Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:



Podobné dokumenty
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro

Matematika 9. ročník

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

( ) Zadání SPORT Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Otázky z kapitoly Stereometrie

Užití rovnic a jejich soustav při řešení slovních úloh ( lekce)

+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa

Příprava na pololetní písemnou práci 9. ročník

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU

Příprava na pololetní písemnou práci 9. ročník

M - Příprava na 1. zápočtový test - třída 2SB

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

Příklady na 13. týden

ZŠ ÚnO, Bratří Čapků 1332

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na

Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Stereometrie pro studijní obory

M - Příprava na 2. čtvrtletku - třída 3ODK

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

Gymnázium Jiřího Ortena, Kutná Hora

CVIČNÝ TEST 56. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní geometrické tvary

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, a 0,1, 0,01, 0,001.. Čísla navzájem opačná

Stereometrie pro učební obory

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Očekávaný výstup Žák zvládne náčrtek a rys jednoduchých hranolů, dosadí do vzorce, účelně použije kalkulátor Speciální vzdělávací žádné

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je

Modelové úlohy přijímacího testu z matematiky

Kategorie: U 1 pro žáky 1. ročníků učebních oborů

Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

Obecné informace: Typy úloh a hodnocení:

CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

MATEMATIKA. 7. třída. Scio Matematika ukázkový test 7. třída

Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla

STEREOMETRIE. Odchylky přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0117

Tělesa můžeme v rovině zobrazit pomocí volného rovnoběžného promítání.

Povrch a objem těles

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Modelové úlohy přijímacího testu z matematiky

7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC

ČT 2 15% ČT 1? nesleduje 42% Nova 13% Prima 10% a. 210 b. 100 c. 75 d. 50

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Čtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:

Metrické vlastnosti v prostoru

Příklady pro 8. ročník

Neotvírej, dokud nedostaneš pokyn od zadávajícího!

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

Matematika - 6. ročník Vzdělávací obsah

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

SMART Notebook verze Aug

MATEMATIKA 7. ročník II. pololetí

MATEMATIKA. 5. třída. Čemu se rovná uvedený součet v metrech? (A) 1,65015 m (B) 16,515 m (C) 16,0515 m (D) 16,5 m

Témata absolventského klání z matematiky :

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

M - Příprava na 3. čtvrtletku - třída 3ODK

ARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

6. Čtyřúhelníky, mnohoúhelníky, hranoly

ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017

Vzdělávací obsah vyučovacího předmětu

Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...

GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti

Matematika. 6. ročník. Číslo a proměnná. desetinná čísla (využití LEGO EV3) číselný výraz. zaokrouhlování desetinných čísel. (využití LEGO EV3)

2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka

Mateřská škola a Základní škola při dětské léčebně, Křetín 12

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Přijímačky nanečisto

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Poměry a úměrnosti. Poměr dvou čísel je matematický zápis a : b, ve kterém a,b jsou nezáporná, nejčastěji přirozená čísla, symbol : čteme ku

Příklady k opakování učiva ZŠ

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

Pravoúhlá axonometrie - řezy hranatých těles

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Matematika Název Ročník Autor

Autor: Jana Krchová Obor: Matematika. Hranoly

Transkript:

Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013

Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila v 17.35. Jirka na ni přišel v 16.20. Jirka tedy nestihl úvodních minut přednášky. Úloha 2 Nádrž tvaru kvádru má obdélníkovou podstavu s rozměry 15 cm a 40 cm. Do jaké výšky ode dna dosahuje v této nádrži 9 litrů vody? 20 cm 15 cm 9 cm 6 cm Úloha 3 Ve kterém čtyřúhelníku platí o úhlopříčkách, že svírají pravý úhel, nejsou stejně dlouhé a půlí se? ve čtverci v kosočtverci v kosodélníku v obdélníku Stránka 2

Úloha 4 Úhel β má velikost 137 30. Jaká je velikost poloviny úhlu β? 70 35 111 15 68 45 111 45 Úloha 5 Úhel má velikost 25 38. Jakou velikost bude mít trojnásobek tohoto úhlu? 74 38 76 54 75 38 75 14 Úloha 6 Když myšlené číslo zvětším o 50, dostanu trojnásobek myšleného čísla. Myšleným číslem je tedy číslo. Stránka 3

Úloha 7 Výraz (3,2 + 0,8. 1,4) má hodnotu. Úloha 8 Jsou-li 4 % z celku 20, pak celek je. Úloha 9 Označ všechna čísla, která jsou násobky čtyř. 690 416 332 582 Úloha 10 Z košíku plného jahod snědl Marek jednu pětinu, z toho, co zbylo, snědla Jana polovinu. Jaká část z původního množství jahod v košíku zbyla? tři pětiny dvě pětiny čtyři pětiny tři desetiny Stránka 4

