ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie"

Transkript

1 ELEKTŘINA A MAGNETIZMUS Řešené úlohy postupy: Kpcit uložená energie Peter Dourmshkin MIT 6, překld: Jn Pcák (7) Osh 4. KAPACITA A ULOŽENÁ ENERGIE 4.1 ÚKOLY 4. ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ ÚLOHA 1: VÁLCOVÝ KONDENZÁTOR OTÁZKA 1: ELEKTRICKÉ POLE OTÁZKA : ROZDÍL POTENCIÁLŮ (ROZDÍL NAPĚTÍ) OTÁZKA 3: VÝPOČET KAPACITY 3 OTÁZKA 4: ULOŽENÁ ELEKTRICKÁ ENERGIE 3 OTÁZKA 5: NABÍJENÍ KONDENZÁTORU 3 ŘEŠENÍ ÚLOHY 1: VÁLCOVÝ KONDENZÁTOR 3 OTÁZKA 1: ELEKTRICKÉ POLE 3 OTÁZKA : ROZDÍL POTENCIÁLŮ (ROZDÍL NAPĚTÍ) 4 OTÁZKA 3: VÝPOČET KAPACITY 4 OTÁZKA 4: ULOŽENÁ ELEKTRICKÁ ENERGIE 4 OTÁZKA 5: NABÍJENÍ KONDENZÁTORU 4 ÚLOHA : KONDENZÁTOR JAKO KOULE 5 OTÁZKA 1: GAUSSŮV ZÁKON 5 OTÁZKA : ROZDÍL POTENCIÁLŮ 5 OTÁZKA 3: KAPACITA KONDENZÁTORU 5 OTÁZKA 4: ENERGIE ULOŽENÁ V ELEKTRICKÉM POLI 5 ŘEŠENÍ ÚLOHY : KONDENZÁTOR JAKO KOULE 5 OTÁZKA 1: GAUSSŮV ZÁKON 5 OTÁZKA : ROZDÍL POTENCIÁLŮ 5 OTÁZKA 3: KAPACITA KONDENZÁTORU 6 OTÁZKA 4: ENERGIE ULOŽENÁ V ELEKTRICKÉM POLI 6

2 4. Kpcit uložená energie 4.1 Úkoly () Počítání kpcity kondenzátoru. () Výpočet energie v něm uložené dvěm cestmi. 4. Algoritmus pro řešení prolémů 1. Použijte Gussův zákon, yste mohli spočítt elektrické pole ve všech místech prostoru.. Spočítejte potenciálový rozdíl V mezi dvěm vodiči. 3. Spočítejte kpcitu C jko C = / V. Úloh 1: Válcový kondenzátor Mějme kondenzátor tvořený dvěm válci o poloměrech délce l, kde >. N vnitřním válci je náoj, n vnějším je náoj +. Znedejte okrjové efekty n koncích kondenzátoru. Spočítejte kpcitu kondenzátoru energii v něm uloženou. Otázk 1: Elektrické pole Z Gussov zákon nlezněte velikost i směr elektrického pole mezi vnitřním vnějším válcem ( < r < ). Výsledek vyjádřete pomocí náoje, poloměrů, délky l dlších konstnt, které uvážíte z vhodné. N vnitřním válci je náoj. Otázk : Rozdíl potenciálů (rozdíl npětí) Rozdíl npětí mezi válci, V, je definován jko práce vykonná při přemístění jednotkového náoje v elektrickém poli z jednoho válce n druhý V V( ) V( ) = E d s. Vyjádřete rozdíl potenciálů mezi deskmi pomocí náoje, poloměrů, délky l dlších potřených konstnt.

