Integrace pomocí substituce. Obsah. 1. Úvod 2 2. Integrace substitucí u = ax + b Nalezení. f(g(x)) g (x) dx pomocí substituce u = g(x) 6

Rozměr: px
Začít zobrazení ze stránky:

Download "Integrace pomocí substituce. Obsah. 1. Úvod 2 2. Integrace substitucí u = ax + b Nalezení. f(g(x)) g (x) dx pomocí substituce u = g(x) 6"

Transkript

1 Integrce pomocí sbstitce Existjí p ípdy, kdy je moºné vypo ítt zdánliv t ºké integrály pokd nejprve provedeme sbstitci. To má z následek zm n prom nné integrnd v p ípd r itých integrál se zm ní i jejich meze. V tomto leták se setkáme s n kolik p íkldy integrál, kterých je vhodné poºít sbstitci. Z ú elem zvládntí zde vysv tlené metody je d leºité projít mnoh prktickými cvi eními, by se tto metod stl n²í drho p irozeností. Po p e tení tohoto text, shlédntí p ísl²ného vide sovisejícího s tímto témtem, bychom m li být schopni: provád t integrci pomocí sbstitce nlézt vhodno sbstitci z ú elem vypo tení integrál Obsh. Úvod. Integrce sbstitcí = x + b. Nlezení f(g(x)) g (x) pomocí sbstitce = g(x) 6 Mtemtik III. kpitol

2 Mth & Stts I Úvod Dovednost zvládno integrci pomocí sbstitce je schopnost, která se vyvíjí so sn s prxí zk²eností. Z tohoto d vod bychom m li projít v²emi prktickými cvi eními. Uv domme si, ºe n kdy zdánliv rozmná sbstitce nevede k integrál, který jsme schopni vypo ítt. Msíme proto být p iprveni vyzko²et lterntivní sbstitce. II Integrce pomocí sbstitce = x + b P edstvme technik n jednodchých p íkldech, pro které je vhodná lineární sbstitce. P íkld. P edpokládejme, ºe chceme vypo ítt integrál (x + 4) 5 () Jiº jsme obeznámeni s podobným integrálem 5 d víme, ºe se tento integrál rovná 6 + c, kde c je integr ní konstnt. To protoºe víme, ºe prvidlo pro integrování mocnin 6 prom nných nám íká, bychom zvý²ili exponent o poté tto prom nno vyd lili nov vzniklým exponentem. Integrál dný rovnicí () je tké n páto, le integrnd je více komplikovný kv li p ítomnosti výrz x + 4. Pro vy e²ení tohoto problém poºijeme sbstitci = x + 4. D láme to proto, bychom zm nili integrnd n mnohem jednod²²í 5. Nicmén se msíme postrt o to, bychom vhodn nhrdili i výrz. V e i diferenciál máme Nyní, protoºe v n²em p ípd je = x + 4, okmºit dostáváme, ºe tedy. Tkºe sbstitcí z x + 4 v rovnici () obdrºíme (x + 4) 5 = 5 d Výsledný integrál m ºe být okmºit vypo ítán dává výsledek 6 + c. M ºeme se vrátit k 6 výrz obshjící p vodní prom nno x v dom ním si, ºe = x + 4, pk dostneme (x + 4) 5 (x + 4)6 = + c 6 Tímto jsme dokon ili integrci pomocí sbstitce. P íkld. P edpokládejme, ºe si p ejeme nlézt integrál cos(x + 4) () V²imn me si, ºe pokd nhrdíme z = x+4, potom bde integrnd obshovt mnohem jednod²²í podob cos, coº jsme schopni zintegrovt. Hndot Mtemtik

3 Mth & Stts tedy Stejn jko p edtím následje s = x + 4 = d = Tkºe sbstitcí z x + 4 s = d v rovnici () máme cos(x + 4) = cos() d = sin() + c M ºeme se vrátit k výrz obshjící p vodní prom nno x zp tným doszením z = x+4, tj. cos(x + 4) = sin(x + 4) + c Tímto jsme dokon ili integrci pomocí sbstitce. Je velice jednodché zobecnit výsledek p ede²lého p íkld. Chceme-li nlézt integrál fnkce cos(x + b) podle x, pk sbstitce = x + b vede k cos() d, coº je rovno sin() + c po návrt k sbstitci sin(x + b) + c. Podobný rgment, který bychom m li vyzko²et, kzje, ºe sin(x + b) = cos(x + b) + c. Poznámk. sin(x + b) = cos(x + b) + c P íkld. P edpokládejme, ºe chceme nlézt x. cos(x + b) = sin(x + b) + c Provedeme sbstitci = x z ú elem zjednod²ení integrnd n. P ipome me si, ºe integrál fnkce, vzhledem k, je p irozený logritms, tj. ln. Stejn jko d íve tedy Potom d s = x = = Hndot Mtemtik

