Sbírka. úloh z matematiky. pro 3. ročník. tříletých učebních oborů



Podobné dokumenty
Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

Modelové úlohy přijímacího testu z matematiky

+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa

Modelové úlohy přijímacího testu z matematiky

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

Povrch a objem těles

7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC

Opakování k maturitě matematika 4. roč. TAD 2 <

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, a 0,1, 0,01, 0,001.. Čísla navzájem opačná

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Stereometrie pro učební obory

Autor: Jana Krchová Obor: Matematika. Hranoly

Stereometrie pro studijní obory

Pracovní listy MONGEOVO PROMÍTÁNÍ

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114

Základní geometrické tvary

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

M - Příprava na 1. zápočtový test - třída 2SB

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

Čtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

M - Příprava na 2. čtvrtletku - třída 3ODK

Témata absolventského klání z matematiky :

M - Řešení pravoúhlého trojúhelníka

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

5.2. Funkce, definiční obor funkce a množina hodnot funkce

S = 2. π. r ( r + v )

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

GONIOMETRIE A TRIGONOMETRIE

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/

ZŠ ÚnO, Bratří Čapků 1332

Metrické vlastnosti v prostoru

5. P L A N I M E T R I E

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.

Příklady k opakování učiva ZŠ

Cvičné texty ke státní maturitě z matematiky

2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Příklady na 13. týden

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)

Maturitní nácvik 2008/09

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

1. Přímka a její části

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Předpokládané znalosti žáka 1. stupeň:

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.

Očekávané ročníkové výstupy z matematiky 9.r.

Předmět: MATEMATIKA Ročník: 6.

Učební osnovy pracovní

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Projekt: Zlepšení výuky na ZŠ Schulzovy sady registrační číslo: CZ.1.07./1.4.00/ Mgr. Jakub Novák. Datum: Ročník: 9.

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

1. Základní poznatky z matematiky

1. Opakování učiva 6. ročníku

Sada 7 odchylky přímek a rovin I

- vyučuje se: v 6. a 8. ročníku 4 hodiny týdně v 7. a 9. ročníku 5 hodin týdně - je realizována v rámci vzdělávací oblasti Matematika a její aplikace

M - Příprava na 3. čtvrtletku - třída 3ODK

Matematika - Kvarta. řeší ekvivalentními úpravami rovnice s neznámou ve jmenovateli

Gymnázium Jiřího Ortena, Kutná Hora

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

Výstupy Učivo Průřezová témata

M - Goniometrie a trigonometrie

Otázky z kapitoly Stereometrie

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Ukázky z pracovních listů z matematiky pro ZŠ a nižší třídy gymnázií A: Množiny bodů

Digitální učební materiál

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

Transkript:

Sbírka úloh z matematiky pro 3. ročník tříletých učebních oborů Jméno: Třída: 1

Obsah Funkce 3 Lineární funkce 6 Kvadratické funkce 13 Nepřímá úměrnost 15 Rostoucí a klesající funkce 17 Orientovaný úhel 18 Goniometrické funkce 0 Stereometrie 3 Vzájemná poloha bodů, přímek a rovin 3 Odchylka přímek a rovin 4 Tělesa 5 Převody jednotek 5 Obvody a obsahy 7 Hranoly 8 Válec 31 Jehlan a kužel 33 Koule 35 Komolý jehlan a kužel 38 Složená tělesa 40 Přijímací zkouška z matematiky pro nástavbové studium 41 Test: J

Funkce Funkce je zobrazení, které ke každému prvku dané množiny D(f) přiřazuje právě jedno reálné číslo. Označíme-li danou funkci f, pak číslo, které funkce f přiřazuje číslo a D(f), se nazývá hodnota funkce v bodě a a značí se f(a). Množina D(f) se nazývá definiční obor funkce f Množina všech hodnot funkce f je obor hodnot funkce f a značí se H(f) Každé hodnotě x D(f) přísluší jediná hodnota y H(f). Pokud tato podmínka není splněna nelze hovořit o funkci. 1. Rozhodni, zda následující závislosti jsou funkcemi: a) závislost počtu ujetých kilometrů na počtu otáček kol pohybujícího se automobilu b) závislost doby jízdy na rychlosti vlaku při konstantní vzdálenosti c) závislost počtu diváků na tržbě v kině d) závislost množství prodaného ovoce v daný den na daném místě na délce trvání prodeje e) závislost počtu hostů v restauraci na počtu prodaných obědů f) závislost obsahu kruhu na jeho průměru g) závislost výšky domu na počtu oken v tomto domě h) závislost velikosti poplatku za telefonní hovory na počtu uskutečněných telefonních hovorů i) závislost velikosti jednoho kousku dortu na počtu stejných dílků, na které byl dort rozdělen. Rozhodni, které z uvedených grafů jsou grafem nějaké funkce. a) b) c) d) e) f) g) h) i) j) k) l) 3

