Mostecké) Hluková studie. Člen České asociace akustiků, o.s. Datum:

Základní škola Průhonice

VÝPOČET TEPELNĚ-TECHNICKÝCH A AKUSTICKÝCH VLASTNOSTÍ ZDIVA Z TVAROVEK SYSTÉMU STAVSI

Přestavlky 7, Tršice tel.: , , IČ: Hluková studie. č.: 1001/2014

Platná legislativa UŽITEČNÉSEMINÁŘE.CZ. Hluk v komunálním prostředí

PROTOKOL O MĚŘENÍ. Název projektu: Výstavba separační linky. Měření hluku v mimopracovním prostředí. Měření chráněného venkovního prostoru staveb

Příjezdová komunikace průmyslové zóny Nová Včelnice posouzení hladiny hluku z automobilové dopravy

HLUKOVÁ STUDIE Projednání výsledků a návrhů s veřejností

Profi řešení AKUstických cihel

STAŽENO z

Berková Petra 105, Berka Pavel 106

Modelování dopravního hluku

AKUSTICKÝ POSUDEK. Hluková zátěž městské části Praha - Ďáblice Předběžné vyhodnocení Rok 2018

bytové domy u komunikace Hrozenkovská-Strojírenská Akustický posudek STAVBA Č TV ZLIČÍN ETAPA 0011

A T E M. Ateliér ekologických modelů, s. r. o. AKUSTICKÉ POSOUZENÍ AREÁL INTERLOVU PRAHA 11

Zpráva o měření hlukové zátěže vybraných venkovních chráněných prostorů a venkovních chráněných prostorů staveb v Praze 12 - Komořanech

Atestováno dle ČSN EN ISO Žaluzie s útlumem hluku AVL. Koncový prvek vzduchotechniky určený pro útlum hluku

Název stavby : Přístavba objektu MŠ Chodovická ul.chodovická 1900,Praha 20 Horní Počernice SO.01 Novostavba MŠ

Zkušební laboratoř ATELIER DEK akreditovaná Českým institutem pro akreditaci, o.p.s. pod číslem 1565 podle ČSN EN ISO/IEC 17025

WWW. NRL.CZ

Protokol o zkoušce č. 058/13

Transkript:

73. AKUSTICKÝ SEMINÁŘ ČsAS Zámecký hotel Třešť, Dr. Richtra 234 Třešť 9. až 11. října 2006 Neřešený akustický efekt kamiónové dopravy Václav Lahodný Influences of ever-rising number of heavy trucks on our highways were mentioned early. Only the frequency aspect of this phenomena is still unsolved and - may - be irresolvable problem, namely for noise transport calculation in build facade. Obvious methods of calculation are insufficient and give us too optimistic results. The detailed analyze of frequency problem and simple proposal for needed extrapolation of acoustic insulation frequency components are presented in this article. 1. ÚVOD Problém narůstající kamiónové přepravy na našich vozovkách po našem vstupu do EU je již delší dobu probírán a řešen. Z řady jeho aspektů jmenujme některé známé: - zvýšené poškozování vozovek, - zmenšení jejich průjezdnosti a nárůst dopravních nehod, - nárůst množství exhalací v okolí vozovek, - nárůst hlukové zátěže v chráněných venkovních prostorách v okolí vozovek. O těchto aspektech článek pojednávat nebude. Předmětem našeho zájmu zde je změna frekvenčního obsahu dopravního hluku a s tím spojené komplikace pro návrh, nebo kontrolu neprůzvučnosti plášťů budov. Cílem článku je upozornit na nejednotnost hodnotících postupů a praktickou absenci nástrojů pro správné posouzení vznikající situace ve vnitřních chráněných prostorách domů. 2. BĚŽNÉ POSTUPY ŘEŠENÍ Dopravní hlukovou zátěž před fasádami obytných domů zjišťujeme např. celodenním měřením s kontrolním odečtem intenzity dopravy. S využitím výpočtové metodiky (1), nebo odpovídajícího softwaru provádíme případnou korekci na oficiální intenzity dopravy, udávané ÚDI, nebo ŘSD. Pro kontrolu hluku v těchto venkovních chráněných prostorách nás zajímají hladiny akustického tlaku na filtru A a zmíněný postup je pak korektní. Skutečnosti, že oficiální prognózy ŘSD výrazně podhodnocují nárůst podílu těžkých nákladních vozidel (kamiónů) si při tom většinou nevšimneme a stále to ještě nevadí. Jakmile však jsou součástí řešení protihlukové stěny, nebo dojde k domluvě s orgány HS a je posuzována hluková zátěž ve vnitřních chráněných prostorách budov, je nutné přihlédnout ke skutečnému frekvenčnímu obsahu emisí dopravního hluku. Ovšem i běžné navrhování obvodových plášťů