4 Mth & Stts Integrál se zm ní n ( ) d = d = ln + c = ln x + c Výsledek p ede²lého p íkld lze zobecnit: chceme-li nlézt, pk poºití sbstitce x+b = x + b vede k d coº je rovno ln x + b + c. To znmená, ºe pokd elíme np íkld integrál, m ºeme okmºit npst odpov ve tvr ln x c. x+7 Poznámk. x + b = ln x + b + c Troch více msíme dávt pozor, kdyº prcjeme s mezemi r itých integrál. Uvºjme následjící p íkld. P íkld. P edpokládejme, ºe hledáme (9 + x) Provedeme sbstitci = 9 + x stejn jko d íve tedy Pk následje Integrál se zm ní n s = 9 + x d = = x= x= d zd rzn me, ºe jsme meze integrál zpsli jko hodnoty prom nné x nikoli. Tyto meze m ºeme zpst jko hodnoty poºitím sbstitce = 9 + x. P esn, pro x = je = 0 pro x = je =. Tedy Hndot 4 Mtemtik

5 Mth & Stts = =0 [ ] 0 = ( 0 ) = 78 V²imn me si, ºe v tomto p ípd není ntné p evád t výsledek z nzp t do p vodní prom nné x. Je to proto, ºe jsme p evedli meze integrál z p vodní prom nné x do nové prom nné. Cvi ení.. V kºdém p ípd poºijte sbstitci k nlezení integrál: () (x ) (b) (x + 0 5)4 (c) (x ) 7 (d) ( x).. V kºdém p ípd poºijte sbstitci k nlezení integrál: () sin(7x ) (b) e x (c) π 0 cos( x) (d) 7x+5. P íkld. P edpokládejme, ºe chceme nlézt integrál x + x () V tomto p íkld provedeme sbstitci = +x z ú elem zjednod²ení rgment drhé odmocniny. M ºeme vid t, ºe o zbytek integrnd x se tomticky postrá proces sbstitce, protoºe výrz x je derivcí n²í sbstitce, tj. fnkce = + x. tedy Potom Stejn jko d íve = + x d = x = x Tkºe sbstitcí z + x x = d v rovnici () obdrºíme x + x = d = d = + c Hndot 5 Mtemtik

6 Mth & Stts M ºeme se vrátit k vyjád ení obshjící p vodní prom nno x zp tným doszením = + x, coº nám dává x + x = ( + x ) + c Tímto jsme dokon ili integrci pomocí sbstitce. Poj me znlyzovt tento p íkld troch více srovnáním integrnd s obecným p ípdem f(g(x)) g (x). P edpokládejme, ºe zpí²eme g(x) = + x f() = Potom ozn me sloºením fnkcí f g fnkci f(g(x)) = + x. Dále pokd ozn íme g(x) = + x pk g (x) = x. Tedy integrál x + x je ve tvr f(g(x)) g (x) Aby bylo moºné provést integrci, poºijeme sbstitci = + x. V tomto obecném p ípd by bylo vhodné se poksit poloºit = g(x). Potom ( d ) = g (x). Po provedení sbstitce se výsledný integrál stává integrálem d v obecném p ípd f() d. Z p edpokld, ºe lze nlézt tento kone ný integrál, je problém vy e²en. Pro srovnání jso zde vedle sebe prezentovány konkrétní obecný p ípd: x + x f(g(x)) g (x) nech = + x nech = g(x) ( ) ( d = x d ) = g (x) x + x = d f(g(x)) g (x) = f() d Poznámk. Pro výpo et = + c = ( + x ) + c f(g(x)) g (x) je vhodná sbstitce = g(x) g (x), to nám dává f() d Integrce je pk proveden s ohledem k prom nné, º poté se nvrátíme k p vodní prom nné x. p i skládání fnkcí f g se postpje tk, ºe výstp vnit ní fnkce g sloºí so sn jko vstp pro vn j²í fnkci f, coº vede k výsledk f(g(x)) Hndot 6 Mtemtik