3. Rozhodni, které z uvedených tabulek jsou tabulkami nějaké funkce: a) x 1 3 4 5 d) x 0 6 8 y 3 4 1 8 y -1 - - -1 0 b) e) x -4-1 0 3 5 x 0 4 6 8 y 5 5 y 1 3 5 7 9 c) f) x - -1 0-1 - x -4-0 3 5 y 4 5 6 7 8 y 4 4 4 4 4 4. Urči definiční obor a obor hodnot funkce, jestliže: a) y = 3x - 7 x -; -1; 0; ; 3 b) y = 1-5x x -; -1; 0; 1; ; c) y = x 3 5 x -; -1; 0; 1; d) y = 1 3 x -5; -1; 0; 1; ; x e) y = x 3 x -; -1; 0; 1; 4; f) y = - x x -3; -1; 0; 1; 4

5. Určete definiční obor funkce : a) y = 5x - 4 11 b) y = 6x- 5 c) y = d) y = e) y = f) y = g) y = 3 x x 7 3x x + 4 x 1 x 9 x + 4 3x 1 x 4 h) y = 5x 6 x + 16 6. Sestrojte grafy funkcí daných tabulkou, určete jejich definiční obor a obor hodnot: a) x 0 1 3 4 y -3 - -1 - -3 b) x - -1 0 1 y 0-1 - -1 0 c) x 1 3 4 5 y - - - - - 5

9. Turista došel do cíle své cesty za 8 hodin. Na obr.a je sestrojen graf závislosti dráhy turisty na čase. Urči. a) Kolik kilometrů ušel turista za 8 hodin? b) Kolik kilometrů zbývalo turistovi do cíle po pěti hodinách chůze? c) Kdy byl turista 5 kilometrů před cílem? d) Co znamená skutečnost, že graf závislosti dráhy na čase je v době od druhé do třetí hodiny rovnoběžný s osou x? e) Jakou rychlostí šel turista první dvě hodiny? A. B. Lineární funkce Lineární funkce je určena rovnicí kde a a b jsou reálná čísla, a 0, x R. Je-li b = 0 je to přímá úměrnost, y = ax. y = ax + b, Je-li a = 0, je danou rovnicí určena konstantní funkce, y = b Graf funkce f je množina všech bodů [ x; y], kde y = f(x). Pokud nějaký graf obsahuje dvojici různých bodů, které leží na téže rovnoběžce s osou y, není to graf funkce. Grafem lineární i konstantní funkce je přímka. 6

1. Rozhodni, která z daných rovnic určuje lineární funkci. Vyberte, která z rovnic patří přímé úměrnosti a která konstantní funkci : a) y = 7x 5 b) y = 5 x c) y = 3x + d) y = - 4 e) y = 4 3x 5 f) y = x 3x 7 g) y = 6 h) y = x(x 1) i) y = x + 3 j) y = 5. Sestroj grafy lineárních funkcí: a) y = x x R a = b = tabulka: graf: x y Funkce je 7

b) y = 3x + x 1; 3 c) y = - x + 3 x ( - ; 4) d) y = 4 x R e) y = + 3 x x { 3;0;3;6 } f) y = 6 x x ; ) g) y = x 5 x ( ;5) 8

h) y = 3x x R 3 x k) y = 5 x R i) y = - 7 x { ; 1;0;1; } l) y = x + 1 x ; 3. Rozhodni výpočtem, zda dané body leží na, nad nebo pod grafem funkce: ;4 ;3 ;0 ; 1 0 ;0 a) y = x + 1 A = [ ] ; B = [ ] ; C = [ ] ; D = [ 3 ] ; E = [ ] b) y = x 3 K = [ 1; 1] ; L = [ 0; ] ; M = [ ;1] ; N = [ ; 6] ; O = [ 1;1 ] 4. Sestroj graf funkce y = a) x { 0; 1; ; 3; 4 } b) x 0 ;+ ) c) x 3; 3 d) x R 1 3 x + jestliže : 9

5. Sestroj graf funkce y = tato funkce a) nulových hodnot b) kladných hodnot c) záporných hodnot 3 x d) určete zbývající souřadnice bodů: [1;y], [-;y], [x;5], [x;-3] ; x R. Urči, pro které hodnoty proměnné x nabývá 6. Řeš graficky rovnici : a) 3x 1 = 0 b) x + 3 = 0 c) x + = x 1 d) 4x - 5 = x + 3 10

7. Řeš graficky soustavu rovnic: a) x + y = 3 x 3y = - 4 b) x + y = - 1 x + 5y = 3 c) x - y = 6 x + y = 0 11

8. Na 1 m 3 zdiva je třeba 0,8 m 3 malty. Vyjádři závislost spotřeby malty na objemu zdiva. - tabulkou - rovnicí - grafem 9. Odpor vodiče je 46 Ω. Sestroj graf závislosti proudu na napětí. ( U I = ) R 10. Rychlost auta je 55 km. Sestroj graf závislosti ujeté dráhy na čase ( s = v. t ) h J 1