budov podle požadavků (2) je v současné situaci bez znalosti a aplikace skutečného frekvenčního obsahu emisí dopravního hluku velmi často nepostačující. Postup, kdy skutečná zvuková izolace obvodových plášťů budov je počítána zvlášť pro jednotlivá frekvenční pásma, není předepsán a vyžadován. Co je ještě závažnější, potřebné údaje většinou chybí. Izolační vlastnosti prvků obvodových plášťů se podle (3) vyjadřují ve formě stupně vzduchové neprůzvučnosti R w a případně i faktorů přizpůsobení spektru, označených C, C tr, C 50-5000 a C tr50-5000. Uvádí se v (3), že faktor C odpovídá růžovému šumu a je vhodný pro činnost v bytě (hovor, hudba, rozhlas, televize), - dětské hry, - kolejovou dopravu střední a vysoká rychlost, - dálkovou silniční dopravu > 80 km/h, - tryskové letadlo, malá vzdálenost, - provozovny emitující zejména hluk středních a vyšších kmitočtů faktor C tr odpovídá spektru dopravního hluku a je vhodný pro - městský dopravní hluk, - kolejovou dopravu - nízké rychlosti, - vrtulové letadlo, - tryskové letadlo, velká vzdálenost, - disko hudbu, - provozovny emitující zejména hluk nízkých a středních kmitočtů. Takový kompletní údaj, např. ve tvaru R w (C;C tr ;C 50-5000 ;C tr50-5000 ) = 30(-2;-3;-2;-4) db najdeme však v nabídkách výrobců zcela výjimečně. I z hlediska měření jsou běžné pouze hodnoty R w, počítané z měřených třetinooktávových frekvenčních složek se středovou frekvencí 100 až 3150 Hz. Aplikace zmíněných parametrů vede však pro případy současné reálné dopravní situaci k nezanedbatelným chybám. 3. FREKVENČNÍ SPEKTRUM DOPRAVNÍHO HLUKU 3.1. Předpoklady Skladba vozového parku na našich komunikacích je těžko popsatelná, stejně jako její vývoj. Máme však normalizované spektrum dopravního hluku, uváděné např. v (4). Jeho část je využita i v (5) pro výpočet faktorů C tr a C tr50-5000 Znázorněme si také další používaná spektra, jimiž se váží naměřené frekvenční složky vzduchové neprůzvučnosti pro porovnání jsou všechna normována na 70 db ve filtru A. 3.2. Reálný stav Skutečná frekvenční spektra byla měřena na dvou úsecích komunikace se zvýšeným podílem provozu kamiónů. Byla měřeny půlhodinové ekvivalentní hladiny hluku po dobu 24 hodin na Barrandovské spojce (dále označováno B) a na 67 km dálnice D1 v obci Loket (dále L).

Současně byly prováděny odečty projezdů jednotlivých typů vozidel u B ve třech krátkých úsecích, v případě L během celých 24 měření. Vlivem vysokého podílu kamiónové dopravy došlo k nárůstu nízkých frekvenčních složek naměřených hlukových imisí. Podíl těchto nízkofrekvenčních složek závisí zřejmě na podílu počtu kamiónů na celkovém počtu vozidel a také na individuálním typu, nebo stavu vozidel. Podíl počtu kamiónů můžeme vyjádřit veličinou N ve smyslu (1), nebo (snad korektněji) koeficientem q tr, při jehož výpočtu je zohledněna vyšší emise těžkých nákladních vozidel volně podle (1). Potom kv ntn kde k v je koeficient závislosti na výpočtové qtr = rychlosti no v [km/h] 50 60 70 80 90 100 [db] 90,0 85,0 80,0 75,0 70,0 65,0 50,0 45,0 40,0 35,0 30,0 k v [1] 10,9 9,2 7,5 6,0 4,7 3,6 n TN je průměrná denní hodinová intenzita projezdů (těžkých) nákladních aut n o je průměrná denní hodinová intenzita projezdů osobních aut. Pro vybrané hodnoty q tr znázorníme v následujícím grafu naměřená třetinooktávová frekvenční spektra. Pro možnost vzájemného porovnání jsou všechny hodnoty normovány na 70 db na filtru A Z uvedených 60,0 průběhů je patrné, jako měřítko podílu nízkofrekvenčních složek hluku 3,60 je hodnota q tr (podobně jako hodnota N) nepostačující, jinými slovy odlišnosti jednotlivých 4,43 průběhů jsou 55,0 značně ovlivněny individuálními typy a stavy projíždějících vozidel. Během našich měření se procentuální podíl nákladních aut na celkovém počtu vozidel N a hodnota q tr měnily během dne následujícím způsobem: 25 65 60 55 50 45 40 35 30 25 20 15 10 5 0 31,5 40 50 63 80 100 125 160 200 250 315 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 00 01 01 02 02 03 03 04 04 05 05 06 06 07 07 08 08 09 09 10 10 11 11 12 12 13 13 14 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 N qtr 1,53 1,86 2,05 2,07 2,66 3,03 5,24 8000 10000 [Hz] 12500

