P íklady k procvi ení znalostí na písemnou ást bakalá ské státní zkoušky. Elektrické obvody:
|
|
- Jindřiška Hájková
- před 6 lety
- Počet zobrazení:
Transkript
1 P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky Elektrické ovody: 1. Stnovte st ední efektivní hodnot prod, jehož sový pr h je n orázk: 2. Stnovte st ední efektivní hodnot np tí o mplitd 100V, sm rn ného jednocestným sm r ov em. 3. V tví ovod protéká prod π i = 8sin ωt + p i np tí π = 120 sin ωt. Stnovte 6 6 inný jlový výkon. Z i 4. Stnovte inný jlový výkon v tve podle orázk, jestliže = 20 2 sin ( 618t + 80 ) V i = 2 2 sin ( 618t + 50 ). i, 5. V ovod podle orázk je Z = + jx, p i emž = X; ylo zm eno np tí U = 100 V prod I = 1 (efektivní hodnoty). Stnovte inný výkon zdroje. Z Z 1 100V V P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 1/11
2 6. Z dných údj mpérmetr voltmetr v ovod podle orázk stnovte hodnot odpor inný výkon zdroje P, jestliže ω = V 200V 7. Stnovte inný výkon dodávný zdrojem do ovod. 8 =10 Ω Prvky ovod mjí tyto hodnoty: = 100, = 1H, = 1µ F. Stnovte inný výkon dodávný zdrojem do ovod, jestliže komplexní efektivní hodnot prod je I = ( 6 j8). I 9. Stnovte efektivní hodnot prod I. I =? P i jké úhlové frekvenci ω protéká v tví ovod podle orázk prod I = 1 (ef. hodnot)? = 100 Ω = 2 H = 50 µ F I = 1 0( t ) = 141 sin ωt P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 2/11
3 11. Pro ovod podle orázk npište rovnice pro ešení metodo smy kových prod. 12. Pro ovod podle orázk zpište rovnice ešící ovod metodo zlových np tí. 13. Pro ovod podle or. ) stnovte s žitím Théveninovy v ty hodnoty ekvivlentního ovod (tj. U 0 e, e, or. ). 2 e e B B or. ) or. ) 14. Pro ovod podle or. ) stnovte s žitím Théveninovy v ty hodnoty prvk ekvivlentního ovod (tj. U 0 e, Z e, or. ). Z 1 Z 3 I =? Z e Z 4 Z 2 Z 4 e B or. ) or. ) B P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 3/11
4 15. Stnovte údj mpérmetr, jestliže ( t) sin1000 V I =? 10 Ω =. 0 t 0( t) 100 µ F 16. Stnovte pr h np tí ( t) n v tvi podle orázk, jestliže ( t) = sin100 t V, = 100, = 300 F. ( t) (t) =? 17. Np tí prod n v tvi ovod se v závislosti n se m ní periodicky podle vzth : t = 80 2 sin t sin 3ω t 20 V, ( ) ( ) ( ) ( t) = 40 2 sin( ω t + 75 ) sin( 3ω t + 40 ). i Stnovte inný výkon v tve. ω. 18. Np tí prod n v tvi ovod se v závislosti n se m ní periodicky podle vzth : t = 80 2 sin ω t sin 3ω t + 20 V, ( ) ( ) ( ) ( t) = 40 2 sin( ω t 15 ) + 40sin( 3ω t 70 ). i Stnovte jlový výkon v tve. 19. Stnovte prod i v kondenzátor v se t = 0+, jestliže U = V, = 25, ( 0 ) = 0. Formljte rovnice pro ešení p echodného jev metodo stvových prom nných. t = 0 (0+) =? i P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 4/11
5 20. Stnovte hodnoty prod v ovod v se t = 0+ hodnot np tí n kpcitor v stáleném stv. Formljte rovnice pro ešení p echodného jev metodo stvových prom nných i 1 1 t = 0 i2 i V ovod podle orázk stnovte prody i 1 i 2 np tí 3 v se t = 0+, v stáleném stv. 1 i 1 t = 0 2 i Vypo t te zkreslete sový pr h np tí prod n kondensátor. i t = V ovod je dáno. Pro jko hodnot de p echodný jev v ovod n mezi periodicity? t = 0 P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 5/11