Kvadratická funkce Kvadratická funkce je funkce určená rovnicí y = ax + bx + c kde a,b, c jsou reálná čísla, a 0, a x je proměnná. D(f) = R Grafem kvadratické funkce je parabola. 1. Urči název funkce a) y = x b) y = x + c) y = x + x + 1 d)) y = 1 + x e) y = - x f) y = 1 - x g) y = 3 h) x = 3. Urči koeficienty a, b, c. a) y = x b) y = x + x + 1 c) y = 1 + x d) y = - x 3. Urči kvadratickou funkci, je-li dáno. a) a = 5, b = 0, c = 0 b) a = -, b = 3, c = 0 c) a = - 1, b = 0, c = - 3 d) a = 1, b = - 1, c = 1 4. Narýsuj graf funkce y = x. Z grafu urči: a) obor hodnot funkce b) pro které x je funkce klesající c) pro které x je funkce rostoucí d) v kterém bodě nabývá funkce své největší nebo nejmenší hodnoty a zapiš tuto hodnotu e) hodnotu funkce pro x = - 13

5. Řeš stejné úkoly jako v příkladě 4 pro funkci y = - 1 x. 6. Řeš stejné úkoly jako v příkladě 4 pro funkci y = x 3. 7. Řeš stejné úkoly jako v příkladě 4 pro funkci y = - x + 1. 14

Nepřímá úměrnost Nepřímá úměrnost se nazývá každá funkce y = x k x R {0}, kde k je libovolné reálné číslo různé od nuly. Grafem nepřímé úměrnosti je hyperbola. 1. Sestroj graf funkce y = x 1, urči definiční obor a obor hodnot.. Sestroj graf funkce y =, urči definiční obor o obor hodnot. x 15

3. Určete typ funkce: 10 a) y = x x b) y = 10 c) y = x 1 10 + d) y = 3 π e) y = x f) y = 3x + 5 1 g) y = - x h) 0,5 y = x 4. Vypočítejte hodnotu funkce 0 1 y = pro x { -; -0,5;,5; } x 5. Obsah obdélníku je 10 cm. Znázorněte graficky závislost jeho délky na jeho výšce, jestliže výška je od cm do 5 cm. 16

6. Znázorněte graficky závislost výkonu na čase, jestliže práce W = 100 J, čas t W 1 s; 50s a P =. t Rostoucí a klesající funkce Funkce f je v intervalu I D(f) rostoucí, právě když pro každé x 1, x I jestliže x 1 < x, pak f(x 1 ) < f(x ). Funkce f je v intervalu I D(f) klesající, právě když pro každé x 1, x I jestliže x 1 < x, pak f(x 1 ) > f(x ). 1. Urči, zda daný graf znázorňuje funkci, pokud ano urči na kterém intervalu je rostoucí a na kterém klesající: a) b) c) d) e) f) g) h) i) j) k) l) 17

. Urči, zda je funkce rostoucí nebo klesající: a) y = 0,8x + 1 b) y = - x + c) y = - x + 1, pro x 0 ; ) d) y = x +, pro x < 0 e) y = 5, pro x > 0 f) y = x 3, pro x < 0 J Orientovaný úhel Velikost úhlu určujeme ve stupňové nebo v obloukové míře. Jednotkou ve stupňové míře je stupeň, minuta, sekunda. Jednotkou v obloukové míře je radián. Velikost úhlu v obloukové a stupňové míře p = 3,14159 = 180 1. Velikost úhlů danou ve stupních vyjádřete v radiánech: 0, 15, 30, 45, 60, 75, 90, 10, 135, 150, 180, 5, 40, 70, 360 18

. Velikost úhlu danou v radiánech vyjádřete ve stupních: π 3π π 5π π 3 6 6 5π 1 π 1 π 3 π 1 7 π 6 π 4 π 11 π 1 3 π 4 11 π 3 3. Převeďte velikosti úhlů v radiánech na stupně:,356 = 4,714 = 1,6806 = 3,05430 = 0,6175 = Orientovaný úhel - kladná velikost se určuje proti směru hodinových ručiček - záporná velikost se určuje po směru hodinových ručiček Základní velikost úhlu je velikost úhlu v intervalu 0 ; 360 ) tj. 0 ; π). Různá otočení mají stejnou základní velikost. 4. Vypočítejte základní velikost úhlu: 450 = 760 = 700 = 100 = 3600 = -30 = -70 = -330 = -360 = -450 = 10π = 17π = 16π = 31π = -π = -4π = -5π = -4π = -15π = 19

Goniometrické funkce Vztahy mezi stranami a ostrými úhly pravoúhlého trojúhelníka ABC: Sinus úhlu je poměr délky protilehlé odvěsny a přepony: sin a = c a Kosinus úhlu je poměr délky přilehlé odvěsny a přepony: cosa = c b Tangens úhlu je poměr délky protilehlé a přilehlé odvěsny: tg a = b a Kotangens úhlu je poměr délky přilehlé a protilehlé odvěsny: cotg a = a b 5. V pravoúhlých trojúhelnících ABC s přeponou c vypočtěte délky zbývajících stran: a) c = 0 cm, α = 30 b) c = 17,5 cm, β = 65 c) b = 7 cm, β = 15 d) a = 0,5 km, β= 30 0