Úloha 11 V květinářství je 120 bílých růží, 135 červených růží a 90 žlutých růží. V jakém poměru jsou počty jednotlivých odrůd růží (v uvedeném pořadí)? 8 : 9 : 6 15 : 16 : 12 2 : 3 : 1 12 : 13 : 9 Úloha 12 Do šachového kroužku chodí 6 žáků 5.A, což je jedna čtvrtina všech žáků 5.A. Kolik žáků 5.A do šachového kroužku nechodí? 30 18 6 24 Stránka 5

Obtížnost 2 Úloha 13 Na pařížské rohlíčky z 5 bílků je potřeba 250 g mletých ořechů. Maminka má 9 bílků. Kolik g ořechů bude potřebovat? 480 540 450 500 Úloha 14 Zmenšíme-li neznámé číslo o 20 %, dostaneme 240. Co je neznámým číslem? 300 480 360 320 Úloha 15 Které z následujících tvrzení platí? Dvě různoběžné přímky rozdělí rovinu na 4 části úhly. Každému lichoběžníku lze opsat kružnici. Množina bodů, které mají od jednoho bodu stejnou vzdálenost, se nazývá kruh. Každé dva úhly, které mají společné jedno rameno, jsou úhly vedlejší. Stránka 6

Úloha 16 Krychle má délku hrany 6 cm, kvádr má rozměry podstavy 6 cm a 4 cm. Obě tělesa mají stejný objem. Které tvrzení platí? Krychle i kvádr mají stejný povrch. Kvádr má větší povrch než krychle. Povrchy nemůžeme porovnat. Povrch krychle je větší než povrch kvádru. Úloha 17 Čím musíme vynásobit číslo, chceme-li je zvětšit o 13 %? číslem 1,3 číslem 0,13 číslem 1,13 číslem 13 Úloha 18 Urči správný výraz pro výpočet výsledku následujícího zadání: Z 5 kg jablek získáme 600 g sušených jablek. Kolik je to procent? (600 : 100). 5 000 (5 000 : 100). 600 5 000 : (600. 100) (600 : 5 000). 100 Stránka 7

Úloha 19 Označ všechna tvrzení, která platí. Plášť pravidelného čtyřbokého jehlanu tvoří čtyři shodné rovnoramenné trojúhelníky. Všechny boční stěny kolmého hranolu jsou shodné obdélníky nebo shodné čtverce. Každý jehlan má lichý počet vrcholů. Obě podstavy kolmého hranolu jsou vždy shodné a rovnoběžné. Úloha 20 Který z následujících poměrů se rovná poměru 14 : 35? 6 : 12 7 : 21 15 : 36 12 : 30 Úloha 21 Pravidelný čtyřboký hranol a pravidelný čtyřboký jehlan mají stejnou délku hrany podstavy 5 cm. Co musí platit o výšce obou těles, aby obě tělesa měla stejný objem? Obě tělesa musí mít stejnou výšku. Hranol musí mít dvakrát menší výšku než jehlan. Výška jehlanu musí být třikrát větší než výška hranolu. Výška hranolu musí být třikrát větší než výška jehlanu. Stránka 8

Úloha 22 Zvětšíme-li neznámé číslo o 2 %, dostaneme číslo 612. Co je tímto neznámým číslem? 618 612 600 606 Úloha 23 Do odpovědi doplň správný číselný výsledek. Měď tvoří 85 % bronzu, zbytek bronzu tvoří cín. Chceme-li vyrobit bronz z 34 kg mědi, budeme potřebovat kilogramů cínu. Úloha 24 Na pozemku je postaven dům, na zbytku pozemku je trávník. Jestliže dům zabírá 30 % plochy pozemku a jím zastavěná plocha je 90 m 2, pak trávník zabírá plochu čtverečních metrů. Úloha 25 Čtvercová podstava pravidelného čtyřbokého hranolu má obsah 81 cm 2. Výška hranolu je rovna dvěma třetinám délky strany podstavy. Celý povrch hranolu má tedy obsah cm 2. Stránka 9

Úloha 26 V první nádrži je 256 litrů vody, ve druhé nádrži je 410 litrů vody. Aby ve druhé nádrži bylo dvakrát více vody než v první nádrži, musí se z první nádrže do druhé přečerpat celkem litrů vody. Úloha 27 Do odpovědi doplň správný číselný výsledek. Abychom dostali číslo 4, musíme tři čtvrtiny zvětšit o procent. Úloha 28 V bazénu tvaru kvádru je 400 m 3 vody. Rozměry dna bazénu jsou 20 m a 10 m. Voda tedy dosahuje do výšky metrů ode dna bazénu. Úloha 29 Na jednom tkalcovském stroji se požadované množství látky utká za 6 hodin, na druhém stroji stejné množství látky za 4 hodiny. Budou-li oba stroje pracovat současně, bude zakázka hotova za minut. Stránka 10

Úloha 30 V uhelném skladu prodali veškeré uhlí během 3 dnů. První den prodali čtvrtinu uhlí, druhý den 2/3 zbytku a třetí den prodali zbylých 300 t uhlí. Druhý den tedy prodali tun uhlí. Stránka 11