3 Otázk 3: Výpočet kpcity Dv vodivé válce v zdání úlohy vytváří kondenzátor. Velikost náoje,, n kždém válci je spojen s velikostí rozdílu potenciálů mezi válci (npětí n válcích) podle vzthu = C V, kde V je npětí n kondenzátoru C je konstnt úměrnosti oznčovná jko kpcit. Kpcit je určen geometrickými vlstnostmi vodičů, které tvoří kondenzátor je nezávislá n npětí n deskách kondenzátoru. Jká je kpcit tohoto systému dvou válců? Výsledek vyjádřete pomocí, l, přípdně dlších konstnt, které udete potřeovt. Otázk 4: Uložená elektrická energie Celkové množství energie uložené v elektrickém poli je dáno vzthem ε U = dv EE celý prostor (ojem) Vyjděte ze vzthu pro intenzitu elektrického pole E z 1. otázky spočítejte energii, která je uložená v kondenzátoru, vyjádřete ji proměnnými,, l ( dlšími konstntmi, které jsou tře). Můžeme energii zpst pouze proměnnými C, pokud využijeme vyjádření kpcity C ze 3. otázky? Zpište ji. Otázk 5: Níjení kondenzátoru Předpokládejme, že kondenzátor místo připojení k terii níjíme přesunem náoje z válce r = n válec r =. N počátku předpokládejte, že n vodičích kondenzátoru neyl žádný náoj, v čse t jsme přesunuli náoj qt () n vnitřní válec. () Jký je rozdíl npětí mezi dvěm válci v čse t? Vyjádřete je použitím proměnných C qt (). () Nyní vezměme mlou část náoje dq z vnějšího válce přesuneme ji n vnitřní válec. Jkou práci dw jsme museli vykont, pokud n vnitřním válci již yl náoj qt ()? Práci zpište použitím proměnných C, dq qt (). (c) Využijte výsledku z odu () spočítejte celkovou práci k přesunu náoje z jednoho válce n druhý z předpokldu, že válce n počátku neyly nité. (d) Je práce, kterou jsme spočítli menší, přesně rovná, neo větší než energie uložená v elektrickém poli kondenzátoru (z otázky 4)? Vysvětlete proč.. Řešení úlohy 1: Válcový kondenzátor Otázk 1: Elektrické pole Ze symetrie úlohy elektrické pole míří v cylindrickém rdiálního směru, tedy E= E() r r, ˆ kde ˆr je cylindrický jednotkový vektor (kolmý n osu symetrie). Jko Gussovu ploch použijeme válec, který je souosý s válci kondenzátoru. Podstvy válce neudou přispívt do celkového 3

4 toku elektrického pole, neoť pole je s nimi rovnoěžné (kolmé n normálu). Pláštěm válce pro > r > teče pole 1 ( ) uvnitř E d A = π rhe = = h ( r) << r ˆ ε ε l E = πrεl r pro poloměry r < r > je elektrické pole nulové, protože celkový náoj uzvřený v Gussově ploše je nulový. Nezpomeňte si všimnout směru pole. Pole míří rdiálně dovnitř. Otázk : Rozdíl potenciálů (rozdíl npětí) Rozdíl potenciálů mezi vnitřním vnějším válcem je V = V( ) V( ) = dr = ln. πr ε l πε l Všimněte si, že n kondenzátoru je vyšší npětí než n kondenzátoru. Otázk 3: Výpočet kpcity πε l C = = = V ln ln πε l. Otázk 4: Uložená elektrická energie Energii udeme integrovt po elementech tvru pláště válce o výšce l, poloměru r tloušťce dr, kde je intenzit elektrického pole konstntní. Ojem tkovéhoto diferenciálu je dv = πrldr. Uloženou energii tk můžeme integrovt ojem U r ε 1 = r ldr ln. π = = πε rl 4πε l C Otázk 5: Níjení kondenzátoru () () qt () Vt () =. C qt () dw() t = dqv() t = dq. C q 1 (c) W = dw = dq. = C C Všimněte si, že pokud integrujeme q= q() t, tk je závislost n čse irelevntní. Integrujeme podél náoje, nikoliv čsu, jednoduše integrujeme q. (d) Tto práce je přesně stejná. Všechn energie, kterou vkládáme do níjení kondenzátoru, se přemění n energii uloženou v elektrickém poli. Tento proces je reverziilní, při vyíjení kondenzátoru tuto energii můžeme získt zpět. 4

