S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006"

Transkript

1 8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný motor s cizím buzením má tyto údje: P 45 kw, 44 V, I 4 A, n 4 min, R,. rčete: ) mechnickou chrkteristiku motoru f (M ) pro jmenovité npájecí npětí b) pro snížené npájecí npětí,5 při konstntním buzení Φ Φ. Mechnické chrkteristiky nkreslete. Ad ) Mechnická chrkteristik stejnosměrného motoru s cizím buzením je dán vzthem R M ( ) mechnická chrkteristik pro chrkteristik DC motoru. při Φ Φ se nzývá vlstní mechnická Jmenovitá úhlová rychlost otáčení rotoru je π n 6 π 4 46,6 rd s 6 rčení hodnoty c Φ motoru ind R I 44, 4,85 Wb. 46,6 Vlstní mechnická chrkteristik DC motoru je pk dán rovnicí, která má pro jmenovité hodnoty npětí buzení tvr R M 44, M 54,4, 46 M rd s,,85,85 ( ) kde první člen rovnice chrkteristiky 54, 4 nprázdno. rd s je úhlová rychlost motoru

2 Ad b) Mechnická chrkteristik pro,5, tedy pro nižší kotevní npětí stále jmenovitou hodnotu buzení Φ Φ bude dán obdobně jko v ) R M M,5 44, 77,, 46 M rd s,,85,85 ( ) kde 77, rd s je úhlová rychlost DC motoru nprázdno při,5. Pro zkreslení mechnických chrkteristik musíme určit jmenovitý moment (jmenovitý bod) n hřídeli motoru. Ten je dán M P 45 46, m Tímto máme vlstní chrkteristiku (i chrkteristiku pro nižší npětí) plně zdnou ( body v souřdné soustvě M ). Při stejném buzení motoru pltí úměr mezi úhlovou rychlostí DC motoru nprázdno při jmenovitém npětí úhlovou rychlostí nprázdno při sníženém npětí. Stejná úměr (strmost chrkteristik je stejná, tj. chrkteristiky jsou nvzájem rovnoběžné) pltí i pro poměr úhlových rychlostí v prcovních bodech při ztížení momentem, tedy i jmenovitým. Pltí:,5. [rd s ] o o,5 3 4 M M [ m] Obr. Mechnické chrkteristiky DC motoru dle zdání příkldu 8.

3 Příkld 8. Předřdný odpor, řízení otáček předřdným odporem v obvodu kotvy Stejnosměrný cize buzený motor s údji : V, n 93 min, I 6 A, n 955 min (otáčky při chodu nprázdno) má prcovt při otáčkách n 73 min při jmenovitém ztížení, tj. s proudem kotvy I 6 A. rčete: ) velikost předřdného odporu R p, který je třeb zřdit do obvodu kotvy, by otáčky klesly n uvedenou hodnotu. Buzení motoru je konstntní. Ad ) Mechnická chrkteristik stejnosměrného motoru s cizím buzením je dán zákldním vzthem R M. ( ) Jmenovitá úhlová rychlost motoru π n 6 úhlová rychlost motoru nprázdno π ,4 rd s, π n π 955 rd s, 6 3 úhlová rychlost při zdných otáčkách rčení hodnoty motoru Φ π n π ,5 rd s. 6, Wb c Moment motoru je dán obecným vzthem: M I 6 m Celkový odpor obvodu kotvy motoru R v přípdě nezřzeného přídvného odporu R p, určíme z rovnice mechnické chrkteristiky motoru s cizím buzením: ( ) R M R 97,4,867. ( ) M Celkový odpor obvodu kotvy v přípdě zřzeného odporu R p ( ) R R + R 76,5,783 (celk) p. M Velikost potřebného předřdného odporu R p je pk rovn R (celk) R + R R R R,783,87,696 p p (celk)