Vidíme, že poměrně značný rozptyl uvedených charakteristik počtu kamiónů měl na normovaný frekvenční obsah měřených imisí velmi malý vliv. Můžeme tedy bez ztráty informace pro zjednodušení energeticky zprůměrovat denní a noční frekvenční spektra a konečně vyjádřit ekvivalentní celodenní spektrum dopravního hluku s aktuálním (vysokým) podílem počtu kamiónů. Tato reálná spektra doplníme pro porovnání předpokládanými frekvenčními spektry, používanými pro výpočty jednočíselných hodnot vzduchové neprůzvučnosti 85,0 80,0 75,0 70,0 65,0 [db] 60,0 55,0 50,0 45,0 40,0 35,0 30,0 25,0 B 24h L 24h kam iony 24h Rw C Ctr C50-5000 Ctr50-5000 25 31,5 40 50 63 80 100 125 160 200 250 315 400 500 630 800 [Hz] 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000 12500 4. VÝPOČTY PŘENOSU HLUKU 4.1. Využití pouze R w Vezměme jednoduchý příklad obvodového pláště, složeného z Al oken CS 77 6/15/4 třídy TZI 4, větracího kanálu LUNOX 120 a betonových panelů tloušťky 120 mm, navrhovaného pro hladinu dopravního hluku 70 db. Podle (2) je pro obytné místnosti bytů požadována zvuková izolace R w = 38 db. Z dostupných údajů zjistíme následující akustické parametry: Hz 100 125 160 200 250 315 400 500 630 800 1k 1,25k 1,6k 2k 2,5k 3,15k R w okno 28,2 27,9 34,7 34,1 39,4 38,4 41,5 41,1 40,8 35,3 36,7 41,5 43,4 45,1 49,5 53,9 42 LUNOX 43 32 28 37 42 49 45 47 49 53 51 49 52 54 58 62 47 beton 34,1 35,4 35,4 35,4 35,4 35,4 35,4 35,4 36,7 40,2 43,4 48,2 50,3 52,2 54,2 56,2 42

Pokud nebudeme uvažovat interakci přijímací místnosti (pokoje bytu), dostaneme pro odhad hladiny hluku ve venkovním chráněném prostoru L Aint = L Aext R w a při odhadu R w R w = 2 db bude pro jakoukoliv kombinaci ploch oken, větracího kanálku a plné stěny celkové R w 38 db a uvnitř L Aint 1 30 db. 4.2. Využití faktorů frekvenčního přizpůsobení Z frekvenčních spekter vzduchové neprůzvučnosti v předchozí tabulce vypočteme dle (3) faktory přizpůsobení a odhady příspěvků hladin hluku uvnitř pokoje C R w +C L Aint 2 R w +C tr L Aint 3 okno 40 30 38 32 LUNOX 44 26 40 30 beton 42 28 40 30 Pokud se nám podaří zjistit frekvenční složky neprůzvučností v rozšířeném pásmu (50 5000 Hz), budou to hodnoty Hz 50 63 80 4k 5k okno 17,2 19,2 21,2 57,8 57,4 LUNOX 20 22 24 57 59 beton 28,1 30,1 32,1 58,3 60,2 Dostaneme pak odpovídající neprůzvučnosti a hladiny hluku v interiéru bytu C tr C 50-5000 C tr50-5000 R w +C 50-5000 L Aint 4 R w +C tr50-5000 L Aint 5 okno 41 29 35 35 LUNOX 45 25 37 33 beton 43 27 39 31 4.3. Přenos hluku na jednotlivých frekvencích Pokud opustíme jednočíselné charakteristiky vzduchových neprůzvučností, můžeme pro celé frekvenční spektrum dopravního hluku (25 až 3150 Hz) spočítat jednotlivé přenosy a ty na závěr přepočítat na hladiny hluku A. Máme však přitom k dispozici pouze omezené spektrum udávaných vzduchových neprůzvučností. Dostaneme tak: rozsah Hz 100 3150 50 5000 L Aint 6 L Aint 7 okno 54,4 47,1 LUNOX 54,4 47,1 beton 54,4 47,1