5 Úloh : Kondenzátor jko koule Plná vodivá kole o poloměru je okolopen vodivým sférickým pláštěm o poloměru, tk že <. N vnitřní kouli je náoj, n vnější kouli je náoj. Otázk 1: Gussův zákon Z Gussov zákon nlezněte velikost i směr elektrického pole mezi vnitřní vnější koulí ( < r < ). Otázk : Rozdíl potenciálů Vyjděte z vyjádření intenzity elektrického pole v otázce 1 spočítejte rozdíl potenciálů mezi koulemi V V( ) V( ) = E d s. Otázk 3: Kpcit kondenzátoru Vyjděte z výsledku. otázky spočítejte kpcitu tkovéhoto kondenzátoru. Otázk 4: Energie uložená v elektrickém poli Vyjděte z výsledku 1. otázky integrujte energii uloženou v elektrosttickém poli integrcí 1 ε E. Jko diferenciál ojemu použijte plášť koule tloušťky dr o ojemu dv = 4πr dr. Řešení úlohy : Kondenzátor jko koule Otázk 1: Gussův zákon Jko Gussovu plochu jsme zvolili plášť koule, o poloměru < r <.. E d A= 4 π r E = ( r) << r ˆ ε E = 4πεr r Pole je stejné jko pole odového náoje. Pro r < r > je pole nulové, protože celkový náoj uzvřený ve zvolené ploše je nulový. Otázk : Rozdíl potenciálů 1 1 V = E ds= rˆ drr ˆ =. 4πε r 4πε 5

6 Otázk 3: Kpcit kondenzátoru 4πε C = = V 1 1 ( ). Otázk 4: Energie uložená v elektrickém poli U r dr π 4πεr πε C ε = 4 = =. 4 6

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS IV. Gaussův zákon Obsah 4 GAUSSŮV ZÁKON 4.1 ELEKTRICKÝ TOK 4. GAUSSŮV ZÁKON 3 4.3 VODIČE 13 4.4 SÍLA PŮSOBÍCÍ VE VODIČI 18 4.5 SHRNUTÍ 4.6 DODATEK: TAH A TLAK V ELEKTRICKÉM POLI

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

ELEKTROSTATICKÉ POLE V LÁTKÁCH

ELEKTROSTATICKÉ POLE V LÁTKÁCH LKTROSTATIKÉ POL V LÁTKÁH A) LKTROSTATIKÉ POL V VODIČÍH VODIČ látka obsahující volné elektrické náboje náboje se po vložení látky do pole budou pohybovat až do vytvoření ustáleného stavu, kdy je uvnitř

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ ELEKTRICKÉ POLE 1. Elektrický náboj, elektrická síla Elektrické pole je prostor v okolí nabitých těles nebo částic. Jako jiné druhy polí je to způsob existence hmoty. Elektrický náboj

Více

Kapacita. Gaussův zákon elektrostatiky

Kapacita. Gaussův zákon elektrostatiky Kapacita Dosud jsme se zabývali vztahy mezi náboji ve vakuu. Prostředí mezi náboji jsme charakterizovali permitivitou ε a uvedli jsme, že ve vakuu je ε = 8,854.1-1 C.V -1.m -1. V této kapitole se budeme

Více

Příklady: 31. Elektromagnetická indukce

Příklady: 31. Elektromagnetická indukce 16. prosince 2008 FI FSI VUT v Brn 1 Příklady: 31. Elektromagnetická indukce 1. Tuhý drát ohnutý do půlkružnice o poloměru a se rovnoměrně otáčí s úhlovou frekvencí ω v homogenním magnetickém poli o indukci

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ

Více

Potenciometrie. Elektrodový děj je oxidačně-redukční reakce umožňující přenos náboje mezi fázemi. Např.:

Potenciometrie. Elektrodový děj je oxidačně-redukční reakce umožňující přenos náboje mezi fázemi. Např.: Potenciometrie Poločlánek (elektrod) je heterogenní elektrochemický systém tvořeny lespoň dvěm fázemi. Jedn fáze je vodičem první třídy vede proud prostřednictvím elektronů. Druhá fáze je vodičem druhé

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 2006, překlad: Vladimír Scholtz (2007) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 51: ŽÁROVKY A BATERIE 2 OTÁZKA 52: ŽÁROVKY A

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

PRAVIDELNÉ MNOHOSTĚNY

PRAVIDELNÉ MNOHOSTĚNY PRVIDELNÉ MNOHOĚNY Vlst Chmelíková, Luboš Morvec MFF UK 007 1 Úvod ento text byl vytvořen s cílem inspirovt učitele středních škol k zčlenění témtu prvidelné mnohostěny do hodin mtemtiky, neboť při výuce

