1. Vznik zkratů. Základní pojmy.

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Vznik zkratů. Základní pojmy."

Transkript

1 . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v E. znik zkrtu: vznikne poruchovým spojením fází nvzájem, nebo poruchovým spojením fáze (fází) se zemí v soustvě s uzemněným uzlem. Hlvní příčiny zkrtu: poruchou izolce způsobené přepětím, přímým úderem blesku, zestárnutím izolčních mteriálů, přímým poškozením venkovních vedení kbelů. Následky zkrtu: celková zkrtem postižené části sítě se zmenšuje, zvětšují se proudy > tzv. zkrtové proudy, snížení npětí v místech blízkých zkrtu, účinky k způsobují oteplení zřízení, silové nmáhání, problémy s vypínáním k, elektrický oblouk, přepětí vzniklá při zkrtu, porušení synchronismu prlelně spoluprcujících E, rušení sdělovcích vedení > indukovná npětí. Pozn.: místech zkrtu vznikjí přechodné odpory. - přechodný odpor je dán součtem odporu vzniklého oblouku odporu osttních částí cesty k, - přesné určení uvedených odporů je obtížné, - proud délk oblouku se v průběhu zkrtu mění > mění se i odpor oblouku, - při výpočtu k (pro účely dimenzování elektrických zřízení) přechodné odpory znedbáváme > DOKONLÉ KRTY!!!

2 . Druhy zkrtů. ákldní rozdělení zkrtů: ) souměrné zkrty, b) nesouměrné zkrty. d ) ouměrné zkrty: trojfázový zkrt > zkrtem jsou postiženy všechny tři fáze. u venkovních vedení se vyskytuje poměrně málo, u kbelových vedení je jich nejvíce > vlivem působení oblouku přecházejí osttní druhy poruch v trojfázový zkrt. d ) Nesouměrné zkrty: dvoufázový zkrt, dvoufázový zemní zkrt, jednofázový zkrt: v sítích N se tto poruch kvlittivně liší od zkrtu > tzv. zemní spojení, v přípdě vzniku zemního spojení n N (izolovný uzel nebo nepřímo uzemněný) > žádná změn n NN (uzemněný uzel).

3 . Čsový průběh k význčné hodnoty k. znik zkrtového proudu znmená: změnu normálního stvu, změnu npětí proudů, porušení rovnováhy energií, W Li, W L C Cu kždá změn je spojen se změnou energie v mg. poli, kždá změn je spojen se změnou energie v el. poli. rychlost změny energií odpovídá určitému výkonu, výkony mjí konečné hodnoty > ke změně je potřeb určitého čsu. () Čsový průběh: předpokld : před zkrtem byl soustv v chodu nprázdno, činné odpory jsou v obvodu znedbtelné, omezujícími prmetry jsou jen rektnce > k má indukční chrkter (je přibližně zpožděn o π/ z npětím). liv činných odporů n vlstnosti k : konečné hodnoty činných odporů snižují účinky zkrtových proudů, znedbání činných odporů vede k prodloužení čsových konstnt τl/r.

4 ymetrický zkrtový proud: ke zkrtu dojde v okmžiku, kdy sin npětí prochází svým mximem, k zčíná ze své minimální hodnoty. ložky k : počáteční složk rázová složk, přechodná složk, ustálená složk. Názvosloví význčné hodnoty: souměrný zkrtový proud ks, // / ks f k, k, ku () ( ) rázový zkrtový proud k //, počáteční rázový zkrtový proud k //, přechodný zkrtový proud k /, počáteční přechodný zkrtový proud k /, ustálený zkrtový proud ku.

5 Nesymetrický zkrtový proud: ke zkrtu dojde v okmžiku, kdy sin npětí prochází nulou, k zčíná ze své mximální hodnoty > vytvoří se dlší složky k : stejnosměrná složk k, počáteční stejnosměrná složk k, nesouměrný zkrtový proud kns, kns ks k nárzový proud km > vrcholová hodnot první půlperiody k při největší možné stejnosměrné složce. ()

6 4. Účiník zkrtového proudu impednční úhel k je dán vzthem: ϕ k X rctg R celk. celk. (4) X celk. je rektnce celého obvodu do míst zkrtu, R celk. je činný odpor celého obvodu do míst zkrtu. pro různé npěťové hldiny typy vedení je účiník zkrtového proudu tbulkově zprcován.