6 24. Stnovte orzovo impednci ovod podle orázk. 1 2 t = Pro dvojrn podle orázk stnovte vstpní impednci nprázdno. Z 1 Z 2 c Z 10 Z 3 d 26. Stnovte kskádní mtici ideálního trnsformátor s p evodem p. I1 I2 p c U U 1 2 =? d 27. Podéln symetrický dvojrn má vstpní impednci nprázdno 40 e j80 Z = vstpní impednci nkrátko e j40. Z 1k = Stnovte jeho vlnovo impednci (Z o ). 28. Dvojrn podle orázk má vlnovo impednci Z 0 = 300 jestliže mpérmetr kzje I 1 = 0,1. 0,1 c. Stnovte údj voltmetr, U V Z 0 = 300 Ω 300 Ω 1 d P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 6/11
7 Elektromgnetické pole: 1. Ur ete kpcit válcového kondenzátor n 1m délky, permitivit izolce je ε, polom r vnit ní elektrody je, polom r vn jší elektrody je. Q 2. Elektrická instlce v dom je provede z hliníkového vodi e o pr m r 1,5 mm celkové délce l = 640 m. P i rekonstrkci jej nhrdíme m d ným vodi em poždjeme, y yl celkový odpor zchován. Stnovte pr m r m d ného vodi e zm n celkové hmotnosti mteriál. 3. Ur ete svodový odpor izolce koxiálního kel délky l. Polom r žíly je, vnit ní polom r plášt je, kondktivit izolce je γ. 4. Ur ete odpor dvovrstvé izolce koxiálního kel délky l. Polom r žíly je, vnit ní polom r plášt je c, rozhrní mezi dv m izolcemi je n polom r, izolce má kondktivity γ 1 γ Ur ete vlstní indk nost cívky o N závitech nvinté n jád e o permeilit µ, o polom r délky l. l µ N 6. Ur ete vzájemno indk nost dlohého p ímého vodi e odélníkové cívky míst né v rovin závit. I h 7. Ur ete kpcit vodi e o polom r míst ného ve výšce h nd povrchem zem. h ϕ=0 P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 7/11
8 8. Mgnetický ovod podle orázk je složen z trnsformátorových plech s koeficientem pln ní k = 0,9. Stnovte mgneticko indkci v železe ve vzdchové meze e, je-li pr ez slopk S =1 cm 2 Φ = 10-4 W. I Φ N δ 9. Toroidální jádro z feromgnetik má permeilit µ r = 10 4 tyto rozm ry: = 2 cm, = 3 cm, h = 1 cm. Ur ete celkový mgnetický odpor jádr: ) není - li p eršeno vzdchovo mezero, ) je-li p eršeno vzdchovo mezero δ = 3 mm. h 10. Mgnetický ovod podle orázk má délk st ední indk ní áry l = 15 cm, ší k vzdchové mezery δ = 2 mm pr ez jádr S = 4 cm 2. Stnovte mgnetiz ní prod v cívce s N = 100 závity, y ve vzdchové meze e yl mgnetická indkce B V = 0,5 T; reltivní permeilit jádr je µ r = I=? l δ 11. Ur ete indk nost cívky o N závitech nvinté n prstencovém jád e odélníkového pr ez S. Jádro má ) konstntní permeilit, µ = konst., )prom nno permeilit, je dán mgnetiz ní k ivk B = f(h). c) Jk se zm ní indk nost v p ípd d ), vytvo íme li v jád e vzdchovo mezer δ? N r s P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 8/11
9 12. Koxiální kel délky l má nedokonlo izolci o kondktivit γ, mezi žilo plášt m je np tí U. Stnovte: ) rozložení prodové hstoty v izolci (nkreslete grf), ) prod protékjící izolcí, c) Jole v výkon v izolci kel. 13. Válcovým vodi em o kondktivit γ polom r protéká prod I, stnovte: sm r velikost Poyntingov vektor n povrch vodi e, Joleovy ztráty ve vodi i délky l. l I γ 14. Bodové náoje jso míst né podle orázk. Stnovte hodnot konstnty k 1 tk, y síl p soící n odový náoj Q yl nlová. Q Q 1 k Q Ur ete sm r velikost síly p soící n tenký vodi o polom r délce l, míst ný ve výšce h (h>>) nd povrchem zem. Np tí vodi e proti zemi je U = konst.. h U ϕ=0 16. Ur ete sm r velikost síly p soící n st ední vodi v spo ádání dle orázk, délk vodi je l, okolní prost edí je vzdch. 0,5I 2I I Ur ete sm r velikost síly p soící n vodi protékný prodem I 1, vodi e jso míst ny ve vrcholech rovnostrnného trojúhelník o strn, pltí-li I 2 = I 3. I 3 I 1 I 2 P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 9/11