7 Mth & Stts Je t eb zd rznit, ºe integrce pomocí sbstitce je n co jko m ní v²e dovednost se zlep²í s prxí. Krom toho, sbstitce, která n první pohled vypdá rozmn, nemsí vést nikm. Pokd np íkld zksíme nlézt + x, jko sbstitci poºijeme = + x, ocitli bychom se ve slepé li ce. B me tedy p iprveni vytrvt zko²et odli²né p ístpy. P íkld. P edpokládejme, ºe si p ejeme vypo ítt 4x x + P epsáním integrnd n 4x x + si v²imneme, ºe nbývá podoby f(g(x)) g (x), kde f() =, g(x) = x + g (x) = 4x. Sbstitce = g(x) = x + zm ní integrál n f() d Ten vypo teme získáme d = + c Nkonec poºitím = x + se vrátíme k p vodní prom nné x 4x x + = (x + ) + c nebo po úprv x + + c P íkld. sin( x) P edpokládejme, ºe chceme nlézt x. Uvºjme sbstitci = x. Potom = x = = x x tedy sin( x) = x sin() d z ehoº plyne sin() cos() + c = cos( x) + c Hndot 7 Mtemtik

8 Mth & Stts M ºeme tké provést následjící pozorování: integrnd m ºeme zpst ve tvr sin x x. Zpsáním f() = sin() g(x) = x potom pltí g (x) = x = Dále f(g(x)) = sin( x). Proto zpí²eme dný integrál jko sin( x) x, x = x. který odpovídá tvr f(g(x)) g (x) s fnkcemi f g zdnými vý²e. Stejn jko d íve, sbstitce = g(x) = x vytvo í integrál f() sin() d, ze kterého sin() cos() + c = cos( x) + c Cvi ení.. V kºdém p ípd m ºe být integrnd zpsán jko f(g(x)) g (x). Ur ete fnkce f g poºijte obecný výsledek ze strny 6 k výpo t integrál. () x e x 5 (b) x sin( x ) (c) cos(x) +sin(x).. V kºdém p ípd vypo ítejte integrál pomocí zdné sbstitce: () xe x, = x. (b) x sin(x ), = x. 5 (c) x x 0 4 +, = x V kºdém p ípd poºijte vhodno sbstitci k výpo t integrál. () (d) (g) 5x x (b) x(+ x) x x 4 +6 (e) cos(x) (5+sin(x)) 5x x (h) e cos(x) sin(x) Odpov di ke cvi ením Cvi ení.. () (c) (x ) c (b) = (x ) 8 + c (d) 4. 6 (c) (f) (i) x 4 ( + x 5 ) 0 x x 4 + e sin(x) cos(x).. () cos(7x ) + c (b) ex + c (c),8 (d) ln 7x c 7 7 Hndot 8 Mtemtik

9 Mth & Stts Cvi ení.. () f() = e, g(x) = x 5, e x 5 + c, (b) f() = sin(), g(x) = x, cos( x ) + c (c) f() =, g(x) = + sin(x), ln + sin(x) + c.. () e x +c (b) cos(x ) 4 + c (c) 60.. () 5 ( x ) + c (b) + x + c (c) 0 ( + x5 ) 4 + c (d) (x4 + 6) + c (e) + c (f) 0, sin(x) (g) 0 9 ( x ) + c (h) e cos(x) + c (i) e sin(x) + c. Hndot 9 Mtemtik

odvodit vzorec pro integraci per partes integrovat sou in dvou funkcí pouºitím metody per partes Obsah 2. Odvození vzorce pro integraci per partes

odvodit vzorec pro integraci per partes integrovat sou in dvou funkcí pouºitím metody per partes Obsah 2. Odvození vzorce pro integraci per partes Integrce per prtes Speciální metod, integrce per prtes (integrce po ástech), je pouºitelná p i integrování sou inu ou funkcí. Tento leták oozuje zmín nou meto ilustruje ji n d p íkld. Abychom zvládli tuto

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe

Více

Ur itý integrál. Úvod. Denice ur itého integrálu

Ur itý integrál. Úvod. Denice ur itého integrálu V tomto lánku se budeme v novt ur itému integrálu, který dné funkci p i zuje íslo. My²lenk integrování pochází z geometrických poºdvk - zji² ování povrch, objem délek geometrických útvr. To znmená, ºe

Více

Integrování jako opak derivování

Integrování jako opak derivování Integrování jako opak derivování V tomto dokumentu budete seznámeni s derivováním b ºných funkcí a budete mít moºnost vyzkou²et mnoho zp sob derivace. Jedním z nich je proces derivování v opa ném po adí.