Jednotková kružnice: Tabulka hodnot α sin cos tg cotg Určování hodnot goniometrických funkcí Periodická funkce hodnoty funkce se opakují Funkce sinus a kosinus jsou periodické s periodou π = 360, funkce tangens a kotangens jsou periodické s periodou π = 180. Platí: sin x = sin (x + 360 ) = sin (x + 70 ) = sin (x + 1080 ) = sin (x - 360 ) = cos x = cos (x + 360 ) = cos (x + 70 ) = cos (x + 1080 ) = cos (x - 360 ) = tg x = tg (x + 180 ) = tg (x + 360 ) = cotg x = cotg (x + 180 ) = cotg (x + 360 ) = Znaménka hodnot funkcí: kvadrant I. II. III. IV. sinus kosinus tangens kotangens 1

1. Načrtněte grafy funkcí: sinus kosinus tangens kotangens Platí: sin (-x) = - sin x cos (-x) = cos x sin x tg x = cos x cos x cotg x = sin x 1 cotg x = tgx. Určete hodnoty funkcí: a) sin 90 = sin 180 = sin 0 = sin 70 = sin 360 = b) cos 0 = cos 180 = cos 90 = cos 70 = cos 360 = c) sin 70 = sin 390 = sin (-90 ) = sin (-1110 ) = d) cos 450 = cos 1080 = cos (-60 ) = cos (-100 ) = 3. Určete hodnoty funkcí: a) sin π = sin π = sin 7π = sin 1π = sin (-3π) = b) cos 0 = cos π = cos 4π = cos (-9π) = cos (-6π) =

3π 5π π π c) sin = sin = sin = sin = 3 π π 3π π d) cos = cos = cos = cos = 3 3 4 J Stereometrie Vzájemná poloha bodů, přímek a rovin - dvou bodů a) splývají : A = B b) jsou různé : A C - bodu a přímky a) bod leží na přímce : A p b) bod neleží na přímce : B p - dvou přímek a) rovnoběžné přímky (rovnoběžky), a to splývající ( r = s ) nebo různé ( r p ) b) různoběžné přímky (různoběžky), které mají jediný společný bod průsečík ( p a q, p q ={ Q } ) c) mimoběžné přímky (mimoběžky), které nemají společný bod ( u a v) - bodu a roviny a) bod leží v rovině: D ABC = ρ b) bod neleží v rovině: H ρ - přímky a roviny a) přímka je rovnoběžná s rovinou; v tom případě buď leží v rovině p ρ, nebo nemá přímka s rovinou společný žádný bod r ρ, r ρ = { } b) přímka je různoběžná s rovinou, tj. má s ní společný právě jeden bod přímka s je různoběžná s rovinou s ρ = { C} - dvou rovin a) jsou rovnoběžné, a to splývající (α=β ) nebo různé ( α β ={ }) b)jsou různoběžné, tj. mají společnou právě jednu přímku (a β = AB) společná přímka dvou rovin se nazývá průsečnice 3

1. V krychli ABCDEFGH určete: a) rovnoběžné hrany b) různoběžné hrany c) mimoběžné hrany d) rovnoběžné roviny e) různoběžné roviny a jejich průsečnici f) roviny, které mají odchylku 90 g) roviny, které mají odchylku 45 h) roviny, které nemají odchylku 90 ani 45. V kvádru ABCDEFGH určete vzájemnou polohu: a) bodu A a hrany BC b) bodu A a roviny BCD c) přímek AC a CG d) přímek BD a AE e) roviny ABC a EFG f) roviny BCD a AEH Odchylka přímek a rovin Odchylkou dvou přímek nazýváme velikost ostrého nebo pravého úhlu, který přímky svírají. Odchylka dvou rovin je odchylka průsečnic daných rovin s rovinou, která je k zadaným rovinám kolmá. 3. V krychli ABCDEFGH vypočítejte odchylky: a) přímky AB a EF b) přímky AB a BF c) přímky AB a CG d) přímky AC a BD e) přímky AC a AB f) přímky BE a BG 4

4. Je dán kvádr ABCDEFGH: a = 3 cm, b = 4 cm, c = 5 cm. Vypočítejte odchylku roviny ABC od roviny BCH. J Tělesa Převody jednotek :1 000 :10 :10 :10 km m dm cm mm.1 000.10.10.10 :100 :100 :100 km ha a m dm cm mm :100 :100 :100.100.100.100.100.100.100 1 m 3 = 10 hl, 1 dm 3 = 1 l, 1 cm 3 = 1 ml :100 :10 :10 :10 hl l dl cl ml.100.10.10.10 1. Vyjádřete v km: 6500 m = 158 m = 57,7 m =. Vyjádřete v m: a) 0,04 km b),5 cm c) 9800 mm d) 0,87 dm 6. e) 11 dm 7. f) 780 cm 8. g) 0, mm 9. h) 5,06 km 5