10 18. Kotv jádro elektromgnet podle orázk je z mteriál o permeilit µ Fe, pr ez jádr je S, ší k vzdchové mezery je δ, po et závit dící cívky je N protéká jimi prod I. Stnovte síl, ktero je kotv p ithován. I N l 1 δ l Vysv tlete pojem kvzistcionární elektromgnetické pole. Formljte podmínk kvzistcionrity pro sov hrmonicky prom nné pole. 20. Npište rovnice pro indkovné np tí: pohyové, trnsform ní. 21. Jádrem cívky s po tem závit N = 10 prochází mgnetický indk ní tokφ (t), jehož sový pr h je n orázk. Zkreslete sový pr h np tí indkovného v cívce vypo t te jeho mximální efektivní hodnot. Φ( t) Φ m Φ t 1 t 2 t i 22. Stnovte smysl velikost np tí indkovného ve tvercovém závit o strn = 2 cm míst ném v mgnetickém poli o indkci B (t) = 1/(1 + t). B 23. tvercový závit o strn = 3 cm je míst n v sov hrmonicky prom nném poli o indkci B (t) = 0,5 sin(ωt + 45 o ), f = 100 Hz. Stnovte indkovné np tí i (t) okmžik, ve kterém doshje i mximální hodnoty. 24. Jk se zvádí konstnt ší ení? Uve te její hodnoty pro prost edí: ) vodivé (γ >> µ ε), ) nevodivé. 25. Hrmonická vln se ší í prost edím o prmetrech ε, µ, γ. Stnovte, pro který kmito et lze dné prost edí povžovt z do e vodivé (tj. hstot vodivého je lespo stokrát v tší než hstot prod posvného prod): ) destilovná vod: µ r = 1, ε r = 80, γ = S/m ) schá zem: µ r = 1, ε r = 4, γ = 10-4 S/m P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 10/11
11 26. Mo ská vod má tyto prmetry: µ r = 1, ε r = 80, γ = 4,2 S/m. Stnovte, pro které kmito ty je do e vodivým prost edím: ) f 1 = 50 Hz, ) f 2 = 10 khz, c) f 3 = 100 MHz. 27. ovinná hrmonická vln v dielektrik (ε r = 4, µ r = 1, γ = 0) má kmito et f = 10 MHz. Stnovte prmetry v, λ, Z Jký fyzikální zákon se plt je p i vznik elektrického mgnetického skinefekt? 29. Pro je elektrický povrchový jev p i p enos elektrické energie vedením jevem nežádocím? 30. Pro je mgnetický povrchový jev v mgnetických ovodech jevem nežádocím? 31. Jký má fyzikální význm hlok vnik δ? 32. Jk r íme pomocí hloky vnik efektivní odpor? Kdy lze tento zp so požít? Vysv tlete pro vodi krhového pr ez. 33. Jk se v prxi potl je vliv elektrického skinefekt n zvýšení odpor vodi e? 34. Jk se v prxi potl je vliv mgnetického skinefekt n zvýšení relktnce? 35. Vysv tlete proximityefekt (jev lízkosti) dvovodi ového vedení, protékného stejnými prody ) v sohlsném sm r, ) v op ném sm r. 36. Pro skládáme st ídvé mgnetické ovody z plech? Nkreslete zp so skládání z plech jádr cívky vyzn te dráhy ví ivých prod. 37. Nkreslete zp soy omezení elektrického skinefekt ) pro válcový vodi, ) pro vodi v drážce z feromgnetického mteriál. P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky 11/11
= 2888,9 cm -1. Relativní atomové hmotnosti. leží stejný přechod pro molekulu H 37 Cl? Výsledek vyjádřete jako
Přijímcí zkoušk n nvzující mgisterské studium - 018 Studijní progrm Fyzik - všechny obory kromě Učitelství fyziky-mtemtiky pro střední školy, Vrint A Příkld 1 Určete periodu periodického pohybu těles,
Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
Vnit ní síly ve 2D - p íklad 2
Vnit ní síly ve D - p íkld Orázek 1: Zt ºoví shém. Úkol: Ur ete nlytiké pr hy vnit níh sil n konstruki vykreslete je. e²ení: Pro výpo et rekí je vhodné si spojité ztíºení nhrdit odpovídjíím náhrdním emenem.