7 5. krty v jednoduché f soustvě při chodu nprázdno. uvžujeme jednoduchou symetrickou f soustvu, generátor je zdrojem npětí sousledné složkové soustvy, obvod zhrnuje impednci složenou z impednce generátoru impednce vnější části obvodu. Fázory npětí proudů v soustvě souměrných složek: sousledná, zpětná, netočivá (konfázní), složkové veličiny :,,,,,, fázové veličiny :,, C,,, C., C C (5), (6), π π j j (7) (8) zdrojem npětí sousledné složkové soustvy je generátor tzn., že můžeme psát: i f (9) původcem proudu zpětné netočivé soustvy je npěťová nesymetrie v místě poruchy.

8 f zkrt zemní f zkrt: C () (),, i ()

9 f zkrt:, C () i ( ),, (4) (5) (6)

10 f zkrt: C C,, (7), i (9), i, j j (8) ()

11 f zkrt zemní:, C () (),, i ()

12 6. Přehledové shrnutí. Přehled složkových impedncí ve vzthu k typu zkrtu: Typ zkrtu ouměrné složk y impedncí f f, f,, f zemní,, Doplňková impednce k sousledné: znčení doplňkové impednce:, umísťuje se pouze v místě zkrtu, určuje typ zkrtu: f f : f : f : zemní: (4) (5) (6) (7) výpočet proudu pomocí doplňkové impednce: i (8)

13 7. Přehled složkových resp. X. Prvek E Turbolternátor Hydrolternátor Trnsformátor ( vinutí) Trnsformátor ( vinutí) enkovní vedení Kbel f (jednoplášťové) Kbel f (trojplášťové) sousledná Prmetry rázový k x x d // přechodný k x x d / ustálený k zpětná x x d // netočivá x (,6 ž )x d // sousledná x x d x jko u turbolternátorů zpětná x (x d // x q // )/ netočivá sousledná x závisí n vinutí stroje x u k, (velké Tr: x u x ) zpětná x u k, (velké Tr: x u x ) netočivá x závisí n spojení vinutí uspořádání kostry určíme výpočtem z hodnot měření nkrátko sousledná x ωl zpětná netočivá sousledná x x x závisí n typu vedení, provedení, mteriálu, γ země x podle údjů výrobce zpětná x x netočivá sousledná x x (závisí n rozdělení proudu mezi plášť zem) x jko u jednoplášťových, le vynásobené číslem,8 zpětná x x netočivá x x (závisí n rozdělení proudu mezi plášť zem)

14 8. ýpočet zkrtů metodou postupného zjednodušování. výpočet se většinou provádí jko zběžný tzn., že uvžujeme pouze rektnce > dává větší hodnoty, podrobný výpočet se provádí při kontrole hospodárnosti výpočtu čsových průběhů zkrtů, použití poměrných hodnot, tj. hodnot vztžených n předem dohodnutý zákld. ztžné veličiny: vztžný výkon f (M) (9) vztžné npětí (sd ružené) (k) > předepsáno ČN vztžný proud (k) vztžná impednce (Ω) f X vztžná rektnc e (Ω) () Poměrné veličiny: z poměrná impednce (-) x poměrná rektnc e (-) skutečná velikost impednce ( Ω) X skutečná velikost rektnce (Ω) z x X, () P očáteční hodnoty jednotlivých zkrtů: f zkrt: k k // // k nebo k k x z k // // k k Pozn.: k z z () () k koeficient, který respektuje ztížení generátoru Místo z může být i x.