Více

e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody

e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody V praxi se asto setkávame s p ípady, kdy je pot eba e²it více rovnic, takzvaný systém rovnic, obvykle s více jak jednou neznámou.

Více

Limity funkcí v nevlastních bodech. Obsah

Limity funkcí v nevlastních bodech. Obsah Limity funkcí v nevlastních bodech V tomto letáku si vysv tlíme, co znamená, kdyº funkce mí í do nekone na, mínus nekone na nebo se blíºí ke konkrétnímu reálnému íslu, zatímco x jde do nekone na nebo mínus

Více

Vnit ní síly ve 2D - p íklad 2

Vnit ní síly ve 2D - p íklad 2 Vnit ní síly ve D - p íkld Orázek 1: Zt ºoví shém. Úkol: Ur ete nlytiké pr hy vnit níh sil n konstruki vykreslete je. e²ení: Pro výpo et rekí je vhodné si spojité ztíºení nhrdit odpovídjíím náhrdním emenem.

Více

Derivování sloºené funkce

Derivování sloºené funkce Derivování sloºené funkce V tomto letáku si p edstavíme speciální pravidlo pro derivování sloºené funkce (te funkci obsahující dal²í funkci). Po p e tení tohoto tetu byste m li být schopni: vysv tlit pojem

Více

matematika vás má it naupravidl

matematika vás má it naupravidl VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.

Více

Skalární sou in. Úvod. Denice skalárního sou inu

Skalární sou in. Úvod. Denice skalárního sou inu Skalární sou in Jedním ze zp sob, jak m ºeme dva vektory kombinovat, je skalární sou in. Výsledkem skalárního sou inu dvou vektor, jak jiº název napovídá, je skalár. V tomto letáku se nau íte, jak vypo

Více

7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic

7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic 7 Algebrické nelgebrické rovnice nerovnice v C. Numerické (typy lgebrických rovnic zákldní metody jejich e²ení lineární, kvdrtické, reciproké rovnice rovnice vy²²ích ád, rovnice nerovnice nelgebrické s

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a. TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její

Více

Pr b h funkce I. Obsah. Maxima a minima funkce

Pr b h funkce I. Obsah. Maxima a minima funkce Pr b h funkce I Maxima a minima funkce V této jednotce ukáºeme jak derivování m ºe být uºite né pro hledání minimálních a maximálních hodnot funkce. Po p e tení tohoto letáku nebo shlédnutí instruktáºního

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.

Více

Vektory. Vektorové veli iny

Vektory. Vektorové veli iny Vektor je veli ina, která má jak velikost tak i sm r. Ob tyto vlastnosti musí být uvedeny, aby byl vektor stanoven úpln. V této ásti je návod, jak vektory zapsat, jak je s ítat a od ítat a jak je pouºívat

Více

Sbírka p íklad z analýzy funkcí více prom nných

Sbírka p íklad z analýzy funkcí více prom nných ƒeské vysoké u ení technické v Prze Fkult elektrotechnická Sbírk p íkld z nlýzy funkcí více prom nných Miroslv Korbelá Prh 6 P edmluv Tento text je ur en pro studenty technických vysokých ²kol, zejmén

Více

Vektor náhodných veli in - práce s více prom nnými

Vektor náhodných veli in - práce s více prom nnými Vektor náhodných veli in - práce s více prom nnými 12. kv tna 2015 N kdy k popisu n jaké situace pot ebujeme více neº jednu náhodnou veli inu. Nap. v k, hmotnost, vý²ku. Mezi t mito veli inami mohou být

Více

Nevlastní integrál. Úvod. Dosud jsme se zabývali Riemannovým integrálem, který je denován pro ohrani enou funkci

Nevlastní integrál. Úvod. Dosud jsme se zabývali Riemannovým integrálem, který je denován pro ohrani enou funkci Nevlsní inegrál Dosud jsme se zbývli Riemnnovým inegrálem, kerý je denován pro ohrni enou funki f() n uzv eném inervlu, b. Teno ur iý inegrál jsme zpisovli ve vru V omo lánku pon kud roz²í íme pojem Riemnnov

Více

Binární operace. Úvod. Pomocný text

Binární operace. Úvod. Pomocný text Pomocný text Binární operace Úvod Milí e²itelé, binární operace je pom rn abstraktní téma, a tak bude ob as pot eba odprostit se od konkrétních p íklad a podívat se na v c s ur itým nadhledem. Nicmén e²ení

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - základní úrove obtíºnosti MAGZD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha.