4 Příkld 8. Mechnická chrkteristik grfická konstrukce DC motor s cizím buzením je zdán těmito údji: R,4, npájení z DC sítě V. V neztíženém stvu se kotv motoru otáčí rychlostí 57,8 rd s. Buzení je konstntní, jmenovité. Moment mechnických ztrát při chodu nprázdno znedbejte. rčete: ) Jk bude vypdt mechnická chrkteristik DC motoru pro toto zdání? kreslete ji v příslušném měřítku. Ad ) Mechnická chrkteristik stejnosměrného motoru s cizím buzením je přímk, protínjící osu otáček v bodě n (první bod) momentovou osu v bodě záběrného momentu (druhý bod) pro dné npětí kotvy odpor kotvy. Otáčky nprázdno n určím ze zdné úhlové rychlosti nprázdno tkto π n 3 Jsou-li otáčky nprázdno dány vzthem mohu motoru určit následně 3 π 3 57,8 π n 5 min. n, n 5 6,8 V s 6,8 Wb. Záběrný moment vyvine motor při n, resp., tzn. když R M R M π n ( ) ( ) c Φ c Φ c Φ M l π R 6,8 597 m π,4 n [min ] n 5 Φ konst. 5 M l 597 m 4 6 M [ m] Obr. - Konstrukce mechnické chrkteristiky k příkldu 8.

5 Příkld 8.3 Energie, účinnost, cen z el. energii DC motor o výkonu P kw, npájený npětím V, prcuje denně 8 hodin při účinnosti η, 75. rčete: ) Jká spotřeb b) jká je cen jím odebrné elektrické energie z dobu 5 prcovních dnů, je-li szb 3,7 Kč/kWh. Ad ) K určení spotřeby elektrické energie určíme příkon motoru P P 3,334 kw. η,75 Ad b) Spotřeb odebrné elektrické energie z dnou dobu se určí obecným vzthem A W P t 3, e e cen X se pk určí pomocí szby 666,667 kwh X W 3,7 666,667 3,7 9866,667 Kč Kč. e Příkld 8.4 Energie Kolik stejných DC motorů, kždý o stálém příkonu P 3 kw, může prcovt po dobu 4 hodin, je-li denní spotřeb elektrické energie omezen n W e(tot) 586 kwh? Jeden DC motor spotřebuje z 4 h elektrickou energii energie 586 kwh stčí n 4 h pro W P t kwh, W x W e e(tot) e 586 8,4, t zn. 8 motorů. 7 Příkld 8.5 Derivční motor, výkonové ztráty rčete: ) Jk velké jsou výkonové ztráty v budícím vinutí, b) v kotevním vinutí c) celkové u derivčního DC motoru, je-li R 4 R,9. Budící proud má hodnotu I A, proud b b kotvou I 6 A. Ztráty mechnické, v mgnetickém obvodu dodtečné při výpočtu znedbejte. Ad ) Výkonové ztráty v budícím vinutí jsou dány obecným vzthem P R I 4 6 W. j b b

6 Ad b) Výkonové ztráty ve vinutí kotvy jsou dány obdobným obecným vzthem P R I, W. j Ad c) Celkové výkonové ztráty, tzn. přibližně celkový příkon derivčního motoru, jsou dány součtem jednotlivých ztrát P P P + P W. j(totl) j Pozn. Všimněte si vzájemných poměrů mezi odpory proudy jednotlivých vinutí, tento pozntek zhodnoťte. j Příkld 8.6 Stejnosměrný (DC) generátor, proud rčete jk velkou hodnotu bude mít proud, který dodávl DC generátor při npětí V stále rovnoměrně do spotřebiče po dobu 5 hodin byl odebrán elektrická energie ve výši W e(tot) 36,5 kwh. Proud se určí z obecného vzthu pro elektrickou energii v Wh We 36 5 W e I t I 6,63 A. t 5 Příkld 8.7 DC generátor, elektrický výkon, mechnický příkon DC generátor má při do spotřebiče dodávném npětí 5 V proudu η,86. I 3 A účinnost rčete jk velký je ) elektrický výkon generátoru b) potřebný mechnický příkon pro tyto prmetry. Ad ) Elektrický výkon se určí pomocí obecného vzthu pro elektrický výkon v DC obvodech P I kw. Ad b) Potřebný mechnický příkon lze určit z obecného vzthu pro účinnost elektrických strojů P P 5 η P 74,4 kw, tzn. 75 kw. P η,86