15 f zkrt f zkrt: // () // ( ) k k, k k z z z z z (4) Nárzový zkrtový proud: v okmžiku první půlperiody tzn., t,s při f5hz: km // k ve skutečnosti se upltňuje útlum tzn., že vzth (5) přejde n tvr: (5) // km K k (6) kde K (K ž ) respektuje uvedený útlum Přepočet rektncí n vztžný výkon: Generátor: Chrkteristické prmetry: G jmenovitý výkon (M), G jmenovité npětí (k), X d // rázová rektnce (-). x G x // d G (7) Trnsformátor: Chrkteristické prmetry: T jmenovitý výkon (M), p T převod (-), u k npětí nkrátko (-). x T u k T (8) edení: Chrkteristické prmetry: X rektnce (Ω/km), l délk (km), ved. npětí (k). x X l ved. (9)

16 Kbel: Chrkteristické prmetry: X rektnce (Ω/km), R činný odpor (Ω/km), l délk (Ω/km),... npětí (k). kb. výsledné veličiny počítá m z celkové impednce, z celk. r k celkovou rektnci určíme: x celk. x xk, xcelk., rk Rl (4) kb. x k X l kb. (4) Elektrizční soustv: Chrkteristické prmetry: K zkrtový výkon (M), E npětí (k). x K (4) Pozn.: přípdě, že prcujeme s nenávznými npěťovými hldinmi musíme při přepoč tu respektovt: rozdílné npěťové hldiny, převody trnsformátorů iz. následující vzorec: x i x p i Ti kde i jmenovi té npětí určitého prvku E (k), vztžn é npětí (k), p Ti převod i-tého trnsformátoru (-). převody trnsformují činné odpory rektnce jednotlivých prvků E ž do míst zkrtu!!! (4)

17 9. ýpočet zkrtů metodou uzlových npětí. Náhrdní schém: zkrt nhrdíme dvěm zdroji s npětím [k], které mjí opčnou orientci, velikost npětí [k] je rovn hodnotě npětí v uzl u K těsně před poruchou, využijeme principu superpozice. E ktivní E > obshuje zdroje: ustále ný chod E těsně před zkrtem, zdro je modelujeme ideálním zdrojem npětí rektncí generátoru!!! PE psivní E > bez zdrojů: poruchový stv, generátory nhrzujeme pouze rázovou rektncí proti zemi!!! Obecný výpočet poruchového proudu: Poruchový P E PE (44) E je proud těsně před poruchou, PE je proud při poruše.

18 lgoritmus výpočtu: ) bezporuchový stv > P : [] [Y] [ ] [ Y] [ ] (45) vektor proudů z/do systému, dmitnční mtice: digonální prvky záporně vztý součet dmitncí vycházejících s uzle, mimo digonální prvky přímo vzté dmitnce mezi uzly, [] vektor npětích uzlů proti zemi. b) poruch: [ Y] [] [] k k n [ ] [ k] [ k] n (46) (47) neznáme:,,, n, k k kk k (48) kk k známe: [k] [] digonální prvek mtice, zkrtový proud určený z PE,

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS STEJNOSĚRNÉ STROJE Určeno pro posluchče bklářských studijních progrmů FS 1. Úvod 2. Konstrukční uspořádání 3. Princip činnosti stejnosměrného stroje 4. Rozdělení stejnosměrných strojů 5. Provozní vlstnosti

Více

STEJNOSMĚRNÉ STROJE. Určeno pro posluchače bakalářských studijních programů. 1. Úvod

STEJNOSMĚRNÉ STROJE. Určeno pro posluchače bakalářských studijních programů. 1. Úvod 1. Úvod Stejnosměrné stroje jsou historicky nejstršími elektrickými stroji nejprve se používly jko generátory pro výrobu stejnosměrného proudu. V řdě technických plikcí byly tyto V součsné době se stejnosměrné

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace Jiří Petržel zpětná vzb, stbilit oscilce zpětná vzb, stbilit oscilce zpětnou vzbou (ZV) přivádíme záměrněčást výstupního signálu zpět n vstup ZV zásdně ovlivňuje prkticky všechny vlstnosti dného zpojení

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

4. kapitola: Dvojbrany - rozdělení, rovnice (modely)

4. kapitola: Dvojbrany - rozdělení, rovnice (modely) Punčochář, J: EO; 4. kpitol 4. kpitol: Dvojbrny - rozdělení, rovnice (modely) Čs ke studiu: 4 hodiny íl: Po prostudování této kpitoly budete umět používt šipkovou konvenci dvojbrnů umět je klsifikovt.