Více

MATEMATICKÁ ANALÝZA II

MATEMATICKÁ ANALÝZA II MATEMATICKÁ ANALÝZA II JAN MALÝ Obsh 1. Integrální po et funkcí jedné prom nné 1 2. Eukleidovský prostor 5 3. Topologické pojmy 7 4. Derivce funkcí více prom nných 9 5. Diferenciální rovnice 10 6. Lokální

Více

Logaritmické rovnice I

Logaritmické rovnice I .9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme

Více

Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A

Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A 18. dubna 2016, 11:2013:20 ➊ (1 bod) Nalezn te kritický bod soustavy generujících rovnic e x 6y 6z 2 + 12z = 13, 2e 2x 6y z 3 = 6. Uºijte faktu,

Více

Seriál XXVII.III Aplikační

Seriál XXVII.III Aplikační Seriál XXVII.III Aplikční Seriál: Aplikční Tento díl seriálu bude tk trochu plikční. Minule jsme si pověděli úvod k vričním metodám ve fyzice, nyní bychom rádi nbyté znlosti plikovli n tři speciální přípdy.

Více

Rovnice a nerovnice. Posloupnosti.

Rovnice a nerovnice. Posloupnosti. .. Veronika Sobotíková katedra matematiky, FEL ƒvut v Praze, http://math.feld.cvut.cz/ 30. srpna 2018.. 1/75 (v reálném oboru) Rovnicí resp. nerovnicí v reálném oboru rozumíme zápis L(x) P(x), kde zna

Více

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.

Více

Post ehy a materiály k výuce celku Funkce

Post ehy a materiály k výuce celku Funkce Post ehy a materiály k výuce celku Funkce 1) Grafy funkcí Je p edloºeno mnoºství výukových materiál v programu Graph - tvary graf základních i posunutých funkcí, jejich vzájemné polohy, Precizní zápis

Více

1 Spo jité náhodné veli iny

1 Spo jité náhodné veli iny Spo jité náhodné veli in. Základní pojm a e²ené p íklad Hustota pravd podobnosti U spojité náhodné veli in se pravd podobnost, ºe náhodná veli ina X padne do ur itého intervalu (a, b), po ítá jako P (X

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

Matematická analýza KMA/MA2I Dvojný integrál

Matematická analýza KMA/MA2I Dvojný integrál temtická nlýz KA/A2I Dvojný integrál 1 Problém Jko byl Riemnn v integrál odpov dí n otázku obshu rovinného obrzce, bude dvojný integrál odpov dí n otázku objemu t les. Tentokrát se obejdeme bez historických

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

Automaty a gramatiky

Automaty a gramatiky 5 Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Co ylo minule Množinové operce s jzyky sjednocení, pr nik, rozdíl, dopln k uzv enost opercí (lgoritmus p evodu) et

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4

2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4 Pr b h funkce V této jednotce si ukáºeme jak postupovat p i vy²et ování pr b hu funkce. P edpokládáme znalost po ítání derivací a limit, které jsou dob e popsány v p edchozích letácích tohoto bloku. P

Více

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) = I. L'HOSPITALOVO PRAVIDLO A TAYLOR V POLYNOM. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) a) lim tg sin ( + ) / e e) lim a a i) lim a a, a > P ipome me si: 3 tg 4 2 tg b) lim 3 sin 4 2 sin

Více

VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx.

VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. (f(x) g(x)) dx. VYBRANÉ APLIKACE RIEMANNOVA INTEGRÁLU I. OBSAH A DÉLKA. Výpo et obsahu rovinných ploch a) Plocha ohrani ená k ivkami zadanými v kartézských sou adnicích. Obsah S rovinné plochy ohrani ené dv ma spojitými

Více

ízení Tvorba kritéria 2. prosince 2014

ízení Tvorba kritéria 2. prosince 2014 ízení. prosince 014 Spousta lidí má pocit, ºe by m la n co ídit. A n kdy to bývá pravda. Kdyº uº nás my²lenky na ízení napadají, m li bychom si poloºit následující t i otázky: ídit? Obrovskou zku²eností

Více

Modelování v elektrotechnice

Modelování v elektrotechnice Katedra teoretické elektrotechniky Elektrotechnická fakulta ZÁPADOƒESKÁ UNIVERZITA V PLZNI Modelování v elektrotechnice Pánek David, K s Pavel, Korous Luká², Karban Pavel 28. listopadu 2012 Obsah 1 Úvod

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/

Více

Testy pro více veli in

Testy pro více veli in Kapitola 8 Testy pro více veli in 8.1 Testy parametr s více výb ry s p edpokladem normality dat 8.1.1 Testy s dv ma výb ry. P edpoklady: Pro spojité rozd lení normalita nebo velký výb r. Pro diskrétní

Více

P íklad 1 (Náhodná veli ina)

P íklad 1 (Náhodná veli ina) P íklad 1 (Náhodná veli ina) Uvaºujeme experiment: házení mincí. Výsledkem pokusu je rub nebo líc, ºe padne hrana neuvaºujeme. Pokud hovo íme o náhodné veli in, musíme p epsat výsledky pokusu do mnoºiny

Více

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - vy²²í úrove obtíºnosti MAGVD10C0T01 e²ené p íklady

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - vy²²í úrove obtíºnosti MAGVD10C0T01 e²ené p íklady Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - vy²²í úrove obtíºnosti MAGVD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

T i hlavní v ty pravd podobnosti

T i hlavní v ty pravd podobnosti T i hlavní v ty pravd podobnosti 15. kv tna 2015 První p íklad P edstavme si, ºe máme atomy typu A, které se samovolným radioaktivním rozpadem rozpadají na atomy typu B. Pr m rná doba rozpadu je 3 hodiny.

Více

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE

ZÁKLADY MATEMATIKY 2. 1. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE ZÁKLADY MATEMATIKY 2. SÉRIE: URƒITÝ INTEGRÁL, APLIKACE I. P íprvní úlohy. V této sérii pot ebujete znlost výpo t následujících úloh - otestujte si ji:. Vypo ítejte neur ité integrály: ) (x 2 x + ) 2 dx

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Cvi ení 1. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 2, Organizace cvi ení 2 Matlab Za ínáme Základní operace Základní funkce

Cvi ení 1. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 2, Organizace cvi ení 2 Matlab Za ínáme Základní operace Základní funkce Modelování systém a proces Mgr. Lucie Kárná, PhD karna@fd.cvut.cz March 2, 2018 1 Organizace cvi ení 2 Za ínáme Základní funkce 3 Princip práce v u Jednoduché modely v u Souhrn Organizace cvi ení webová

Více

Cvi ení 1. Cvi ení 1. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 2, 2018

Cvi ení 1. Cvi ení 1. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 2, 2018 Cvi ení 1 Modelování systém a proces Mgr. Lucie Kárná, PhD karna@fd.cvut.cz March 2, 2018 1 Organizace cvi ení 2 Za ínáme Základní operace Základní funkce 3 Simulink Princip práce v Simulinku Jednoduché

Více

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání

Více

Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu.

Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu. Jméno: P íjmení: Datum: 7. ledna 28 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu. Rotující nádoba Otev ená válcová nádoba napln ná do poloviny vý²ky

Více

Vzorové e²ení 4. série

Vzorové e²ení 4. série Vzorové e²ení 4. série Úloha 4.1 Kouma koupil Œoumovi k Vánoc m Rubikovu kostku. Strana kostky m í 10 cm. Kdyº mu ji v²ak cht l zabalit do váno ního papíru, zjistil, ºe má k dispozici pouze tvercový papír

Více

Reálná ísla a posloupnosti Jan Malý

Reálná ísla a posloupnosti Jan Malý Reálná ísla a posloupnosti Jan Malý Obsah 1. Reálná ísla 1 2. Posloupnosti 2 3. Hlub²í v ty o itách 4 1. Reálná ísla 1.1. Úmluva (T leso). Pod pojmem t leso budeme v tomto textu rozum t pouze komutativní