7 Příkld 8.8 DC generátor, zátěžný proud, elektrický výkon, ztráty DC generátor V, P 3 kw má účinnost η % (%) 85. rčete: ) jk velký musí být přitom potřebný výkon poháněcího stroje, b) jk velké má generátor přitom výkonové ztráty, c) kolik žárovek V/6W je možno k tomuto generátoru připojit prlelně, znedbáme-li ztráty v přívodním vedení, d) jk velký proud dodává generátor při jmenovitém ztížení. Ad ) Potřebný jmenovitý mechnický příkon generátoru lze určit z obecného vzthu pro jeho účinnost P P 3 η P 35,3 kw. P η,85 Ad b) Výkonové ztráty lze jednoduše určit několik způsoby nebo nebo. P P P 35,3 3 5,3 kw,. P P η ) 35,3 (,85) 5,3 kw, ( 3. P P 3 5,3 kw. η,85 Ad c) Elektrický výkon generátoru je při znedbání ztrát v přívodním vedení roven celkovému příkonu (výkonu) x prlelně řzených stejných žárovek 4 P 3 P x Pž x 5 žárovek. P 6 Ad d) Proud při jmenovitém ztížení má hodnotu ž 4 P 3 I I 36,5 A.

8 Příkld k smosttnému studiu Příkld 8.8 Stejnosměrný cize buzený motor s odporem v obvodu kotvy R odebírá při chodu nprázdno při npětí proud kotvy I kotv se otáčí rychlostí n. Při ztížení momentem M stoupne proud kotvy motoru n hodnotu I klesne npětí motoru n hodnotu. Buzení motoru je konstntní. Dlší zdné hodnoty: R,4, V, I 3 A, n min, 7 V, I 6 A rčete: ) Otáčky úhlovou rychlost b) moment motoru při tomto ztížení. ( n 38 min, 9,7 rd s, M 5 m )

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS STEJNOSĚRNÉ STROJE Určeno pro posluchče bklářských studijních progrmů FS 1. Úvod 2. Konstrukční uspořádání 3. Princip činnosti stejnosměrného stroje 4. Rozdělení stejnosměrných strojů 5. Provozní vlstnosti

Více

STEJNOSMĚRNÉ STROJE. Určeno pro posluchače bakalářských studijních programů. 1. Úvod

STEJNOSMĚRNÉ STROJE. Určeno pro posluchače bakalářských studijních programů. 1. Úvod 1. Úvod Stejnosměrné stroje jsou historicky nejstršími elektrickými stroji nejprve se používly jko generátory pro výrobu stejnosměrného proudu. V řdě technických plikcí byly tyto V součsné době se stejnosměrné

Více

STEJNOSMĚRNÉ STROJE (DC machines) B1M15PPE

STEJNOSMĚRNÉ STROJE (DC machines) B1M15PPE STEJNOSĚRNÉ STROJE (DC mchines) B115PPE TYPICKÝ DC STROJ TOČIVÝ STROJ ŮŽE PRACOVAT JAKO OTOR I JAKO GENERÁTOR Doc. Ing. Pvel Pivoňk, CSc. 2 HLAVNÍ ČÁSTI DC STROJE PŘÍVODY od zdroje vinutí KOTVY JÁDRO ROTOR

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

STEJNOSMĚRNÉ STROJE (MOTORY) Princip činnosti motoru, konstrukční uspořádání, základní vlastnosti

STEJNOSMĚRNÉ STROJE (MOTORY) Princip činnosti motoru, konstrukční uspořádání, základní vlastnosti STEJNOSĚRNÉ STROJE (OTORY) Princip činnosti motoru, konstrukční uspořádání, zákldní vlstnosti Obr. 1. Směr siločr budicího (sttorového) obvodu stejnosměrného stroje Obr. 2. Směr proudu kotevního (rotorového)

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ TROJE TOČIVÉ Určeno pro posluchače bakalářských studijních programů F ynchronní stroje Ing. Vítězslav týskala h.d. únor 00 říklad 8. Základy napětí a proudy Řešené příklady Třífázový synchronní

Více

Téma 25. Obrázek 1. (a) mechanická char.; (b) momentová char.; (c) řízení rychlosti

Téma 25. Obrázek 1. (a) mechanická char.; (b) momentová char.; (c) řízení rychlosti Tém 25 Jn Bednář bednj1@fel.cvut.cz mechnická chrkteristik n=f(m) závislost rychlosti n n elektromgnetickém momentu M vznikjícím ve stroji vzájemným působením vinutí protékných proudem mgnetických polí,