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

Téma 25. Obrázek 1. (a) mechanická char.; (b) momentová char.; (c) řízení rychlosti

Téma 25. Obrázek 1. (a) mechanická char.; (b) momentová char.; (c) řízení rychlosti Tém 25 Jn Bednář bednj1@fel.cvut.cz mechnická chrkteristik n=f(m) závislost rychlosti n n elektromgnetickém momentu M vznikjícím ve stroji vzájemným působením vinutí protékných proudem mgnetických polí,

Více

třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy:

třecí síla (tečná vazba podložky) F normálová reakce podložky výsledná reakce podložky Podmínky rovnováhy: SPŠ VOŠ KLADO SAIKA - PASIVÍ ODPORY PASIVÍ ODPORY Při vzájemném pohybu těles vznikjí v reálných vzbách psivní odpory, jejichž práce se mění v teplo. Psivní odpory předstvují ztráty, které snižují účinnost

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

U 1, U 2 I 1, I 2. vnější napětí dvojbranu vnější proudy dvojbranu

U 1, U 2 I 1, I 2. vnější napětí dvojbranu vnější proudy dvojbranu DVOJBRAN Definice rodělení dvojbrnů Dvojbrn libovolný obvod, který je s jinými částmi obvodu spojen dvěm pár svorek (vstupní výstupní svork). K nlýe cování obvodu postčí popst dný dvojbrn poue vt mei npětími

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 8. TRANSFORMÁTORY 8. Princip činnosti 8. Provozní stavy skutečného transformátoru 8.. Transformátor naprázdno 8.. Transformátor

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Provozování distribučních soustav

Provozování distribučních soustav Provozování distribučních soustav Sítě vysokého napětí s odporníkem v uzlu vn napájecího transformátoru Ivan Cimbolinec Úvodem: Distribuční sítě vysokého napětí 10, 22 a 35 KV se na území České republiky

Více

STEJNOSMĚRNÉ STROJE (MOTORY) Princip činnosti motoru, konstrukční uspořádání, základní vlastnosti

STEJNOSMĚRNÉ STROJE (MOTORY) Princip činnosti motoru, konstrukční uspořádání, základní vlastnosti STEJNOSĚRNÉ STROJE (OTORY) Princip činnosti motoru, konstrukční uspořádání, zákldní vlstnosti Obr. 1. Směr siločr budicího (sttorového) obvodu stejnosměrného stroje Obr. 2. Směr proudu kotevního (rotorového)

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Rozvodná zařízení. Garant předmětu: Ing. Jaroslava Orságová

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Rozvodná zařízení. Garant předmětu: Ing. Jaroslava Orságová FAKULTA ELEKTROTECNIKY A KOMUNIKAČNÍC TECNOLOGIÍ VYSOKÉ UČENÍ TECNICKÉ V BRNĚ Rozvodná zřízení Grnt předmětu: Ing Jroslv Orságová Autor textu: Ing Jroslv Orságová Rozvodná zřízení Obsh PŘENOSOVÁ A ROZVODNÁ

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Přechodné jevy v elektrizačních soustavách

Přechodné jevy v elektrizačních soustavách vičení z předmětu Přechodné jevy v elektrizačních soustavách Další doporučená literatura: 1. Beran, Mertlová, Hájek: Přenos a rozvod elektrické energie. Hájek: Přechodné jevy v elektrizačních soustavách

Více

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO,KOUNICOVA16 METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady Třída : K4 Název tématu : Metodický list z elektroenergetiky řešené příklady

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Trojfázový transformátor

Trojfázový transformátor Trojfázový transformátor Cíle cvičení: Naučit se - určit odpory primárního a sekundárního vinutí - vztah indukovaného napětí s magnetickým tokem - spojování 3-fázových vinutí - fázové a sdružené napětí

Více

ZEMNÍ TLAKY. Princip určování: teorie mezní rovnováhy, rovinná úloha, předpoklad rovinných kluzných ploch