Poznamenejme, že stejné hodnoty přenosů hluku přes různé prvky nejsou výpočetní chybou, ale důkazem, že udávané frekvenční složky neprůzvučností se na výsledném přenosu hluku podílejí nevýznamně (všude tam, kde údaje neprůzvučností chyběly, byla dosazena nula). 4.3. Extrapolace naměřených hodnot vzduchové neprůzvučnosti Porovnáme-li dosud vypočtené hlukové imise, zjistíme značné rozdíly, přičemž žádná z uvedených metod není korektní. Jaká však bude skutečná hladina hluku ve sledovaném pokoji? Obecně nejpřesnější metoda pro výpočet přenosu hluku atypického spektra danými příčkami je nesporně oddělený výpočet přenosů na jednotlivých frekvenčních pásmech. Pokud ovšem příslušné složky neprůzvučností neznáme, nelze je nahradit nulovou hodnotou tam, kde emisní složky hluku jsou vysoké, což je právě případ dopravního hluku s vysokým podílem nákladních aut. Problémy s měřením neprůzvučností pro nižší frekvence jsou známé. Nelze očekávat výstavbu nových zkušebních laboratoří, které by měření těchto nízkofrekvenčních složek neprůzvučnosti umožňovaly. Požadavek na určování složek neprůzvučnosti pod 50 Hz není ani podporován legislativními či technickými standardy. Z posledního grafu v kap. 3.2 vidíme, že skutečné spektrum dopravního hluku se od normalizovaného dopravního hluku významně liší. Vede to k obavě, že aplikace jednočíselné neprůzvučnosti R w +C (viz dálková silniční doprava > 80 km/h), nebo Rw+Ctr (viz městský dopravní hluk) nebude vhodná. Vypomůžeme si proto analogií s teoretickým výpočtem neprůzvučnosti. Jsou obecně známé frekvenční závislosti neprůzvučností pro jednoduché ohybově měkké příčky. V oblasti nízkých frekvencí lze očekávat výraznější pokles neprůzvučnosti v důsledku rezonančních jevů v příčce, následovaný mírným poklesem. Situace je daleko komplikovanější u dvojitých příček (oken), ale vezměme jako první přiblížení např. pokles o 7 db na rezonanční frekvenci a 2 db pod touto frekvencí. Potom z průběhu neprůzvučností těsně nad 100 Hz (ev. 50 Hz, pokud jsou údaje známé) odhadneme, zda se již rezonanční pokles projevil, nebo ještě ne. Můžeme potom extrapolovat hodnoty neprůzvučnosti do oblasti nižších frekvencí tak, že na nejbližší nižší frekvenční pásmo aplikujeme pokles 7 db, nebo již dosazujeme všude pokles 2 db. Odborník jistě namítne, že to je pouhá pseudoteorie a skutečná příčka se tak nechová. Sotva ovšem nabídne obdobně jednoduchou možnost extrapolace neprůzvučností do neměřitelně nízkých frekvencí. Podobně bychom mohli rozšířit spektra neprůzvučnosti pro frekvence nad 3150 Hz (poloha a šířka prodlevy, koincidenční frekvence ), ale pro náš případ to není zapotřebí naměřené spektrum dopravního hluku (po normalizaci na 70 db) vykazuje mimořádně nízké hladiny na vyšších frekvencích. Takto získáme chybějící hodnoty Hz 25 31,5 40 50 63 80 okno 11,2 13,2 15,2 17,2 19,2 21,2 LUNOX 14 16 18 20 22 24