Více

Zkou²ková písemná práce. 1 z p edm tu 01MAB4

Zkou²ková písemná práce. 1 z p edm tu 01MAB4 Zkou²ková písemná práce. 1 z p edm tu 1MAB4 29/5/218, 9: 11: ➊ (8 bod ) Pro parametry a > a b R vypo t te ur itý integrál e ax2 cos(bx2 ) 1 x Uºijte v tu o derivaci integrálu s parametrem. Spln ní p edpokladu

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

Státnice - Rekurzivní a rekurzivn spo etné mnoºiny

Státnice - Rekurzivní a rekurzivn spo etné mnoºiny Kapitola 1 Státnice - Rekurzivní a rekurzivn spo etné mnoºiny 1.1 Rekurzivn spo etné mnoºiny Denice (Rekurzivní a rekurzivn spo etná mnoºina) Charakteristická funkce mnoºiny M ozna uje charakteristickou

Více

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web: Pravd podobnost a statistika - cvi ení Simona Domesová simona.domesova@vsb.cz místnost: RA310 (budova CPIT) web: http://homel.vsb.cz/~dom0015 Cíle p edm tu vyhodnocování dat pomocí statistických metod

Více

Přijímací test studijních předpokladů

Přijímací test studijních předpokladů Univerzit obrny Přijímcí test stdijních předpokldů Test ze dne 10. 4. 018 (03) Fklt vojenských technologií V kždém příkldě je právě jedn z nbízených vrint řešení správná. Z správně zkrožkovno vrint jso

Více

I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY

I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY 1. Ur ete a nakreslete deni ní obor a vrstevnice funkcí: a) f(, y) = + y b) f(, y) = y c) f(, y) = 2 + y 2 d) f(, y) = 2 y 2 e) f(, y) = y f) f(, y) =

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

NMAF061, ZS Písemná část zkoušky 25. leden 2018

NMAF061, ZS Písemná část zkoušky 25. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4

Více

4. cvičení z Matematiky 2

4. cvičení z Matematiky 2 4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y

Více

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné

je parciální derivace funkce f v bodě a podle druhé proměnné (obvykle říkáme proměnné 1. Prciální derivce funkce více proměnných. Prciální derivce funkce dvou proměnných. Je-li funkce f f(, ) definován v množině D f R 2 bod ( 1, 2 ) je vnitřním bodem množin D f, pk funkce g 1 (t) f(t, 2

Více

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost (8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo

Více

Matematika pro ekonomy MATEMATIKA PRO EKONOMY

Matematika pro ekonomy MATEMATIKA PRO EKONOMY Mtemtik pro ekonomy MATEMATIKA PRO EKONOMY 8 ešení soustvy lineárních rovnic užitím mtic Gussov eliminní metod (GEM) MATICE 6 6 Hlvní digonál TROJÚHELNÍKOVÁ MATICE Pozn.: i... i-tý ádek mtice PIVOT = první

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi

Více

1 Matematické základy teorie obvodů

1 Matematické základy teorie obvodů Matematické základy teorie obvodů Vypracoval M. Košek Toto cvičení si klade možná přemrštěný, možná jednoduchý, cíl dosáhnout toho, aby všichní studenti znali základy matematiky (a fyziky) nutné pro pochopení

Více

e²ení 4. série Binární operace

e²ení 4. série Binární operace e²ení 4. série Binární operace Úloha 4.1. V Hloup tínské jaderné elektrárn do²lo jednoho dne k úniku radioaktivního zá ení. Obyvatelé byli pro tento p ípad kvalitn vy²koleni v obran proti záke ným ásticím,

Více

Matematická logika cvi ení 47

Matematická logika cvi ení 47 Matematická logika cvi ení 47 Libor B hounek www.cs.cas.cz/behounek/teaching/malog12 LS 2012/13, P F OU, 4.25. 3. 2013 Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky

Více

10 je 0,1; nebo taky, že 256

10 je 0,1; nebo taky, že 256 LIMITY POSLOUPNOSTÍ N Á V O D Á V O D : - - Co to je Posloupnost je parta očíslovaných čísel. Trabl je v tom, že aby to byla posloupnost, musí těch čísel být nekonečně mnoho. Očíslovaná čísla, to zavání

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

P íklady k procvi ení znalostí na písemnou ást bakalá ské státní zkoušky. Elektrické obvody:

P íklady k procvi ení znalostí na písemnou ást bakalá ské státní zkoušky. Elektrické obvody: P íkldy k procvi ení znlostí n písemno ást klá ské státní zkošky Elektrické ovody: 1. Stnovte st ední efektivní hodnot prod, jehož sový pr h je n orázk: 2. Stnovte st ední efektivní hodnot np tí o mplitd

