Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále soubor roztřiďte do zadaných tloušťkových stupňů. Pro takto vytvořený soubor popisující tloušťkovou strukturu porostu vypočítejte modelové četnosti normálního rozdělení. Měřené a modelové četnosti graficky porovnejte. Dále porovnejte hodnoty aritmetického průměru a směrodatné odchylky pro tříděná a netříděná data a v případě výraznějšího rozdílu mezi nimi se pokuste specifikovat možné příčiny této diference. Pomocí Kolmogorov-Smirnovova testu zhodnoťte shodu experimentálních četností tloušťek s modelovými četnostmi a výsledky slovně interpretujte. Jsou zadány naměřené tloušťky (cm). Třídění měřených tloušťěk do zadaných tloušťkových stupňů pomocí histogramu. Naměřené tloušťky roztřídíme do tloušťkových stupňů. Můžeme tak učinit ručně nebo pomocí histogramu, kdy excel počítá datové body v každé třídě dat. Datový bod je zahrnut do konkrétní třídy dat, pokud je jeho hodnota větší než dolní mez a rovna nebo menší než horní mez třídy dat. Pro použití histogramu si nejprve vypíšeme hranice tloušťkových tříd, tj. například 9, 11, 13 atd., všechny je označíme a uchopením křížku v pravém dolním okraji je přetáhneme až po poslední potřebnou hranici tloušťkového stupně.
Klikneme na Data Analýza dat Histogram. Do vstupní oblasti označíme všechny měřené tloušťky, do hranic tříd označíme námi vypsané hranice tříd (9, 11, 13, 15 atd.), zvolíme si výstupní oblast pro umístění výsledku a klikneme na OK. Naměřené roztříděné tloušťky překopírujeme do meřených četností k odpovídajícím tloušťkovým stupňům.
Provedeme součet měřených četností tloušťěk.
Vynásobíme tloušťkové stupně měřenými četnostmi tloušťek a provedeme součet sloupce. Jednoduchý aritmetický průměr se používá pro neroztříděný soubor, nyní se jedná o soubor, který je roztříděný do tříd, proto použijeme vážený aritmetický průměr, který se spočítá dle vzorce: m je počet tříd n i je absolutní třídní četnost x i je třídní reprezentant
nebo též kde je w i jinak než třídní četností určená váha i-té třídy Doplníme počet hodnot N (suma měřených tloušťěk) a spočítáme vážený aritmetický průměr jako suma sloupce se součiny tloušťkových stupňů a měřených hodnot / N Např. 8234 / 323 = 25,49 cm
Pro výpočet směrodatné odchylky S nejprve spočítáme (tloušťkový stupeň vážený aritmetický průměr) ^ 2 a provedeme součet sloupce Vážený aritmetický průměr můžeme ve vzorci uzamčít klávesou F4 a výslednou buňku křížkem v pravém dolním rohu roztáhnout pro výpočet zbývajících hodnot. Hodnoty tohoto sloupce vynásobíme četnostmi měřených tlouštěk a provedeme součet.
Směrodatná odchylka pro tříděný soubor: Rozptyl spočítáme jako ((suma sloupce ((tloušťkový stupeň vážený aritmetický průměr) ^ 2))) * měřené četnosti) /N Např. 14956,73 / 323 = 46,31 cm 2
Nyní dopočítáme směrodatnou odchylku jako odmocninu z rozptylu Např. ODMOCNINA 46,31 = 6,80 cm
Směrodatnou odchylku třídního intervalu Sh spočítáme jako S / 2 Např. 6,80 / 2 = 3,40 cm
Výpočet modelových četností normálního rozdělení. Grafické porovnání měřených a modelových četností.