3.Vyjádřete v dm: 0,75 m = 368 cm = 4800 mm = 4.Vyjádřete v cm: 3,7 dm = 0,05 m = 156 mm = 5.Vyjádřete v mm: 15,3 cm = 0,76 dm = 0,0015 m = 6. Upravte na m a sečtěte: 315 cm + 36,4 dm + 150 mm = 1,5 dm + 3400 mm + 0,47 cm + 0,00045 km = 7. Upravte na mm : 3,7 cm = 0,75 dm = 0,0004 m = 8. Upravte na cm : 0,364 dm = 157 mm = 0,0064 m = 9. Upravte na dm : 46 cm = 0,014 m = 36700 mm = 10. Upravte na m : 15 dm = 1,5 a = 0,046 ha = 11. Upravte na a: 158 m = 36,4 ha= 0,6 km = 1. Upravte na ha: 64 a = 77350 m = 0,058 km = 13. Kolik m je 3140 cm + 54 dm + 1740 mm = 14. Upravte na m 3 : 4650 dm 3 = 74000 cm 3 = 15 l = 15,7 hl = 0,6 hl = 848000 mm 3 = 15. Upravte na dm 3 : 1400 cm 3 = 75300 mm 3 = 1,5 l = 0,7 m 3 = 15,6 hl = 0,035 dm 3 = 16.Kolik m 3 je 1,75 hl + 5400 dm 3 + 14 l = 0,456 hl + 150 l + 750 dm 3 = 17. Kolik cm 3 je 17,4 dm 3 + 4500 mm 3 + 0,00001 m 3 = 6

Obvody a obsahy Trojúhelník : - o = a + b +c a v - S = a Čtverec : - o = 4.a - S = a Obdélník : - o =.(a + b) - S = a.b Kružnice, kruh: - o =.π. r = π. d - S = π. r Rovnoběžník: Kosočtverec : - o = 4.a - S = a. v ; S = u 1. u Kosodélník : - o =.( a + b ) - S = a. v a Lichoběžník : - o = a + b + c + d ( a + c) v - S = 1. Z obdélníkové desky jsou vyříznuty dva půlkruhy. Urči plochu desky po jejich vyříznutí. (obr. 1) obr. 1. Vypočti obsah vybarveného obrazce, jsou-li velikosti stran čtverce a = 4 cm. (obr. ) obr. 7

Objem a povrch hranoly Krychle 3 V = a S = 6a u = a 3 Kvádr V = abc S = ( ab + ac + bc) u = a + b + c Hranol V = S p v S = S p + S pl 1. Urči počet H hran, V vrcholů a S stěn krychle : a) H = 6, V = 6, S = 6 b) H = 1, V = 8, S = 6 c) H = 8, V = 8, S = 6 d) H = 1, V = 8, S = 8. Pro betonový základ byla vyhloubena jáma tvaru krychle o hraně 1,8 m. Kolik m 3 zeminy bylo vykopáno? 3. Kolik m 3 zdiva je třeba vysekat pro kombinovanou elektroměrovou desku tvaru kvádru s rozměry 0,8x0,6x0,3 m? 8

4. Měděná deska z plechu tloušťky 3 mm má délku 0,9 m a šířku 0,75 m. Jakou má hmotnost, je-li ρ = 8800 kg.m -3. 5. Činná část pájedla je zhotovena z Cu tyče tvaru pravidelného čtyřbokého hranolu o straně průřezu a = 18 mm. Jakou hmotnost má 1,75 m tyče při hustotě ρ = 8900 kg.m -3. 6. Mléčné sklo osvětlovacího tělesa má tvar krychle o hraně 0,8 m. Vypočítej velikost svítící plochy. 7. Kolik hektolitrů lázně pro galvanické pokovování pojme vana tvaru kvádru s rozměry a = 0,68 m, b = 0,8 m, c=1,78 m. 8. Plechovka má tvar kvádru (bez víka) o rozměrech 100 mm, 5 cm a 30 mm. Vypočítej spotřebu plechu na její výrobu. Kolik litrů kapaliny pojme? 9

9. Vypočtěte hloubku vody v bazénu tvaru kvádru, je-li délka bazénu 16,5 m, šířka 10 m a bylo-li napuštěno 640 hl vody. 10. Dílenské pravítko má průřez tvaru pravidelného trojúhelníku o straně 36 mm. Jakou má hmotnost, je-li 1 m dlouhé a ρ = 7,8 g.cm -3? 11. Dílenské pravítko má průřez tvaru lichoběžníka (a = 5 cm, c = 38 cm, v = 1 cm). Urči jeho hmotnost, má-li délku m, ρ = 7800 kg.m -3. 1. Zemní kabely elektrického vedení jsou uloženy na dně výkopu s lichoběžníkovým průřezem. Kolik m 3 zeminy je třeba odstranit vytvořením výkopu v délce 15 m, má-li nahoře šířku 0,8 m, dole 0,6 m a hloubka výkopu je 0,7m? 13. Strop a stěny pokoje, který je 3,5 m vysoký, 7 m dlouhý a 6 m široký, se mají obložit dřevem. Kolik m dřeva je třeba na obložení? A. 175 m B. 147 m C. 133 m D. 87,5 m žádná z možností A D není správná 14. Jaký objem mají m plechu o tloušťce 1,5 mm? Jakou má plech hmotnost, jestliže ρ = 8900 kg.m -3? 30