ZEMNÍ TLAKY. Princip určování: teorie mezní rovnováhy, rovinná úloha, předpoklad rovinných kluzných ploch Druhy!"tlk v klidu S r!"ktivní zemní tlk S!"psivní odpor S p ZEMNÍ TLAKY Obr.. Druhy zemních tlků ) tlk zeminy v klidu, b) ktivní zemní tlk, c) psivní zemní odpor, d) závislost velikosti zemního tlku od

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami: Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTIBUČNÍ SOUSTAVY ELPROINVEST s.r.o. Příloha1 Dotazníky pro registrované údaje. Schválil: ENERGETICKÝ REGULAČNÍ ÚŘAD

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTIBUČNÍ SOUSTAVY ELPROINVEST s.r.o. Příloha1 Dotazníky pro registrované údaje. Schválil: ENERGETICKÝ REGULAČNÍ ÚŘAD PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTIBUČNÍ SOUSTAVY ELPROINVEST s.r.o. Příloha1 Dotazníky pro registrované údaje Schválil: ENERGETICKÝ REGULAČNÍ ÚŘAD Obsah Dotazník 1a - Údaje o výrobnách pro všechny výrobny

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Calculation of the short-circuit currents and power in three-phase electrification system

Calculation of the short-circuit currents and power in three-phase electrification system ČESKOSLOVENSKÁ NORMA MDT 621.3.014.3.001.24 Září 1992 Elektrotechnické předpisy ČSN 33 3020 VÝPOČET POMĚRU PŘI ZKRATECH V TROJFÁZOVÉ ELEKTRIZAČNÍ SOUSTAVĚ Calculation of the short-circuit currents and

Více

2.6. Vedení pro střídavý proud

2.6. Vedení pro střídavý proud 2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých

Více

Míra vjemu flikru: flikr (blikání): pocit nestálého zrakového vnímání vyvolaný světelným podnětem, jehož jas nebo spektrální rozložení kolísá v čase

Míra vjemu flikru: flikr (blikání): pocit nestálého zrakového vnímání vyvolaný světelným podnětem, jehož jas nebo spektrální rozložení kolísá v čase . KVLIT NPĚTÍ.. Odchylky napájecího napětí n ± % (v intervalu deseti minut 95% průměrných efektivních hodnot během každého týdne) spínání velkých zátěží jako např. pohony s motory, obloukové pece, bojlery,

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

Ochrany v distribučním systému

Ochrany v distribučním systému Ochrany v distribučním systému Ochrany elektroenergetických zařízení Monitorují provozní stav chráněného zařízení. Provádí zásah, pokud chráněný objekt přejde z normálního stavu do stavu poruchového. Poruchové

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Vznik trojfázového napětí Průběh naznačený na obrázku je jednofázový,

Více

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. ENERGETIKY TŘINEC, a.s. DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. ENERGETIKY TŘINEC, a.s. DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ENERGETIKY TŘINEC, a.s. PŘÍLOHA 1 DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE Zpracovatel: PROVOZOVATEL LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ENERGETIKA TŘINEC, a.s. Říjen

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

Vzorová řešení čtvrté série úloh

Vzorová řešení čtvrté série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce

Více

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY PŘÍLOHA 1 DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE Zpracovatel: PROVOZOVATEL LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY VLČEK Josef - elektro s.r.o. Praha 9 - Běchovice Září

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

1.2.7 Sbírka příkladů - vozíčky

1.2.7 Sbírka příkladů - vozíčky 7 Sbírk příkldů - vozíčky Předpokldy: 06 Při řešení vozíčků určujeme dvě veličiny: zrychlení soustvy, síly, kterými provázky působí n jednotlivé předměty F Zrychlení soustvy určíme pomocí NZ ze vzorce

Více

TRANSFORMÁTORY Ing. Eva Navrátilová

TRANSFORMÁTORY Ing. Eva Navrátilová STŘEDNÍ ŠOLA, HAVÍŘOV-ŠUMBAR, SÝOROVA 1/613 příspěvková organizace TRANSFORMÁTORY Ing. Eva Navrátilová - 1 - Transformátor jednofázový = netočivý elektrický stroj, který využívá elektromagnetickou indukci