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016 e²ení testu Mechania a ontinuu NAFY00 8. listopadu 06 P ílad Zadání: Eletron o ineticé energii E se srazí s valen ní eletrone argonu a ionizuje jej. P i ionizaci se ást energie nalétávajícího eletronu

Více

Limity, derivace a integrály Tomáš Bárta, Radek Erban

Limity, derivace a integrály Tomáš Bárta, Radek Erban Limity, derivce integrály Tomáš Bárt, Rdek Erbn Úvod Definice. Zobrzení(téžfunkce) f M Njemnožinuspořádnýchdvojic(x, y) tková,žekekždému xexistujeprávějedno y,žedvojice(x,y) f.tj.kždývzor xmáprávějedenobrz

Více

2 Fyzikální a geometrické úlohy varia ního typu Hamiltonova-Jacobiho rovnice... 46

2 Fyzikální a geometrické úlohy varia ního typu Hamiltonova-Jacobiho rovnice... 46 Obsh 1 Úvod 3 1.1 Klsické fyzikální geometrické úlohy vri ního typu...... 4 1.1.1 Izoperimetrický problém................... 4 1.1.2 Úloh o minimální rot ní plo²e.............. 5 1.1.3 í ení sv tl..........................

Více

e²ení 1. série Úvodní gulá²

e²ení 1. série Úvodní gulá² e²ení. série Úvodní gulá² Úloha.. Gulá²gvhevmnjdfs!!, ozvalo se uº o n co hlasit ji hladové monstrum dychtící po Lib n in specialit. Henry! Ví² moc dob e, ºe ti nedám, dokud neuhodne², na co myslím! Malinko

Více

e²ení 3. série Hrátky s t lesy

e²ení 3. série Hrátky s t lesy e²ení 3. série Hrátky s t lesy Úloha 3.1. Lib nka, protoºe je parádnice, si vzala krychli s hranou 1 vyrobenou ze zrcadel a poloºila ji hranami na sou adnicové osy. Mat j ji sledoval a lstiv jí v rohu

Více

ANALYTICKÁ GEOMETRIE

ANALYTICKÁ GEOMETRIE Technická niverzit v Liberci Fklt přírodovědně-hmnitní pedgogická Ktedr mtemtiky didktiky mtemtiky NLYTICKÁ GEOMETRIE Pomocný čební text Petr Pirklová Liberec, listopd 2015 NLYTICKÁ GEOMETRIE LINEÁRNÍCH

Více

P íklady k prvnímu testu - Scilab

P íklady k prvnímu testu - Scilab P íklady k prvnímu testu - Scilab 24. b ezna 2014 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a naprogramujte p íklad podobný. Tím se ujistíte, ºe p íkladu

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot

Více

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 6. prosince 2016, 13:2015:20 ➊ (8 bod ) Vy²et ete stejnom rnou konvergenci ady na mnoºin R +. n=2 x n 1 1 4n 2 + x 2 ln 2 (n) ➋ (5 bod ) Detailn

Více

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců Stvení sttik, 1.ročník klářského studi Tém 9 Těžiště Těžiště rovinných čr Těžiště jednoduchých rovinných orců Těžiště složených rovinných orců Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerit

Více

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět.

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět. POKYNY KE STUDIU Pokyny ke studiu V úvodu si vysvětlíme jednotnou pevnou strukturu kždé kpitoly tetu, která by vám měl pomoci k rychlejší orientci při studiu Pro zvýrznění jednotlivých částí tetu jsou

Více

Základní zapojení operačních zesilovačů

Základní zapojení operačních zesilovačů ákladní zapojení operačních zesilovačů ) Navrhněte a zapojte stejnosměrný zesilovač s operačním zesilovačem v invertjícím zapojení se zadanými parametry. ) Navrhněte a zapojte stejnosměrný zesilovač s

Více

Prezentace. Ing. Petr V elák 6. b ezna 2009

Prezentace. Ing. Petr V elák 6. b ezna 2009 Prezentace Ing. Petr V elák 6. b ezna 2009 1 OBSAH OBSAH Obsah 1 Úvodní slovo 3 2 P íprava prezentace 4 2.1 Jak prezentace ned lat........................ 4 2.1.1 Kontrast písma a pozadí...................

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více