Povrch a objem válec Válec V = π r v = π d 4 v ( r v) S = π r + π r v = π r + 1. Holý měděný drát má průřez 16 mm a délku 75 m. Urči jeho hmotnost, je-li ρ = 8800kg.m -3.. Pro stanovení spotřeby plechu určete povrch uzavřeného válcového kotle s průměrem 0,8 m a délkou 1,75 m. 3. Hliníkový drát má průřez,5 mm a délku 150 m. Urči jeho hmotnost, je-li ρ = 700kg.m -3. 31

4. Z tyče o průměru 40 mm a délce 1,38 m byla zhotovena hřídel o průměru 38 mm a délce 1,35 m. Kolik procent bylo odpadu? 5. Urči hmotnost Cu vodiče na čtyřnásobné vedení v délce 48 m, má-li vodič průřez 6 mm, ρ = 8,9 kg.dm -3. 6. Kolik m plechu se spotřebuje na rouru o délce 7,5 m, má-li průměr 0,5 m a na spojení dílů je třeba přidat 10%? 7. Plechový buben pro odsávací zařízení má tvar pláště válce o průměru 1 m a výšce 1,6 m. Jakou má hmotnost, je-li z plechu 1,5 mm silného a ρ = 7800 kg.m -3? 3

8. Plechový sud má tvar válce s vnitřním průměrem 0,7 m. Kolik kg transformátorového oleje obsahuje, sahá-li hladina do výšky 0,6 m ode dna (sud stojí na podstavě) a ρ = 99 kg.m -3. 9. Lano obsahuje 37 drátů, každý o průměru 0,75 mm, ρ = 7800kg.m -3. Jakou hmotnost má 50 m lana, je-li skutečná délka drátů se zřetelem na zkroucení o 3% větší? 10. Plynojem má tvar válce o průměru 56 m. Jak vysoko sahá vnitřní víko, je-li na ukazateli 150000 m 3? 11. Válcová plechovka koly má objem 340ml. Průměr podstavy je 6 cm. Plechovka je vysoká přibližně A. 9 cm B. 10 cm C. 11 cm D. 1 cm E. 13 cm 1. Nádoba tvaru válce obsahuje 6,8 hl vody a je zcela plná. Výška nádoby je 0,5 m. Jaký je průměr dna nádoby? A. 0, m B. 0,4 m C. 1 m D. m E. 4 m J Povrch a objem jehlan a kužel 1 Rotační kužel V = π r v 3 S = π r + π r s = π r r + s ( ) Jehlan V = 1 S p v 3 S = S p + S pl 33

Pravidelný jehlan Vztahy mezi délkami na jehlanu 1. Střecha má tvar pláště kužele o průměru 4,8 m a výšce 1,6 m. Určete spotřebu krytiny.. Hromada písku má tvar kužele. Obvod je 1,7 m, strana s =, m. Určete přibližnou hmotnost písku, je-li ρ = 1,6 t.m -3. 3. Určete hmotnost olovnice, má-li tvar válce s průměrem 30 mm a délkou 60 mm, který je zakončený kuželovým hrotem o stejném průměru a výšce 36 mm (ρ = 7,85g.cm -3 ). 4. Střecha transformátorovny má tvar pláště pravidelného čtyřbokého jehlanu. Vypočítej její povrch, je-li délka podstavné hrany 3, m a výška 1, m. 34

5. Střecha má tvar pláště rotačního kužele o průměru podstavy 4,3 m, odchylka strany od roviny podstavy je 36. Vypočtěte spotřebu plechu na pokrytí střechy, počítáme-li 10% ztrát. 6. Kolik m 3 kamene bylo asi spotřebováno na Cheopsovu pyramidu 137 m vysokou s podstavnou hranou 70 m. Povrch a objem koule Koule 4 V = π r 3 S = 4π r 3 Vrchlík, kulová úseč Obsah vrchlíku a kulového pásu S = π r v Objem kulové úseče π v V = ( 3ρ + v ) 6 Objem kulové vrstvy π v V = 3ρ1 + 3ρ + v 6 ( ) Kulový pás, kulová vrstva 35

1. Valivé ložisko elektrického stroje obsahuje kuličky o průměru 7,5 mm. Kolik % činil odpad, jestliže z tyče oceli o průměru 8 mm a délce 4m bylo vyrobeno 500 kuliček.. Stínítko dílenské lampy má tvar poloviny koule s průměrem 50 mm. Jak velká je plocha odrážející světelné paprsky? 3. Skleněná koule osvětlovacího tělesa má průměr 0,34 m. Vypočti přibližnou velikost svítící plochy. 4. Valivé ložisko obsahuje 18 kuliček o průměru 10 mm. Jaký je jejich celkový objem? 5. Střecha má tvar polokoule o průměru 3,8 m. Pro určení spotřeby krytiny vypočítej její povrch. 36

6. Hmotnost ložiskový kuličky je 4 g. Jaký je její průměr? (ρ = 7,8 g.cm -3 ). 7. Plynojem má tvar koule o průměru 8, m. Na natření 7,5 m jeho povrchu stačí 1 kg barvy. Kolik barvy se spotřebuje na natření plynojemu? (Natíráme jen z vnější strany.) 8. Vypočítejte povrch kulového plynojemu, jehož objem je 1810 m 3. Při výpočtu nepřihlížejte k tloušťce plechu. 9. Vypočtěte plošný obsah plechu, který se spotřebuje na kotel tvaru polokoule o průměru 9 cm. Počítejte 6% na ztráty. 37