Abychom mohli dopočítat modelové tloušťky, nejprve spočítáme konstantu. Jedná se o první část vzorce normálního rozdělení. Konstanta se spočítá jako N / (SQRTPI (2) * Sh) Např. 323 / (SQRTPI (2) * 3,40) = 37,87
Nyní celý vzorec dopočítáme jako konstanta * EXP (- (((tloušťkový stupeň vážený aritmetický průměr) ^ 2) / (2 * směrodatná odchylka ^ 2))) Např. 37,87 * EXP (- (420,57 / (2 * 6,80 ^ 2))) = 0,40
Konstantu a váženou směrodatnou odchylku můžeme uzamčít klávesou F4 a výslednou buňku přetáhneme k poslední naměřené tloušťce pro automatický dopočet modelových tloušťěk. Provedeme součet sloupce. Zaokrouhlením výsledků získáme modelové tloušťky. Křížkem můžeme výslednou buňku přetáhnout dolů pro zaokrouhlení po poslední modelovou tloušťku.
Utvoříme graf z měřených a modelových tloušťek, osa x jsou tloušťkové stupně, osa y četnost tloušťek.
Porovnání hodnoty aritmetického průměru a směrodatné odchylky pro tříděná a netříděná data. Porovnáme hodnoty směrodatné odchylky a aritmetického průměru pro netříděná a tříděná data. Pro netříděná data můžeme aritmetický průměr zjistit výpočtem a směrodatnou odchylku pomocí popisné statistiky. Klikneme na Data Analýza dat Popisná statistika.
Do vstupní oblasti zadáme všechny naměřené netříděné tloušťky, zvolíme výstupní oblast, zatrhneme celkový přehled a klikneme na OK. Porovnáme směrodatné odchylky a hodnoty aritmetických průměrů tříděných a netříděných dat. V případě větší odlišnosti slovně okomentujeme možné příčiny této diference.
Vyhodnocení shody experimentálních četností tloušťěk s modelovými tloušťkami pomocí Kolmogorov-Smirnovova testu. Slovní interpretace výsledků. Nyní provedeme Kolmogorov-Smirnovův test. Návod na provedení tohoto testu je na stránkách user.mendelu.cz/drapela Statistické metody Návody k použití statistických programů Excel Kolmogorov Smirnovův test 1 výběr. Pro provedení testu nejprve spočítáme součtové četnosti měřených tloušťěk: Výslednou buňku přetáhneme křížkem v pravém dolním rohu po poslední naměřenou tloušťku. Nyní je třeba spočítat součtové četnosti modelových tloušťěk. Spočítáme je obdobně, jako meřené, avšak s hodnotami modelových tloušťěk. Opět křížkem přetáhneme buňku se vzorcem po poslední modelovou hodnotu.
Dále spočítáme absolutní hodnotu rozdílu mezi měřenými a modelovými součtovými četnostmi v každém řádku. Tento rozdíl spočítáme jako abs (měřená četnost modelová četnost) Výslednou buňku opět roztáhneme křížkem.
Najdeme ve vypočteném sloupci maximální hodnotu rozdílu a označíme ji žlutě.
Nyní vypočítáme testové kritérium TK jako největší absolutní hodnota rozdílu mezi měřenými a modelovými součtovými četnostmi / součet měřených tloušťěk Např. 13 / 323 = 0,04
Spočítáme kritickou hodnotu KH dle vzorce (α = 0,05): 1 1 D 1,. ln n 2 2 KH = 1,36 / ODMOCNINA (SUMA měřených tloušťěk) Pozn. hodnota 1,36 je spočtená druhá část vzorce 1 1 D 1,. ln n 2 2 Platí pouze pro α = 0,05
Nyní okomentujeme výsledky. Porovnáme testové kritérium s kritickou hodnotou. Např. TK = 0,04 a KH = 0,08. Testové kritérium je tedy menší než kritická hodnota, nulovou hypotézu normálního rozdělení tedy nezamítáme a můžeme předpokládat, že modelové a měřené rozdělení tloušťek se neliší a že normální rozdělení je vhodným modelem tloušťkové struktury. Pokud by testové kritérium bylo vyšší, než je kritická hodnota, nejednalo by se o normální rozdělení a normální rozdělení by nebylo vhodným modelem tloušťkové struktury.