Více

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami: Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového

Více

MOTORU S CIZÍM BUZENÍM

MOTORU S CIZÍM BUZENÍM Stejnosměrný motor Cíle cvičení: Naučit se - zapojení motoru s cizím buzením - postup při spouštění - reverzace chodu - vliv napětí na rychlost otáčení - vliv buzení na rychlost otáčení - vliv spouštěcího

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Energetická bilance elektrických strojů

Energetická bilance elektrických strojů Energetická bilance elektrických strojů Jiří Kubín TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Určeno pro posluchače všech bakalářských studijních programů FS

Určeno pro posluchače všech bakalářských studijních programů FS rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a

Více

1. Vznik zkratů. Základní pojmy.

1. Vznik zkratů. Základní pojmy. . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

4. kapitola: Dvojbrany - rozdělení, rovnice (modely)

4. kapitola: Dvojbrany - rozdělení, rovnice (modely) Punčochář, J: EO; 4. kpitol 4. kpitol: Dvojbrny - rozdělení, rovnice (modely) Čs ke studiu: 4 hodiny íl: Po prostudování této kpitoly budete umět používt šipkovou konvenci dvojbrnů umět je klsifikovt.

Více

3. Střídavé třífázové obvody

3. Střídavé třífázové obvody . třídavé tříázové obvody říklad.. V přívodním vedení trojázového elektrického sporáku na x 400 V, jehož topná tělesa jsou zapojena do trojúhelníku, byl naměřen proud 6 A. Jak velký proud prochází topným

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Synchronní stroje. Φ f. n 1. I f. tlumicí (rozběhové) vinutí

Synchronní stroje. Φ f. n 1. I f. tlumicí (rozběhové) vinutí Synchronní stroje Synchronní stroje n 1 Φ f n 1 Φ f I f I f I f tlumicí (rozběhové) vinutí Stator: jako u asynchronního stroje ( 3 fáz vinutí, vytvářející kruhové pole ) n 1 = 60.f 1 / p Rotor: I f ss.

Více

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace Jiří Petržel zpětná vzb, stbilit oscilce zpětná vzb, stbilit oscilce zpětnou vzbou (ZV) přivádíme záměrněčást výstupního signálu zpět n vstup ZV zásdně ovlivňuje prkticky všechny vlstnosti dného zpojení

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

VYUŽITÍ CITLIVOSTNÍ ANALÝZY V ELEKTROTECHNICE A ŘÍDÍCÍ TECHNICE - II

VYUŽITÍ CITLIVOSTNÍ ANALÝZY V ELEKTROTECHNICE A ŘÍDÍCÍ TECHNICE - II 8 Informčné utomtizčné technológie v ridení kvlity produkcie Vernár,.-4. 9. 5 VYUŽIÍ CILIVONÍ ANALÝZY V ELEKROECHNICE A ŘÍDÍCÍ ECHNICE - II KÜNZEL Gunnr Abstrkt Příspěvek nvzuje n předchozí utorův článek

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, synchronní stroje. Pracovní list - příklad vytvořil: Ing.

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, synchronní stroje. Pracovní list - příklad vytvořil: Ing. Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, synchronní stroje Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: září 2013 Klíčová slova: synchronní

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Střídavé motory. Název: Téma:

Inovace a zkvalitnění výuky prostřednictvím ICT Střídavé motory. Název: Téma: Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Střídavé motory Asynchronní motor, měření momentových

Více

Opakování ke státní maturitě didaktické testy

Opakování ke státní maturitě didaktické testy Číslo projektu CZ..7/../.9 Škol Autor Číslo mteriálu Název Tém hodiny Předmět Ročník/y/ Anotce Střední odborná škol Střední odborné učiliště, Hustopeče, Msrykovo nám. Mgr. Rent Kučerová VY INOVACE_MA..

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Stejnosměrné stroje Konstrukce

Stejnosměrné stroje Konstrukce Stejnosměrné stroje Konstrukce 1. Stator část stroje, která se neotáčí, pevně spojená s kostrou může být z plného materiálu nebo složen z plechů (v případě napájení např. usměrněným napětím) na statoru

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav: Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou

Více

Konstrukce stejnosměrného stroje

Konstrukce stejnosměrného stroje Stejnosměrné stroje Konstrukce stejnosměrného stroje póly pól. nástavce stator rotor s vinutím v drážkách geometrická neutrála konstantní vzduchová mezera δ budicí vinutí magnetická osa stejnosměrný budicí

Více

Motor s kroužkovou kotvou. Motor s kroužkovou kotvou indukční motor. Princip jeho činnosti je stejný jako u motoru s kotvou nakrátko.