Povrch a objem komolý jehlan a kužel Komolý jehlan v V = S1 + S 3 S S + S + ( S S ) = 1 p 1 p + S pl Komolý rotační kužel v V = π r1 + r1 r + r 3 π ( r + r ) s S pl ( ) = 1 S = π r + r + 1 π S pl 1. Vypočtěte objem nádoby tvaru komolého kužele vysoké 40 mm, průměr dna je 50 mm a průměr horního otvoru je 600 mm.. Násypník má tvar komolého rotačního kužele s průměry podstav 1,84 m a 1,36 m a stranou 6 cm. Vypočtěte jeho objem. 38

3. Kolik korkových zátek tvaru komolého kužele o průměrech podstav 90 mm a 84 mm a straně 7 mm obsahuje zásilka o hmotnosti 1 kg netto? (ρ = 300 kg.m -3 ) 4. Vypočtěte objem kónického trámu (tvar komolého kužele) kruhového průřezu o průměru jedné podstavy 80 mm, druhé podstavy 00 mm a délce 6 m. 5. Kolik m plechu je třeba na výrobu násypníku tvaru pláště pravidelného čtyřbokého jehlanu? Délka dolní podstavné hrany je 40 cm, výška je 30 cm a délka horní podstavné hrany je 1 dm. 18% počítáme na spoje a odpad. 6. Vypočtěte objem podstavce, který má tvar komolého rotačního kužele s průměry podstav 1,8 m a 1,3 m a stranou 70 cm. 7. Vypočítejte objem výkopu tvaru komolého jehlanu, který je hluboký,4 m, s rozměry dna 16 m a 1 m a s rozměry výkopu 4 m a 18 m. 39

Složená tělesa Při výpočtu objemu složených těles rozdělíme těleso na jednoduchá tělesa, která se nepronikají. Při výpočtu povrchu složených těles nesmíme zapomenout, že některé stěny dílčích těles vznikly při dělení a nejsou tedy součástí povrchu původního tělesa. 1. Vypočítejte, kolik m 3 měří obestavěný prostor domu.. Vypočítejte objem opěrné zdi 18,5 m dlouhé o průřezu na obrázku. 3. Vypočítejte objem prefabrikované železobetonové vaznice pro montovaný krov o rozměrech podle obrázku. J 40

Přijímací zkouška z matematiky pro nástavbové studium 1. Vypočtěte: [( ) + 4 : ( ) 1] ( 3,5) a) 1,5 b) 3,5 c),5 16 + 4. Vypočtěte: 10 6 3 0 3 a) b) c) 8 94 4 x 1 3. Upravte: x + x x 1 1 a) b) c) x 1 x x 4. Které z uvedených čísel je největší? a) 0,5 b) 5. Vypište x, pro které platí: {x Z;-,5 x < 3,7} 1 c) 1 a) x = -3; -; -1; 0; 1; ; 3; 4 b) x = -; -1; 0; 1; ; 3; c) x = -; -1; 0; 1; ; 3; 4 6. Určete největšího společného dělitele čísel 60 a 7. a) 1 b) 6 c) 4 7. Určete podmínky pro daný výraz x x + 5 ( x 1). a) x 5 b) x 0; 1 c) x 5;0; 1 4 1 1 8. Vypočtěte: + 1 3 5 a) 1 b) c) 3 9. Kolik procent je 10 Kč z 1050 Kč? a) 15% b) 0% c) 5% 10. Která z uvedených rovností platí? 9 = x 3 x + 3 a) x ( )( ) b) x + 4 = ( x + )( x ) c) x 1 = ( x 1 ) 11. Rozlož podle vzorce pro druhou mocninu dvojčlenu výraz (x 3). a) 4x + 1x 9 b) 4x 1x + 9 c) 4x 9 1. Řeš rovnici: x ( x ) + 6 = x + ( x 1) a) x = - b) x = 1 c) x = 41

13. Nerovnici x 4 3x + 1vyhovují hodnoty x z intervalu? a) ( ; 5 b) ; ) 5 c) ( 5 ; ) 14. Čtverec má délku strany 5 cm. Jaká je délka jeho úhlopříčky? a) 7,07 cm b) 6, cm c) 8,05 cm 15. Rovnoramenný trojúhelník ABC má úhel při základně 55. Jak velký je úhel při hlavním vrcholu C? a) 70 b) 55 c) 60 16. Čtverec má obsah 1 dm. Jakou délku bude mít obdélník stejného obsahu o šířce 1 cm. a) 0,1 m b) 100 cm c) 1 dm 17. V trojúhelníku ABC je délka strany a = 6 cm a výška v a =,5 cm. Jaký obsah má daný trojúhelník? a) 15 cm b) 3,75 cm c) 7,5 cm 18. Jaká je výška válce o objemu 95 cm 3 a obsahu podstavy 153 cm? a) v = 18 cm b) v = 15 cm c) v = 1 cm 19. Ze vzorce 4 V r 3 4V a) r = 3 3π = π 3 vyjádřete r. 3π b) r = 3 4V 3V c) r = 3 4π 0. Jakému úhlu v míře stupňové odpovídá velikost úhlu π v míře obloukové? a) 90 b) 180 c) 45 1. Která z rovnic je předpisem funkce nepřímá úměrnost? a) y = 3x 1 b) y = 3x + 1 c). Grafem které funkce je parabola? 3 y = x a) kvadratické funkce b) lineární funkce c) nepřímé úměry 3. Na grafu které z uvedených funkcí leží bod A[0;0]? 5x a) y = x + 3 b) y = c) y = x + 1 Převeďte na jednotky uvedené v závorce: 4. 5,4 dm (cm ) 5. 1, hod (min) 4