Střídavý proud v životě (energetika)
Střídavý prod v životě (energetika) Přeměna energie se sktečňje v elektrárnách. Zde pracjí výkonné generátory střídavého napětí alternátory. V energetice se vyžívá střídavé napětí o frekvenci 50 Hz, které
Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:
Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového
Návrh induktoru a vysokofrekven ního transformátoru
1 Návrh induktoru a vysokofrekven ního transformátoru Induktory energii ukládají, zatímco transformátory energii p em ují. To je základní rozdíl. Magnetická jádra induktor a vysokofrekven ních transformátor
48. Pro RC oscilátor na obrázku určete hodnotu R tak, aby kmitočet oscilací byl 200Hz
1. Který ideální obvodový prvek lze použít jako základ modelu napěťového zesilovače? 2. Jaké obvodové prvky tvoří reprezentaci nesetrvačných vlastností reálného zesilovače? 3. Jak lze uspořádat sčítací
Studium termoelektronové emise:
Truhlář Michl 2. 9. 26 Lbortorní práce č.11 Úloh č. II Studium termoelektronové emise: Úkol: 1) Změřte výstupní práci w wolfrmu pomocí Richrdsonovy-Dushmnovy přímky. 2) Vypočítejte pro použitou diodu intenzitu
Návrh realizace transformátoru Thane C. Heinse IV.
1 Návrh realizace transformátoru Thane C. Heinse IV. Ing. Ladislav Kopecký, ervenec 2016 Ve tvrté ásti lánku budeme navrhovat TH transformátor s topologií UUI s konkrétními typy jader UU a I, p emž použijeme
S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006
8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný
1.7. Mechanické kmitání
1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického
3. Elektromagnetické pole 68 3.1. Vlnové rovnice elektromagnetického pole 68
1. Základní zákony elektromagnetismu 6 1.1. Zákon elektromagnetické indukce 6 1.2. Spřažený tok vzduchové cívky 12 1.3. Spřažený tok cívky s feromagnetickým jádrem 17 1.4. Druhá Maxwellova rovnice 18 1.4.1.
1. Vznik zkratů. Základní pojmy.
. znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v
Návrh realizace transformátoru Thane C. Heinse III.
1 Návrh realizace transformátoru Thane C. Heinse III. Ing. Ladislav Kopecký, ervenec 2016 Ve t etí ásti lánku se vrátíme k variant TH transformátoru s jádrem EE a provedeme návrh s konkrétním typem jádra.
Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe
3.1.3 Vzájemná poloha přímek
3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné
11. cvičení z Matematické analýzy 2
11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y
Pružnost a plasticita II
Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná
FYZIKA 2. ROČNÍK. Elektrický proud v kovech a polovodičích. Elektronová vodivost kovů. Ohmův zákon pro část elektrického obvodu
FYZK. OČNÍK a polovodičích - v krystalové mřížce kovů - valenční elektrony - jsou společné všem atomům kovu a mohou se v něm volně pohybovat volné elektrony Elektronová vodivost kovů Teorie elektronové
Integrace pomocí substituce. Obsah. 1. Úvod 2 2. Integrace substitucí u = ax + b Nalezení. f(g(x)) g (x) dx pomocí substituce u = g(x) 6
Integrce pomocí sbstitce Existjí p ípdy, kdy je moºné vypo ítt zdánliv t ºké integrály pokd nejprve provedeme sbstitci. To má z následek zm n prom nné integrnd v p ípd r itých integrál se zm ní i jejich
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu
Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia
- - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin
Automaty a gramatiky
5 Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Co ylo minule Množinové operce s jzyky sjednocení, pr nik, rozdíl, dopln k uzv enost opercí (lgoritmus p evodu) et
Antény. Zpracoval: Ing. Jiří. Sehnal. 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén
ANTÉNY Sehnal Zpracoval: Ing. Jiří Antény 1.Napájecí vedení 2.Charakteristické vlastnosti antén a základní druhy antén Pod pojmem anténa rozumíme obecně prvek, který zprostředkuje přechod elektromagnetické
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] 1 CÍL KAPITOLY Cílem této kapitoly je naučit uživatele efektivně navrhovat objekty v režimu
25 Měrný náboj elektronu
5 Měrný náboj elektronu ÚKOL Stnovte ěrný náboj elektronu e výsledek porovnejte s tbulkovou hodnotou. TEORIE Poěr náboje elektronu e hotnosti elektronu nzýváe ěrný náboj elektronu. Jednou z ožných etod
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů. Měření elektrofyzikálních parametrů krystalových rezonátorů
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Měření elektrofyzikálních parametrů krystalových rezonátorů . Úvod Krystalový rezonátor (krystal) je
PJS Přednáška číslo 4
PJS Přednášk číslo 4 esymetrie v S Řešení nesymetrií je problemtické zejmén u lternátorů, protože díky nesymetriím produkují kompletní spektrum vyšších hrmonických veličiny v souřdném systému d, q,, které
frekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu
TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.
TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její
Měření základních vlastností OZ
Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím
Martin Kihoulou. j plos F = Protože magnetické pole je homogenní, lze jej z integrálu vytknout
Vzorné řešení písemné práce z Klsické elektrodynmiky Mrtin Kihoulou Úloh 1 Do homogenního mgnetického pole B = B e y je vložen přímý vodič ve tvru pláště válce x + y =. Po povrchu teče rovoměrně rozložený
1.3 Druhy a metody měření
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1.3 Druhy a metody měření Měření je soubor činností, jejichž cílem je stanovit hodnotu měřené fyzikální veličiny.
matematika vás má it naupravidl
VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.
U 1, U 2 I 1, I 2. vnější napětí dvojbranu vnější proudy dvojbranu
DVOJBRAN Definice rodělení dvojbrnů Dvojbrn libovolný obvod, který je s jinými částmi obvodu spojen dvěm pár svorek (vstupní výstupní svork). K nlýe cování obvodu postčí popst dný dvojbrn poue vt mei npětími
ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE
ZÁKLADY MATEMATIKY 2. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE I. P íprvní úlohy. V této sérii pot ebujete znlost výpo t následujících úloh - otestujte si ji:. Vypo ítejte neur ité integrály: ) (x 2 x + ) 2 dx
9.4.2001. Ėlektroakustika a televize. TV norma ... Petr Česák, studijní skupina 205
Ėlektroakustika a televize TV norma.......... Petr Česák, studijní skupina 205 Letní semestr 2000/200 . TV norma Úkol měření Seznamte se podrobně s průběhem úplného televizního signálu obrazového černobílého
Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).
Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení
2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman
STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr
galvanometrem a její zobrazení na osciloskopu
Úloha 2: Měření hysterézní smyčky alistickým galvanometrem a její zorazení na osciloskopu FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 26.4.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník
Hlavní body - magnetismus
Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického
Návrh realizace transformátoru Thane C. Heinse
- 1 - Návrh realizace transformátoru Thane C. Heinse (c) Ing. Ladislav Kopecký, duben 2016 V lánku Bi-toroidní transformátor Thane C. Heinse byl uveden princip vynálezu Thane Heinse, jehož základní myšlenkou
4. kapitola: Dvojbrany - rozdělení, rovnice (modely)
Punčochář, J: EO; 4. kpitol 4. kpitol: Dvojbrny - rozdělení, rovnice (modely) Čs ke studiu: 4 hodiny íl: Po prostudování této kpitoly budete umět používt šipkovou konvenci dvojbrnů umět je klsifikovt.
Základní zapojení operačních zesilovačů
ákladní zapojení operačních zesilovačů ) Navrhněte a zapojte stejnosměrný zesilovač s operačním zesilovačem v invertjícím zapojení se zadanými parametry. ) Navrhněte a zapojte stejnosměrný zesilovač s
14.4 Převody řemenové - klínovými řemeny
Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Střední průmyslová škola strojnická Vsetín CZ.1.07/1.5.00/34.0483 Ing.