Motor s kroužkovou kotvou. Motor s kroužkovou kotvou indukční motor. Princip jeho činnosti je stejný jako u motoru s kotvou nakrátko. Motor s kroužkovou kotvou Motor s kroužkovou kotvou indukční motor. Princip jeho činnosti je stejný jako u motoru s kotvou nakrátko. Konstrukce: a) stator má stejnou konstrukci jako u motoru s kotvou nakrátko

Více

SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI. František Prášek

SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI. František Prášek SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI Frntišek Prášek Ostrv 011 1 : Sylbus modulu Upltnění n trhu práce, dílčí část II Bklářská práce + příprv n prxi

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 2.1 OBECNÉ ZÁKLADY EL. POHONŮ 2. ELEKTRICKÉ POHONY Pod pojmem elektrický pohon rozumíme soubor elektromechanických vazeb a vztahů mezi elektromechanickou

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2013 1.5.2 DERIVAČNÍ MOTOR SCHÉMA ZAPOJENÍ 1.5.2 DERIVAČNÍ MOTOR PRINCIP ČINNOSTI Po připojení zdroje stejnosměrného napětí na svorky motoru začne procházet

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 17. 4. 2009 Číslo: Kontroloval: Datum: 5 Pořadové číslo žáka: 24

Více

U 1, U 2 I 1, I 2. vnější napětí dvojbranu vnější proudy dvojbranu

U 1, U 2 I 1, I 2. vnější napětí dvojbranu vnější proudy dvojbranu DVOJBRAN Definice rodělení dvojbrnů Dvojbrn libovolný obvod, který je s jinými částmi obvodu spojen dvěm pár svorek (vstupní výstupní svork). K nlýe cování obvodu postčí popst dný dvojbrn poue vt mei npětími

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS SYNCHRONNÍ STROJE Určeno pro posluchače bakalářských studijních programů FS Obsah Význam a použití 1. Konstrukce synchronních strojů 2. Princip činnosti synchronního generátoru 3. Paralelní chod synchronního

Více

1. Pracovníci poučení dle 4 Vyhlášky 50/1978 (1bod):

1. Pracovníci poučení dle 4 Vyhlášky 50/1978 (1bod): 1. Pracovníci poučení dle 4 Vyhlášky 50/1978 (1bod): a. Mohou pracovat na částech elektrických zařízení nn bez napětí, v blízkosti nekrytých pod napětím ve vzdálenosti větší než 1m s dohledem, na částech

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, konstrukce a princip činnosti stejnosměrných strojů

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, konstrukce a princip činnosti stejnosměrných strojů Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, konstrukce a princip činnosti stejnosměrných strojů Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM:

Více

montáží směr otáčení při bei Y = 0 V při poloze přepínače 1 resp.0 elektronicky reverzovatelný...

montáží směr otáčení při bei Y = 0 V při poloze přepínače 1 resp.0 elektronicky reverzovatelný... echnický list SF2A-MF Klpkový pohon se zpětným pružinovým chodem, schopný komunikce pro přestvování VZ klpek ve vzduchotechnických klimtizčních zřízeních udov velikost klpky do cc m 2 krouticí moment 2

Více

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C

Elektro-motor. Asynchronní Synchronní Ostatní DC motory. Vinutý rotor. PM rotor. Synchron C 26. března 2015 1 Elektro-motor AC DC Asynchronní Synchronní Ostatní DC motory AC brushed Univerzální Vícefázové Jednofázové Sinusové Krokové Brushless Reluktanční Klecový stroj Trvale připojeny C Pomocná

Více

Význam zvýšení účinnosti elektrických strojů

Význam zvýšení účinnosti elektrických strojů Význam zvýšení účinnosti elektrických strojů Strana 0 Co je to účinnost? h = P / P - kde P' je výkon, P je příkon. Práce energie dodaná stroji je vždy větší než práce energie strojem vykonaná. Proč? Kvůli

Více

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM TRANSFORMÁTORU.