beton 22 24 26,1 28,1 30,1 32,1 a můžeme tak vypočítat po jednotlivých třetinooktávách příspěvky hlukového přenosu do chráněné místnosti: rozsah Hz 25 3150 L Aint 8 okno 34,8 LUNOX 31,3 beton 30,7 Prohlásíme-li tyto hodnoty za vhodný odhad skutečné situace, můžeme porovnat jednotlivé výpočtové metody podle jejich spočtených imisních hladin hluku ve vnitřní chráněné místnosti: č. 1 2 3 4 5 6 7 8 metoda jednočíselná neprůzvučnost po třetinooktávách v intervalu použito R w R w+c R w+c tr R w+c 50-5000 R w+ C tr50-5000 100 3150 50 5000 25 3150 okno 28 30 32 29 35 54,4 47,3 34,8 LUNOX 23 26 30 25 33 54,4 47,1 31,3 beton 28 28 30 27 31 54,4 47,1 30,7 5. HODNOCENÍ, ZÁVĚR V předkládaném příspěvku je poukázáno na výraznou změnu, ke které došlo po prudkém nárůstu počtu kamiónů na našich vozovkách, zejména dálnicích a městských okruzích. Není zde sledován celkový nárůst hladin hlukových imisí v okolí těchto vozovek, pouze změna frekvenčního spektra tohoto dopravního hluku. Ten se nyní výrazně liší od normalizovaného spektra silničního hluku a ještě výrazněji od dalších používaných aproximací hlukové zátěže. Výrazný nárůst nízkofrekvenčních složek hluku přináší značné komplikace při posuzování přenosů tohoto hluku zejména obvodovým pláštěm budov. Běžné používání jednočíselných vzduchových neprůzvučností Rw izolačních prvků fasád není dostatečně přesné (podhodnocuje daný problém na příkladu LUNOXU 120 o cca 9 db!) a znalost faktorů přizpůsobení (C, C tr ) je spíše výjimečná. Snaha o přesnější posouzení přenosu hluku výpočtem po jednotlivých frekvenčních složkách dává naopak nadhodnocené hladiny hlukových imisí. Reálné posouzení hlukové situace ve vnitřních chráněných prostorách je výpočtově nerealizovatelné. Předložený návrh extrapolace frekvenčních složek neprůzvučností do oblasti nízkých (jinak neměřitelných) frekvencí není jistě exaktní, přináší však výsledky, které přibližují takto po složkách počítané přenosy hodnotám, počítaným z jednočíselných neprůzvučností R w +C tr50-5000. Také hodnoty, využívající R w +C tr jsou vhodným spodním odhadem výsledných imisí, naopak použití neprůzvučností R w +C je navzdory doporučení pro dálkovou silniční dopravu > 80 km/h příliš nízkým odhadem skutečné situace. Poznamenejme ještě, že

- nelze nalézt jednoduchý vztah mezi zvýrazněním nízkofrekvenčních složek dopravního hluku a podílem kamiónů; celková úroveň počtu kamiónů na našich dálnicích a městských okruzích již jednoznačně překračuje předpoklady, pro něž bylo stanoveno dosud používané normalizované spektrum silničního hluku, - zmíněná extrapolace neprůzvučností není dostatečně exaktním argumentem pro akceptování postupu s využitím neprůzvučností R w +C tr, - získání faktorů frekvenčního přizpůsobení je u běžně nabízených fasádních prvků téměř nemožné, - vhodnost veličiny R w +C tr je i pro výrazně odlišné spektrum pozorovaného dopravního hluku vysvětlitelná patrně absencí jeho vyšších frekvenčních složek hluku, - rušivý účinek nízkých frekvenčních složek, pronikajících fasádou domu, je zřejmý, často pozorovaný, bohužel však dosud platnými předpisy nehodnocený. ODKAZY (1) Hluk z dopravy. Metodické pokyny pro výpočet hladin hluku z dopravy, VÚVA Praha, 1991 a Příloha Zpravodaje MŽP č.3, březen 1996. (2) ČSN 730532 Akustika Ochrana proti hluku v budovách a souvisící akustické vlastnosti stavebních výrobků Požadavky. ČNI 03/00. (3) ČSN EN ISO 717-1 Akustika Hodnocení zvukové izolace stavebních konstrukcí a v budovách Část 1: Vzduchová neprůzvučnost, ČNI 06/98. (4) ČSN EN 1793-3 Zařízení pro snížení hluku silničního provozu - Zkušební metody stanovení akustických vlastností - Část 3: Normalizované spektrum hluku silničního provozu, ČNI 09/98