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 7.5.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: - Hodnocení: Mikrovlny Abstrakt V úloze je studováno šíření vln volným
Podobnosti trojúhelníků, goniometrické funkce
1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší
Blízké a vzdálené pole intenzivn vyza ujících akustických zdroj nultého ádu
10. 12. íjna 2017 Blízké a vzdálené pole intenzivn vyza ujících akustických zdroj nultého ádu Karel Vokurka a a Jaroslav Plocek b a Technická univerzita v Liberci, katedra fyziky, Studentská 2, 461 17
GE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 3. 4. 2014
Spojka RPX. z tabulky 1 ní e, vyberte koeficient provozu, který je vhodný pro pou ití
pojka RPX z tabulky 1 ní e, vyberte koeficient provozu, který je vhodný pro pou ití Vynásobte spot ebovaný p íkon ízeného stroje, v kw, koeficientem provozu, z kroku 1) k získání plánovaného výkonu. Pokud
Konstrukce rezonan ního motoru
- 1 - Konstrukce rezonan ního motoru (c) Ing. Ladislav Kopecký, kv ten 2014 Jak bylo mnohokrát uvedeno, rezonan ní motor musí mít magnetický obvod statoru vyrobený z materiálu, jenž má nízké ztráty, zejména
Metodický list - Coach
Metodický list - Coach Optika POROVNÁNÍ SVITU ZÁŘIVKY A ŽÁROVKY Fyzikální princip Zářivka je nízkotlaká výbojka, která se používá jako zdroj světla. Tvoří ji zářivkové těleso, jehož základem je nejčastěji
Základní praktikum laserové techniky
Základní praktikum laserové techniky Fakulta jaderná a fyzikáln inºenýrská Úloha 8: Akustooptický modulátor s postupnou a stojatou akustickou vlnou Datum m ení: 11.3.2015 Skupina: G Zpracoval: David Roesel
MS měření teploty 1. METODY MĚŘENÍ TEPLOTY: Nepřímá Přímá - Termoelektrické snímače - Odporové kovové snímače - Odporové polovodičové
1. METODY MĚŘENÍ TEPLOTY: Nepřímá Přímá - Termoelektrické snímače - Odporové kovové snímače - Odporové polovodičové 1.1. Nepřímá metoda měření teploty Pro nepřímé měření oteplení z přírůstků elektrických
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
Spoje se styčníkovými deskami s prolisovanými trny
cvičení Dřevěné konstrukce Spoje se styčníkovými deskami s prolisovanými trny Úvodní poznámky Styčníkové desky s prolisovanými trny se používají pro spojování dřevěných prvků stejné tloušťky v jedné rovině,
6. Setrvačný kmitový člen 2. řádu
6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické
Ur itý integrál. Úvod. Denice ur itého integrálu
V tomto lánku se budeme v novt ur itému integrálu, který dné funkci p i zuje íslo. My²lenk integrování pochází z geometrických poºdvk - zji² ování povrch, objem délek geometrických útvr. To znmená, ºe
NÁZEV ŠKOLY: Střední odborné učiliště, Domažlice, Prokopa Velikého 640. V/2 Inovace a zkvalitnění výuky prostřednictvím ICT
NÁZEV ŠKOLY: Střední odborné učiliště, Domažlice, Prokopa Velikého 640 ŠABLONA: NÁZEV PROJEKTU: REGISTRAČNÍ ČÍSLO PROJEKTU: V/2 Inovace a zkvalitnění výuky prostřednictvím ICT Zlepšení podmínek pro vzdělávání
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 14. 11. 2012 Číslo DUM: VY_32_INOVACE_12_FY_B
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 14. 11. 2012 Číslo DUM: VY_32_INOVACE_12_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:
O JEDNOTCE INTEGRACE MINIATURIZACE
O JEDNOTCE V odvětví pneumtiky, které povžuje z plně vyvinuté, zřídk tkáte s úplně novými odlišnými produkty. ONE je jednotk pro úprvu stlčeného vzduchu s vysokým stupněm integrce, která zhrnuje četné
Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol
Výroba ozubených kol Použití ozubených kol Ozubenými koly se přenášejí otáčivé pohyby a kroutící momenty. Přenos je zde nucený, protože zuby a zubní mezery do sebe zabírají. Kola mohou mít vnější nebo
Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.
Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno
Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů.
Mezní kalibry Mezními kalibry zjistíme, zda je rozměr součástky v povolených mezích, tj. v toleranci. Mají dobrou a zmetkovou stranu. Zmetková strana je označená červenou barvou. Délka zmetkové části je
Pokyny k hodnocení úlohy 1 ZADÁNÍ. nebo NEDOSTATEČNÉ ŘEŠENÍ. nebo CHYBNÉ ŘEŠENÍ. nebo CHYBĚJÍCÍ ŘEŠENÍ 0
PZK 9 M9-Z-D-PR_OT_ST M9PZD6CT Pokyny k hodnocení Pokyny k hodnocení úlohy BODY ZADÁNÍ Vypočtěte, kolikrát je rozdíl čísel,4 a,7 (v tomto pořadí) menší než jejich součet. (V záznamovém archu je očekáván
DUM 02 téma: Popisové pole na výrobním výkrese
DUM 02 téma: Popisové pole na výrobním výkrese ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
Měření hluku a vibrací zvukoměrem
Úloha 1 Měření hluku a vibrací zvukoměrem 1.1 Zadání 1. Zkalibrujte, respektive ověřte kalibraci zvukoměru 2. Proveďte třetinooktávovou analýzu hluku zadaného zdroje v jednom místě 3. Zkalibrujte zvukoměr
Obsah ČÁST PRVNÍ: OBECNĚ O DRUŽSTVU 15 ČÁST DRUHÁ: VÝVOJ PRÁVNÍ ÚPRAVY 31. Seznam použitých zkratek 11 Úvod 13
Seznam použitých zkratek 11 Úvod 13 ČÁST PRVNÍ: OBECNĚ O DRUŽSTVU 15 Kapitola 1: Základní informace o družstvech 17 1.1 Stručný exkurs do historie družstev 17 1.2 Družstva v ČR a ve světě 21 1.3 Principy
DUM 07 téma: P edepisování tolerancí
DUM 07 téma: P edepisování tolerancí ze sady: 03 tematický okruh sady: Kreslení výrobních výkres ze šablony: 04_Technická dokumentace Ur eno pro :1. ro ník vzd lávací obor: 26-41-M/01 Elektrotechnika 18-20-M/01
c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.