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM TRANSFORMÁTORU. Katedra elektrotechniky Fakulta elektrotechniky a informatiky VŠB - TU Ostrava MĚŘENÍ NA JEDNOFÁZOVÉM ANSFORMÁTORU Návod do měření Ing. Václav Kolář Ing. Vítězslav Stýskala Leden 997 poslední úprava leden

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

UVSSR, ODBOR ELEKTROTECHNIKY LABORATORNÍ CVIČENÍ ELEKTROTECHNIKA A ELEKTRONIKA

UVSSR, ODBOR ELEKTROTECHNIKY LABORATORNÍ CVIČENÍ ELEKTROTECHNIKA A ELEKTRONIKA Jméno: Vilem Skarolek Akademický rok: 2009/2010 Ročník: UVSSR, ODBOR ELEKTROTECHNIKY LABORATORNÍ CVIČENÍ ELEKTROTECHNIKA A ELEKTRONIKA 3. Semestr: 2. Datum měření: 12. 04. 2010 Datum odevzdání: 19. 4.

Více

Aplikace měničů frekvence u malých větrných elektráren

Aplikace měničů frekvence u malých větrných elektráren Aplikace měničů frekvence u malých větrných elektráren Václav Sládeček VŠB-TU Ostrava, FEI, Katedra elektroniky, 17. listopadu 15, 708 33 Ostrava - Poruba Abstract: Příspěvek se zabývá možnostmi využití

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc.

PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc. PLANETOVÉ PŘEVODY Pomůck do cvičení předmětu Mobilní energetické prostředky Doc.Ing. Pvel Sedlák, CSc. Pro pochopení funkce plnetových převodů jejich kinemtiky je nutné se senámit se ákldy především kinemtikou

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

Název DUM: Elektrická energie v příkladech I

Název DUM: Elektrická energie v příkladech I Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Elektrická energie

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, rozdělení stejnosměrných strojů a jejich vlastnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, rozdělení stejnosměrných strojů a jejich vlastnosti Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, rozdělení stejnosměrných strojů a jejich vlastnosti Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM:

Více

F - Elektrická práce, elektrický výkon, účinnost

F - Elektrická práce, elektrický výkon, účinnost F - Elektrická práce, elektrický výkon, účinnost rčeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VAIACE Tento dokument byl kompletně vytvořen, sestaven

Více

ZEMNÍ TLAKY. Princip určování: teorie mezní rovnováhy, rovinná úloha, předpoklad rovinných kluzných ploch

ZEMNÍ TLAKY. Princip určování: teorie mezní rovnováhy, rovinná úloha, předpoklad rovinných kluzných ploch Druhy!"tlk v klidu S r!"ktivní zemní tlk S!"psivní odpor S p ZEMNÍ TLAKY Obr.. Druhy zemních tlků ) tlk zeminy v klidu, b) ktivní zemní tlk, c) psivní zemní odpor, d) závislost velikosti zemního tlku od

Více

Úvod. Rozdělení podle toku energie: Rozdělení podle počtu fází: Rozdělení podle konstrukce rotoru: Rozdělení podle pohybu motoru:

Úvod. Rozdělení podle toku energie: Rozdělení podle počtu fází: Rozdělení podle konstrukce rotoru: Rozdělení podle pohybu motoru: Indukční stroje 1 konstrukce Úvod Indukční stroj je nejpoužívanější a nejrozšířenější elektrický točivý stroj a jeho význam neustále roste (postupná náhrada stejnosměrných strojů). Rozdělení podle toku

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

Osnova kurzu. Elektrické stroje 2. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

Osnova kurzu. Elektrické stroje 2. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3 Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 1) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických

Více

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika Přijímcí řízení kemický rok 0/0 Bc. stuium Kompletní znění testových otázek mtemtik Koš Znění otázky Opověď ) Opověď ) Opověď c) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky Přednáška Asynchronní motory 1 Elektrické stroje Elektrické stroje jsou vždy měniče energie jejichž rozdělení a provedení je závislé na: druhu použitého proudu a výstupní formě