Přijímací zkouška z matematiky pro nástavbové studium 1. Vypočtěte: [ 3,5 ( 4,5:9) ] 8 5 = a) 9 b) 1 c) - 37 0 1 1 3. Vypočtěte: + + = a) 4 b) 5 c) 8 3. Která z uvedených rovností neplatí? a)(-x-y) = x + xy + y b)4a -15 = (a - 5)(a + 5) c) a + b ab = (a b) 4. Kolik minut je 5% z 1 hodin? a) 7 b) 60 c) 36 5. Úsečka dlouhá 56 cm je rozdělena v poměru 3:5. Kolik měří delší část úsečky? a) 35 cm b) 40 cm c) 1 cm 6. Která čísla patří do intervalu 3,1;6 )? a) 4,5,6 b) 3,4,5,6 c) 4,5 7. Kolik desetinných míst má číslo 0,0413. 10 3? 8. Pro která x je zlomek a) 8 b) c) 5 x + 3 kladný? a) pro žádná b) x < -3 c) x > -3 5 + x 9. Za jakých podmínek má smysl výraz? 9 x a) x 3, x 3 b) x 5, x 9 c) x 5, x 3 10. Které číslo je řešením rovnice 3+ x = x + a) x = 0 b) x = 1 c) x = 11. Řešte nerovnici 3(x ) 8(x + 3) 0 a) x 10 b) x 10 c) x 10 1. Podle déle stran rozhodněte, který ze zadaných trojúhelníků je pravoúhlý: a) a = 4 m, b = 5 m, c = 6 m b) a = 8 m, b = 6 m, c = 10 m c) a = 7 m, b = 8 m, c = 11 m 1? 43

13. V rovnoramenném pravoúhlém trojúhelníku DEF s pravým úhlem při vrcholu F má úhel pří vrcholu D velikost: a) 60 o b) 90 o c) 45 o 14. Vypočtěte obsah pravoúhlého trojúhelníku s odvěsnami 5 cm a 3 cm: a) 15 cm b) 7,5 cm c) 75 cm 15. Kolik os souměrnosti má obdélník? a) 6 b) 4 c) 16. Kosočtverec má úhlopříčky dlouhé,4 m a 1,8 m. Jaká je délka strany tohoto kosočtverce? a) 1,5 m b) 300 cm c) 6 dm 17. Vnitřní úhly v trojúhelníku jsou 51 o 30 a 4 o 50. Jakou velikost má zbývající úhel? a) 89 O 0 b) 88 o 0 c) 85 o 40 18. Povrch krychle je 76 cm. Jaký je její objem? a) 93 cm 3 b) 1331 cm 3 c) 178 cm 3 19. 5 stejných krychlí o délce hrany cm postavíme na sebe. Jaký je je povrch vzniklého kvádru? a) 88 cm b) 40 cm c) 80 cm 0. Hranol má výšku 10 cm. Jeho podstava je pravoúhlý trojúhelník o odvěsnách 5 cm a 8 cm. Jaký objem má hranol? a) 100 cm 3 b) 00 cm 3 c) 400 cm 1. Funkce f: y = x je funkce a) kvadratická b) nepřímá úměrnost c) lineární. Grafem které funkce je přímka? a) kvadratické funkce b) lineární funkce c) nepřímé úměry 3. Který z bodů leží na grafu funkce f:y = -x + 3? a) [ 0 ;3] b)[ 1;5 ] Převeďte na jednotky uvedené v závorce: 4. 4 m 5 cm (m ) 5. 0,314 kg (g) c) [ 1; ] 44

Seznam použité literatury: Barták, J. a kol.: Matematika I pro učební obory středních odborných učilišť SPN Praha, 1990. Barták, J. a kol.: Matematika II pro učební obory středních odborných učilišť SPN Praha, 1988. Barták, J. a kol.: Matematika III pro učební obory středních odborných učilišť SPN Praha, 1986. Hudcová, M., Kubičíková, L.: Sbírka úloh z matematiky pro SOU a SOŠ Prométheus, Praha 1994 Běloun, F. a kol.: Sbírka úloh z matematiky pro základní školy SPN, Praha 1985 Nováková, E.: Aplikovaná matematika pro učební obory ve stavebnictví a stavební praxi Raport, Rakovník. vydání Květen 007 Zpracovala: RNDr. Dagmar Fialová Mgr. Vlastislava Kolmanová 45