Více

PŘÍLOHA 1 PPDS:DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

PŘÍLOHA 1 PPDS:DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE AVIDLA OVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV PŘÍLOHA 1 DOTAZNÍKY O REGISTROVANÉ ÚDAJE Strana 3 Obsah Dotazník 1a - Údaje o výrobnách pro všechny výrobny 3 Dotazník 1b - Údaje o výrobnách pro výrobny s výkonem

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

Modely silnoproudých vedení pro počítačovou simulaci přenosu dat technologií PLC

Modely silnoproudých vedení pro počítačovou simulaci přenosu dat technologií PLC Rok / Yer: Svzek / Volume: Číslo / Number: 00 6 Modely silnoproudých vedení pro počítčovou simulci přenosu dt technologií PLC Models of power lines for computer simultion of dt trnsmission with the PLC

Více

Roční výkaz pro malé ekonomické subjekty vybraných produkčních odvětví za rok 2001

Roční výkaz pro malé ekonomické subjekty vybraných produkčních odvětví za rok 2001 Roční výkz pro mlé ekonomické subjekty vybrných produkčních odvětví z rok 00 P4-0 Registrováno ČSÚ ČV 93/0 ze dne 30. 8.00 IKF 500 Výkz je součástí Progrmu sttistických zjišťování n rok 00. Podle zákon

Více

PRAVIDLA PROVOZOVÁNÍ. MOTORPAL,a.s.

PRAVIDLA PROVOZOVÁNÍ. MOTORPAL,a.s. PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY MOTORPAL,a.s. licence na distribuci elektřiny č. 120705508 Příloha 1 Dotazníky pro registrované údaje 2 Obsah Dotazník 1a Údaje o všech výrobnách - po

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

VYUŽITÍ CITLIVOSTNÍ ANALÝZY V ELEKTROTECHNICE A ŘÍDÍCÍ TECHNICE - II

VYUŽITÍ CITLIVOSTNÍ ANALÝZY V ELEKTROTECHNICE A ŘÍDÍCÍ TECHNICE - II 8 Informčné utomtizčné technológie v ridení kvlity produkcie Vernár,.-4. 9. 5 VYUŽIÍ CILIVONÍ ANALÝZY V ELEKROECHNICE A ŘÍDÍCÍ ECHNICE - II KÜNZEL Gunnr Abstrkt Příspěvek nvzuje n předchozí utorův článek

Více

9 Kladiva, průbojníky, sekáče

9 Kladiva, průbojníky, sekáče Kldiv, průojníky, sekáče Speciální postup při výroě kldiv KAIVO 1. Řezání: n stroji, plochá ocel se nřeže do poždovných tvrů:přesností řezu je zjištěn minimální spotře kvlitního mteriálu. 2. Kování: díly

Více

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. Dotazníky pro registrované údaje

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. Dotazníky pro registrované údaje PŘÍLOHA 1 PDS SETUZA :DOTAZNÍKY O REGISTROVANÉ ÚDAJE AVIDLA OVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY Příloha 1 Dotazníky pro registrované údaje Zpracovatel: OVOZOVATEL LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ENERGY

Více

Testování ochrany při nesymetrickém zatížení generátoru terminálu REM 543

Testování ochrany při nesymetrickém zatížení generátoru terminálu REM 543 Testování ochrany při nesymetrickém zatížení generátoru terminálu REM 543 Cíle úlohy: Cílem úlohy je seznámit se s parametrizací terminálu REM543, zejména s funkcí ochrany při nesymetrickém zatížení generátoru.