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 12

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 12 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA Peter Dourmashkin MIT 006, překlad: Vítězslav Kříha (007) Obsah SADA ÚLOHA : KOAXIÁLNÍ KABEL ÚLOHA : VLNOVÁ ROVNIE ÚLOHA 3: PĚT KRÁTKÝH OTÁZEK 3 ÚLOHA 4: SOLÁRNÍ LABORATOŘ

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Goniometrické funkce obecného úhlu

Goniometrické funkce obecného úhlu 0 Goniometrické funkce oecného úhlu V prvoúhlém trojúhelníku ABC jsou definovány funkce,, tg, cotg liovolného úhlu tkto: α α tg α cotg α Význmné hodnoty gon. funkcí 0 0 60 90 α 0 α 0 tg α 0 nedef. cotg

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 006, překlad: Vladimír Scholtz (007) Obsah KONTOLNÍ OTÁZKY A ODPOVĚDI OTÁZKA 1: VEKTOOVÉ POLE OTÁZKA : OPAČNÉ NÁBOJE OTÁZKA 3:

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 9

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 9 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 9 Peter Dourmashkin MIT 006, překlad: Vítězslav Kříha (007) Obsah SADA 9 ÚLOHA 1: INDUKTOR ÚLOHA : SUPRAVODIVÉ MAGNETY ÚLOHA 3: MIXÉR ŘEŠENÍ ÚLOH 3 ÚLOHA 1: INDUKTOR

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

Elektromagnetická indukce

Elektromagnetická indukce Elektromagnetická indukce Magnetický indukční tok V kapitolách o Gaussově zákonu elektrostatiky jsme vztahem (8.1) definovali skalární veličinu dφ e nazvanou tok elektrické intenzity (nebo také elektrický

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS X. Faradayův indukční zákon Obsah 10 FARADAYŮV INDUKČNÍ ZÁKON 10.1 FARADAYŮV INDUKČNÍ ZÁKON 10.1.1 MAGNETICKÝ TOK 10.1. LENZŮV ZÁKON 4 10. ELEKTROMOTORICKÉ NAPĚTÍ ZPŮSOENÉ POHYEM

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Studijní informační systém. Elektronický zápis předmětů a rozvrhu. I. Postup zápisu předmětů a rozvrhu

Studijní informační systém. Elektronický zápis předmětů a rozvrhu. I. Postup zápisu předmětů a rozvrhu Studijní informční systém Elektronický zápis předmětů rozvrhu V odoí elektronického zápisu předmětů proíhá tzv. předěžný zápis. Student má předměty zpsné ztím pouze předěžně může je po celé odoí elektronického

Více

10. Suffixové stromy 1 2014-01-23

10. Suffixové stromy 1 2014-01-23 10. Suffixové stromy V této kpitole popíšeme jednu pozoruhodnou dtovou strukturu, pomocí níž dokážeme prolémy týkjící se řetězců převádět n grfové prolémy řešit je tk v lineárním čse. Řetězce, trie suffixové

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové

Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární proudové MAGNETICKÉ POLE V LÁTCE, MAXWELLOVY ROVNICE MAGNETICKÉ VLASTNOSTI LÁTEK Magnetické vlastnosti látek (magnetik) jsou důsledkem orbitálního a rotačního pohybu elektronů. Obíhající elektrony představují elementární

Více

Rizika v chemických výrobách spojená s akumulací a uvolněním náboje statické elektřiny

Rizika v chemických výrobách spojená s akumulací a uvolněním náboje statické elektřiny Statická elektřina Rizika v chemických výrobách spojená s akumulací a uvolněním náboje statické elektřiny Rizika statického nábojen Obvyklý zdroj vznícení v chemickém průmyslu Obtížně postižitelná příčina

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Obr. 11.1: Rozdělení dipólu na dva náboje. Obr. 11.2: Rozdělení magnetu na dva magnety

Obr. 11.1: Rozdělení dipólu na dva náboje. Obr. 11.2: Rozdělení magnetu na dva magnety Magnetické pole Ve starověké Malé Asii si Řekové všimli, že kámen magnetovec přitahuje podobné kameny nebo železné předměty. Číňané kolem 3. století n.l. objevili kompas. Tyčový magnet (z magnetovce nebo

Více

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus .9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]

Více

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice Střední škol ohodu, řemesel, služe Zákldní škol, Ústí nd Lem, příspěvková orgnize Vzděláví středisko Trmie MATURITNÍ TÉMATA Předmět: Mtemtik Oor vzdělání: Ekonomik podnikání Školní rok: 0/06 Tříd: EKP