9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte
třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy:
SPŠ VOŠ KLADO SAIKA - PASIVÍ ODPORY PASIVÍ ODPORY Při vzájemném pohybu těles vznikjí v reálných vzbách psivní odpory, jejichž práce se mění v teplo. Psivní odpory předstvují ztráty, které snižují účinnost
ROZCVIČKY. (v nižší verzi může být posunuta grafika a špatně funkční některé odkazy).
ROZCVIČKY Z MATEMATIKY 8. ROČ Prezentace jsou vytvořeny v MS PowerPoint 2010 (v nižší verzi může být posunuta grafika a špatně funkční některé odkazy). Anotace: Materiál slouží k procvičení základních
Vlnovodové díly Obsah 1. Přímé úseky 2. Vlnovodové ohyby a překruty 3. Směrové odbočnice 4. Přechody koaxiál-vlnovod 5. Bezodrazové zážěže 6. Trychtýřové antény 7. Zeslabovače 8. Vlnovodová pásma 1. Přímé
I. část - úvod. Iva Petríková
Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Semestrální práce z p edm tu URM (zadání), 2014/2015:
Semestrální práce z p edm tu URM (zadání), 2014/2015: 1. Vyzna te na globusu cestu z jihu Grónska na jih Afriky, viz Obrázek 1. V po áte ní a cílové destinaci bude zapíchnutý ²pendlík sm ující do st edu
Magnetohydrodynamický pohon
aneb pohon bez p evod Jakub Klemsa David Kle ka Jakub Kubi² Fyzikální seminá Fakulta jaderná a fyzikáln inºenýrská 25. listopadu 2010 Obsah 1 P í ina hnací síly Proud v elektrolytu P idruºené jevy 2 Závislost
Návod k obsluze. Programovací a zobrazovací přístroj PP2000. Mode/Enter
Set Návod k obsluze Programovací a zobrazovací přístroj PP000 Obsah Ovládací a signalizační prvky strana Použití z hlediska určení strana 4 Montáž strana 5 Elektrické připojení strana 5 Programování strana
STEJNOSMĚRNÉ STROJE. Určeno pro posluchače bakalářských studijních programů. 1. Úvod
1. Úvod Stejnosměrné stroje jsou historicky nejstršími elektrickými stroji nejprve se používly jko generátory pro výrobu stejnosměrného proudu. V řdě technických plikcí byly tyto V součsné době se stejnosměrné
1 KOLA A PNEUMATIKY. Nejčastěji používaná kola automobilů se skládají z těchto částí : disky s ráfky, hlavy (paprskové hlavy), pneumatiky.
1 KOLA A PNEUMATIKY Nejčastěji používaná kola automobilů se skládají z těchto částí : disky s ráfky, hlavy (paprskové hlavy), pneumatiky. DISKOVÉ KOLO Skládá se z : ráfku zabezpečuje spojení pneumatiky
Dynamické systémy 1. Úvod. Ing. Jaroslav Jíra, CSc.
Dynmické systémy Úvod Ing. Jroslv Jír, CSc. Deinice Dynmický systém je systém, který se mění v čse podle soor pevně dných prvidel, která rčjí, jkým způsoem dojde ke změně jednoho stv v drhý. Dynmický systém
Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál
Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 4.2.3. Valivá ložiska Ložiska slouží k otočnému nebo posuvnému uložení strojních součástí a k přenosu působících
Určeno pro posluchače bakalářských studijních programů FS
STEJNOSĚRNÉ STROJE Určeno pro posluchče bklářských studijních progrmů FS 1. Úvod 2. Konstrukční uspořádání 3. Princip činnosti stejnosměrného stroje 4. Rozdělení stejnosměrných strojů 5. Provozní vlstnosti
Základní otázky pro teoretickou část zkoušky.
Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.
Elektrom r elektronický
Elektronický 1-fázový elektrom r činné energie pro p ímé p ipojení 7E.13.8.230.0000 7E.16.8.230.0000 elektrom r podle ČSN EN 62053 provedení ov ené dle p edpis o metrologii schválení PTB Braunschweig t
1 Pracovní úkoly. 2 Vypracování. Úloha #9 Akustika.
FYZIKÁLNÍ PRAKTIKUM I FJFI ƒvut v Praze Úloha #9 Akustika. Datum m ení: 18.10.2013 Skupina: 7 Jméno: David Roesel Krouºek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasikace: 1 Pracovní úkoly 1. Domácí
Vlnová teorie. Ing. Bc. Michal Malík, Ing. Bc. Jiří Primas. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Ing. Bc. Michl Mlík, Ing. Bc. Jiří Prims ECHNICKÁ UNIVERZIA V LIBERCI Fkult mechtroniky, informtiky mezioborových studií ento mteriál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinncován
W1- Měření impedančního chování reálných elektronických součástek
Návod na laboratorní úlohu Laboratoře oboru I W1- Měření impedančního chování reálných elektronických součástek Úloha W1 1 / 6 1. Úvod Impedance Z popisuje úhrnný "zdánlivý odpor" prvků obvodu při průchodu
Typové příklady ke zkoušce z Fyziky 1
Mechanika hmotného bodu Typové příklady ke zkoušce z Fyziky 1 1. Těleso padá volným pádem. V bodě A své trajektorie má rychlost v 4 m s -1, v bodě B má rychlost 16 m s -1. Určete: a) vzdálenost bodů A,
C 1 6,8ηF 630V C 2 neuvedeno neuvedeno C 3 0,22μF 250V C 4 4μF 60V. Náhradní schéma zapojení kondenzátoru:
RIEDL 3.EB 7 1/15 1. ZADÁNÍ a) Změřte kapacity předložených kondenzátorů ohmovou metodou při obou možných způsobech zapojení b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 200 a 800 Hz c) Graficky
MASARYKOVA UNIVERZITA UNIVERZITNÍ CENTRUM TELČ
Výpočet doby Návrh akustické úpravy prostoru MASARYKOVA UNIVERZITA UNIVERZITNÍ CENTRUM TELČ UČEBNY 110, 111, 112, 218, 219 Objednatel: Masarykova univerzita Univerzitní centrum Telč Náměstí Zachariáše
1 Matematické základy teorie obvodů
Matematické základy teorie obvodů Vypracoval M. Košek Toto cvičení si klade možná přemrštěný, možná jednoduchý, cíl dosáhnout toho, aby všichní studenti znali základy matematiky (a fyziky) nutné pro pochopení
http://www.coptkm.cz/ Měření výkonu zesilovače
http://www.coptkm.cz/ Měření výkonu zesilovače Měření výkonu zesilovače se neobejde bez zobrazování a kontroly výstupního průběhu osciloskopem. Při měření výkonu zesilovače místo reprodukční soustavy zapojíme
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie
ELEKTŘINA A MAGNETIZMUS Řešené úlohy postupy: Kpcit uložená energie Peter Dourmshkin MIT 6, překld: Jn Pcák (7) Osh 4. KAPACITA A ULOŽENÁ ENERGIE 4.1 ÚKOLY 4. ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ ÚLOHA 1: VÁLCOVÝ
LuBRA: Praktika ze základ STATISTIKY
Výsledky p íkld kpitoly 6. Chrkteristické rysy sttistických soubor, míry polohy vribility 55. 0, ~ 19, ~ 15, ~ ˆ 5 75 56. ~ 507, 5 ; což znmená 57. íkld ˆ ~ 4.13 9 34 4.14 76 58 4.15 není definován 356
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice
DELTA plus Elektroměry s montáží na lištu DIN Technická dokumentace
Elektroměry s montáží na lištu DIN Technická dokumentace ABB/NN 09/07CZ_08/03 Přístroje nízkého napětí Obsah: Všeobecný popis Objednací údaje Příslušenství Technické údaje Schémata zapojení a pulzní výstupy
Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: Číslo projektu: Název projektu školy: Šablona III/2: EU PENÍZE ŠKOLÁM CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České