Více

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍCH DISTRIBUČNÍCH SOUSTAV DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍCH DISTRIBUČNÍCH SOUSTAV DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE AVIDLA OVOZOVÁNÍ LOKÁLNÍCH DISTRIBUČNÍCH SOUSTAV PŘÍLOHA 1 DOTAZNÍKY O REGISTROVANÉ ÚDAJE Zpracovatel: OVOZOVATEL LOKÁLNÍCH DISTRIBUČNÍCH SOUSTAV Coal Services a.s. Schválil: ENERGETICKÝ REGULAČNÍ ÚŘAD

Více

11. OCHRANA PŘED ÚRAZEM ELEKTRICKÝM PROUDEM. Příklad 11.1

11. OCHRANA PŘED ÚRAZEM ELEKTRICKÝM PROUDEM. Příklad 11.1 11. OCHRN PŘED ÚRZEM ELEKTRICKÝM PRODEM Příklad 11.1 Vypočítejte velikost dotykového napětí d na spotřebiči, který je připojen na rozvodnou soustavu 3 50 Hz, 400 V/TN-C, jestliže dojde k průrazu fázového

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

Multimediální technika a televize - úvod. Dr. Ing. Libor Husník

Multimediální technika a televize - úvod. Dr. Ing. Libor Husník Multimediální technik televize - úvod přednášející: Prof. Ing. Miloš Klím, CSc. Dr. Ing. Libor Husník Multi-médi pokus o slovníkové heslo multi = mnoho, více médi = z ltinského medire medius = prostřední

Více

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. VEOLIA PRŮMYSLOVÉ SLUŽBY ČR, a.s. PŘÍLOHA 1. Dotazníky pro registrované údaje

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. VEOLIA PRŮMYSLOVÉ SLUŽBY ČR, a.s. PŘÍLOHA 1. Dotazníky pro registrované údaje AVIDLA OVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY VEOLIA ŮMYSLOVÉ SLUŽBY ČR, a.s. PŘÍLOHA 1 Dotazníky pro registrované údaje aktualizace přílohy 1: 12. 03. 2015 schválení Energetickým regulačním úřadem: PŘÍLOHA

Více

Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti transformátoru, zvláštní transformátory

Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti transformátoru, zvláštní transformátory ,Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 29. 11. 2013 Ele 1 základní pojmy, požadavky a parametry, transformátory - jejich význam. princip činnosti

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: Mgr. Petr Vysoudil, sídlem Mtiční 730/3, 702 00 Ostrv-Morvská Ostrv, ustnovený prvomocným Usnesením č.j. KSOS 36 INS 8513/2014-A-13, ze dne 03.10.2014, insolvenčním

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: se sídlem: Koterovská 633/29, 326 00 Plzeň, ustnovený prvomocným Usnesením č.j. KSPL 54 INS 378/2012-A-19 ze dne 29.3.2012, insolvenčním správcem dlužník:. prvomocným

Více

Měření rozlišovací schopnosti optických soustav

Měření rozlišovací schopnosti optických soustav F Měření rozlišovcí schopnosti optických soustv Úkoly :. Měření rozlišovcí schopnosti fotogrfických objektivů v závislosti n clonovém čísle. Měření hloubky ostrosti fotogrfických objektivů v závislosti

Více

KEE / MS Modelování elektrických sítí. Přednáška 2 Modelování elektrických vedení

KEE / MS Modelování elektrických sítí. Přednáška 2 Modelování elektrických vedení KEE / MS Moelování elektrických sítí Přenáška Moelování elektrických veení Moelování elektrických veení Různý přístup pro veení: Venkovní Kabelová Různý přístup pro veení: Krátká (vzhleem k vlnové élce)

Více

5 Podpěry přivařovací

5 Podpěry přivařovací 5.1 Přivřovcí podpěry jsou určeny pro typy vzeb: kluzné podpěry (SS), podpěry s vedením (GS, SS), osové zrážky (S) nebo pevné body (FP). Mohou být použity smosttně nebo v kombinci s kluznými deskmi podložnými

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ h Předmět: Ročník: Vytvořil: Dtum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 11. SRPNA 2013 Název zprcovného celku: SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ Ke sloţenému nmáhání dojde tehdy, vyskytnou-li se součsně

Více

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb

1.1.20 Sbírka na procvičení vztahů mezi veličinami popisujícími pohyb 1.1.20 Sbírk n procvičení vzhů mezi veličinmi popisujícími pohyb Máme ři veličiny popisující pohyb dv vzhy, keré je spojují nvzájem. s v = Rychlos je změn dráhy z změnu čsu (rychlos říká, jk se v čse mění

Více

Konstrukční uspořádání koleje

Konstrukční uspořádání koleje Konstrukční uspořádání koleje Otto Plášek, doc. Ing. Ph.. Ústv železničních konstrukcí stveb Tto prezentce byl vytvořen pro studijní účely studentů. ročníku mgisterského studi oboru Geodézie krtogrfie

Více

Transformátory. Teorie - přehled

Transformátory. Teorie - přehled Transformátory Teorie - přehled Transformátory...... jsou elektrické stroje, které mění napětí při přenosu elektrické energie při stejné frekvenci. Používají se především při rozvodu elektrické energie.