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Astronomická olympiáda 2010/2011

Astronomická olympiáda 2010/2011 Astronomická olympiád 00/0 Úvod V roce 00 jsme si připomenuli jedno význmné domácí výročí, uplynulo totiž 600 let od vyrobení nejstrších částí pržského orloje. V roce 0 nás tké čeká celá řd stronomických

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

1. Vznik zkratů. Základní pojmy.

1. Vznik zkratů. Základní pojmy. . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 3

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 3 ÚLOHY Z LKTŘINY A MAGNTIZMU SADA 3 Peter Dourmashkin MIT 6, překlad: Vítězslav Kříha (7) Obsah SADA 3 ÚLOHA 1: VYSOKONAPĚŤOVÉ LKTRICKÉ VDNÍ ÚLOHA : FÚZ A ŠTĚPNÍ ÚLOHA 3: KD TO ZAJISKŘÍ? ÚLOHA 4: NABITÁ

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VII. Stejnosměrné obvody Obsah 7 STEJNOSMĚNÉ OBVODY 7. ÚVOD 7. ELEKTOMOTOICKÉ NAPĚTÍ 3 7.3 EZISTOY V SÉIOVÉM A PAALELNÍM ZAPOJENÍ 5 7.4 KICHHOFFOVY ZÁKONY 6 7.5 MĚŘENÍ NAPĚTÍ A

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Ochrana před úrazem elektrickým proudem Společná hlediska pro instalaci a zařízení. 1. Definice

Ochrana před úrazem elektrickým proudem Společná hlediska pro instalaci a zařízení. 1. Definice ČSN EN 61 140 Ochrn před úrzem elektrickým proudem Společná hledisk pro instlci zřízení Tto mezinárodní norm pltí pro ochrnu osob zvířt před úrzem elektrickým proudem. Je určen pro poskytnutí zákldních

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

Studium termoelektronové emise:

Studium termoelektronové emise: Truhlář Michl 2. 9. 26 Lbortorní práce č.11 Úloh č. II Studium termoelektronové emise: Úkol: 1) Změřte výstupní práci w wolfrmu pomocí Richrdsonovy-Dushmnovy přímky. 2) Vypočítejte pro použitou diodu intenzitu

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS V. Kapacita a dielektrika Obsah 5. KAPACITA A DIELEKTRIKA 2 5.1 ÚVOD 2 5.2 VÝPOČET KAPACITY 3 5.3 KONDENZÁTORY V ELEKTRICKÉM OBVODU 7 5.3.1 PARALELNÍ ZAPOJENÍ 8 5.3.2 SÉRIOVÉ ZAPOJENÍ

Více

Seriál XXVII.III Aplikační

Seriál XXVII.III Aplikační Seriál XXVII.III Aplikční Seriál: Aplikční Tento díl seriálu bude tk trochu plikční. Minule jsme si pověděli úvod k vričním metodám ve fyzice, nyní bychom rádi nbyté znlosti plikovli n tři speciální přípdy.

Více

PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc.

PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc. PLANETOVÉ PŘEVODY Pomůck do cvičení předmětu Mobilní energetické prostředky Doc.Ing. Pvel Sedlák, CSc. Pro pochopení funkce plnetových převodů jejich kinemtiky je nutné se senámit se ákldy především kinemtikou

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 4 Ptr Dourmashkin MIT 6, přklad: Vítězslav Kříha (7) Obsah SADA 4 ÚLOHA 1: LIDSKÝ KONDENZÁTO ÚLOHA : UDĚLEJTE SI KONDENZÁTO ÚLOHA 3: KONDENZÁTOY ÚLOHA 4: PĚT KÁTKÝCH

Více

Prostorové nároky... 35. Zatížení... 37 Velikost zatížení... 37 Směr zatížení... 37. Nesouosost... 40. Přesnost... 40. Otáčky... 42. Tichý chod...