Více

10. Měření trojfázových synchronních generátorů

10. Měření trojfázových synchronních generátorů U = U 1X 1 f X 50 kde U 1X je napětí odpovídající kmitočtu f X U 1 napětí kmitočtu 50 Hz, použitého pro měření momentové charakteristiky (přibližně 0,35 U 1n ) Změřený moment přepočítáme na jmenovité napětí

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV VÝKONOVÉ ELEKTROTECHNIKY A ELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stvební mechnik (K32SM0) Přednáší: doc. Ing. Mtěj Lepš, Ph.D. Ktedr mechniky K32 místnost D2034 konzultce Čt 9:30-:00 e-mil: mtej.leps@fsv.cvut.cz http://mech.fsv.cvut.cz/~leps/teching/index.html Řádný

Více

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

1.2.7 Sbírka příkladů - vozíčky

1.2.7 Sbírka příkladů - vozíčky 7 Sbírk příkldů - vozíčky Předpokldy: 06 Při řešení vozíčků určujeme dvě veličiny: zrychlení soustvy, síly, kterými provázky působí n jednotlivé předměty F Zrychlení soustvy určíme pomocí NZ ze vzorce

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

REE 11/12Z - Elektromechanická přeměna energie. Stud. skupina: 2E/95 Hodnocení: FSI, ÚMTMB - ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY

REE 11/12Z - Elektromechanická přeměna energie. Stud. skupina: 2E/95 Hodnocení: FSI, ÚMTMB - ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Předmět: REE 11/12Z - Elektromechanická přeměna energie Jméno: Ročník: 2 Měřeno dne: 29.11.2011 Stud. skupina: 2E/95 Hodnocení: Ústav: FSI, ÚMTMB - ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Spolupracovali:

Více

Digitální učební materiál

Digitální učební materiál Digitální učební mteriál Projekt: Digitální učební mteriály ve škole, registrční číslo projektu CZ..07/.5.00/.057 Příjemce: třední zdrvotnická škol Vyšší odborná škol zdrvotnická, Husov, 7 60 České Budějovice

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

1 OBSAH 2 STEJNOSMĚRNÝ MOTOR. 2.1 Princip

1 OBSAH 2 STEJNOSMĚRNÝ MOTOR. 2.1 Princip 1 OBSAH 2 STEJNOSMĚRNÝ MOTOR...1 2.1 Princip...1 2.2 Běžný komutátorový stroj buzený magnety...3 2.3 Komutátorový stroj cize buzený...3 2.4 Motor se sériovým buzením...3 2.5 Derivační elektromotor...3

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ h Předmět: Ročník: Vytvořil: Dtum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 11. SRPNA 2013 Název zprcovného celku: SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ Ke sloţenému nmáhání dojde tehdy, vyskytnou-li se součsně

Více

VYNUCENÉ TORSNÍ KMITÁNÍ KLIKOVÝCH HŘÍDELŮ

VYNUCENÉ TORSNÍ KMITÁNÍ KLIKOVÝCH HŘÍDELŮ VYNUCENÉ TORSNÍ KITÁNÍ KLIKOVÝCH HŘÍDELŮ Vlstní torsní kmtání po čse vymí vlvem tlumení, není smo o sobě nebepečné. Perodcký proměnný kroutící moment v jednotlvých lomeních vybudí vynucené kmtání, které

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový

Více

Stejnosměrné generátory dynama. 1. Princip činnosti

Stejnosměrné generátory dynama. 1. Princip činnosti Stejnosměrné generátory dynama 1. Princip činnosti stator dynama vytváří budící magnetické pole v tomto poli se otáčí vinutí rotoru s jedním závitem v závitech rotoru se indukuje napětí změnou velikosti

Více

A0B14 AEE Automobilová elektrotechnika a elektronika

A0B14 AEE Automobilová elektrotechnika a elektronika 0B14 EE utomobilová elektrotechnika a elektronika České vysoké učení technické v Praze Fakulta elektrotechnická Katedra elektrických pohonů a trakce Měření vlastností elektrického pohonu vozidla se sériovým

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Elektroenergetika 1. Elektrické části elektrárenských bloků

Elektroenergetika 1. Elektrické části elektrárenských bloků Elektroenergetika 1 Elektrické části elektrárenských bloků Elektrická část elektrárny Hlavním úkolem elektrické části elektráren je: Vyvedení výkonu z elektrárny zprostředkování spojení alternátoru s elektrizační

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více