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový

Více

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

montáží směr otáčení při bei Y = 0 V při poloze přepínače 1 resp.0 elektronicky reverzovatelný...

montáží směr otáčení při bei Y = 0 V při poloze přepínače 1 resp.0 elektronicky reverzovatelný... echnický list SF2A-MF Klpkový pohon se zpětným pružinovým chodem, schopný komunikce pro přestvování VZ klpek ve vzduchotechnických klimtizčních zřízeních udov velikost klpky do cc m 2 krouticí moment 2

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY VÍTKOVICE. Dotazníky pro registrované údaje

PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY VÍTKOVICE. Dotazníky pro registrované údaje PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY VÍTKOVICE Příloha 1 Dotazníky pro registrované údaje Zpracovatel: VÍTKOVICE, a.s. V Ostravě, květen 2013 Schválil: Energetický regulační úřad : OBSAH...

Více

Výpočet vnitřních sil přímého nosníku

Výpočet vnitřních sil přímého nosníku Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB

Více

SINEAX C 402 Hlásič mezních hodnot

SINEAX C 402 Hlásič mezních hodnot pro stejnosměrné proudy neo stejnosměrná npětí Použití SINEAX C 402 (or. 1) se používá především k sledování mezních hodnot při měřeních s proudovými neo npěťovými signály. Signlizce se přitom provádí

Více

Pneumatické pohony do velikosti 750 cm² Typ 3271 Typ 3277 pro integrovanou montáž pozicionéru

Pneumatické pohony do velikosti 750 cm² Typ 3271 Typ 3277 pro integrovanou montáž pozicionéru Pneumtické pohony do velikosti 750 cm² Typ 3271 Typ 3277 pro integrovnou montáž pozicionéru Použití Zdvihový pohon vhodný především pro montáž n ventily konstrukce 240, 250, 280, 290 mikroventil typu 3510

Více

BEZPEČNOST V ELEKTROTECHNICE 2. http://bezpecnost.feld.cvut.cz

BEZPEČNOST V ELEKTROTECHNICE 2. http://bezpecnost.feld.cvut.cz BEZPEČNOST V ELEKTROTECHNICE 2 http://bezpecnost.feld.cvut.cz Systém bezpečnostních předmětů na ČVUT FEL v Praze Bezpečnostní předmět Symbol Termín Program Studium Základní školení BOZP BPZS Na začátku

Více

6. ÚČINKY A MEZE HARMONICKÝCH

6. ÚČINKY A MEZE HARMONICKÝCH 6. ÚČINKY A MEZE HARMONICKÝCH 6.1. Negativní účinky harmonických Poruchová činnost ochranných přístrojů nadproudové ochrany: chybné vypínání tepelné spouště proudové chrániče: chybné vypínání při nekorektním

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, transformátory a jejich vlastnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, transformátory a jejich vlastnosti Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, transformátory a jejich vlastnosti Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: září 2013 Klíčová

Více

A) Dvouvodičové vedení

A) Dvouvodičové vedení A) Dvouvodičové vedení vedení symetické (shodné impednce vodičů vůči zemi) vede vění od MHz do mx. stovek MHz, dominntní vid TEM běžné hodnoty vové impednce: 3 Ω, 6 Ω impednce se zvětší, pokud se zmenší

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Ktedr geotechniky podzemního stvitelství Modelování v geotechnice Princip metody mezní rovnováhy (prezentce pro výuku předmětu Modelování v geotechnice) doc. RNDr. Ev Hrubešová, Ph.D. Inovce studijního

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více