Prostorové nároky... 35. Zatížení... 37 Velikost zatížení... 37 Směr zatížení... 37. Nesouosost... 40. Přesnost... 40. Otáčky... 42. Tichý chod... Vol typu ložisk Prostorové nároky... 35 Ztížení... 37 Velikost ztížení... 37 Směr ztížení... 37 Nesouosost... 40 Přesnost... 40 Otáčky... 42 Tichý chod... 42 Tuhost... 42 Axiální posuvnost... 43 Montáž

Více

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 5

ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 5 ÚLOHY Z ELEKTŘINY A MAGNETIZMU SADA 5 Peter Dourmashkin MIT 006, překlad: Vítězslav Kříha (007) Obsah SADA 5 ÚLOHA 1: ZKRAT ÚLOHA : DNA T4 FÁGA ÚLOHA 3: CENA ENERGIE ÚLOHA 4: PŘIZPŮSOBENÍ IMPEDANCÍ ÚLOHA

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS EEKTŘINA A MAGNETIZMUS XII Střídavé obvody Obsah STŘÍDAÉ OBODY ZDOJE STŘÍDAÉHO NAPĚTÍ JEDNODUHÉ STŘÍDAÉ OBODY EZISTO JAKO ZÁTĚŽ 3 ÍKA JAKO ZÁTĚŽ 5 3 KONDENZÁTO JAKO ZÁTĚŽ 6 3 SÉIOÝ OBOD 7 3 IMPEDANE 3

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 2006, překlad: Vladimír Scholtz (2007) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 41: ZÁVIT V HOMOGENNÍM POLI 2 OTÁZKA 42: ZÁVIT

Více

Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu

Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu Úloha 1 Pohyb elektronu ve zkříženém elektrickém a magnetickém poli a stanovení měrného náboje elektronu 1.1 Úkol měření 1.Změřtezávislostanodovéhoproudu I a naindukcimagnetickéhopoleprodvěhodnotyanodovéhonapětí

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm

Více

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický

Více

Zapnutí a vypnutí proudu spínačem S.

Zapnutí a vypnutí proudu spínačem S. ELEKTROMAGNETICKÁ INDUKCE Dva Faradayovy pokusy odpovídají na otázku zda může vzniknout elektrický proud vlivem magnetického pole Pohyb tyčového magnetu k (od) vodivé smyčce s měřidlem, nebo smyčkou k

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Příklady: 22. Elektrický náboj

Příklady: 22. Elektrický náboj Příklady: 22. Elektrický náboj 1. V krystalové struktuře chloridu cesného CsCl tvoří ionty Cs + vrcholy krychle a iont Cl leží v jejím středu (viz obrázek 1). Délka hrany krychle je 0,40 nm. Každému z

Více

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc.

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc. Molekulová fyzik Reálný lyn Prof. RNDr. Enuel Svood, CSc. Reálný lyn Existence vzájeného silového ůsoení ezi částicei (tzv. vn der Wlsovské síly) Odudivá síl ezi částicei (interkce řekryvová) ři dosttečně

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Pájený výměník tepla, XB

Pájený výměník tepla, XB Popis / plikce Deskové výměníky tepl pájené mědí řdy XB jsou určené pro použití v soustvách centrálního zásoování teplem (tzn. v klimtizčních soustvách, v soustvách určených pro vytápění neo ohřev teplé

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS XI. Indukčnost a magnetická energie Obsah 11 INDUKČNOST A MAGNETICKÁ ENERGIE 11.1 VZÁJEMNÁ INDUKČNOST 11. VLASTNÍ INDUKČNOST 4 11.3 ENERGIE ULOŽENÁ V MAGNETICKÝCH POLÍCH 7 11.4

Více

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

NESTACIONÁRNÍ MAGNETICKÉ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník NESTACIONÁRNÍ MAGNETICKÉ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Nestacionární magnetické pole Vektor magnetické indukce v čase mění směr nebo velikost. a. nepohybující

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

Hlavní body - elektromagnetismus

Hlavní body - elektromagnetismus Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE ZÁKLADY MATEMATIKY 2. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE I. P íprvní úlohy. V této sérii pot ebujete znlost výpo t následujících úloh - otestujte si ji:. Vypo ítejte neur ité integrály: ) (x 2 x + ) 2 dx

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Teorie elektromagnetického pole Laboratorní úlohy

Teorie elektromagnetického pole Laboratorní úlohy Teorie elektromagnetického pole Laboratorní úlohy Martin Bruchanov 31. května 24 1. Vzájemná induktivní vazba dvou kruhových vzduchových cívek 1.1. Vlastní indukčnost cívky Naměřené hodnoty Napětí na primární

Více