Epigenetické mechanismy u rostlin
|
|
- Dušan Černý
- před 6 lety
- Počet zobrazení:
Transkript
1 Epigenetické mechanismy u rostlin Úvod srovnání rostlin a živočichů Klasické epigenetické systémy: transpozony, paramutace, nikleolární dominance Transgeny a viry zprostředkované umlčování genů Epigenetika ve vývojových procesech
2 Epigenetické monitorovací markery u rostlin umlčení expresní chiméra Exprese genu dihydroflavonol reduktázy (DFR) je požadována ke tvorbě tmavočervených květů, zatímco umlčování jeho promotoru dává vznik variegovanému světlému zbarvení Petunia hybrida
3 Epigenetické monitorovací markery u rostlin Exprese genu chalkon syntázy (CHS) vede ke tvorbě tmavých semen, umlčení promoru CHS způsobuje světlé zbarvení semen. umlčení Arabidopsis thaliana V kultivovaných varietách sóje je barva semen obvykle světlá díky přirozenému post-transkripčnímu umlčování CHS genu. Částečná reverze nastává po infekci rodičovské rostliny virem nesoucím PTGS supresor. sója
4 Epigenetické monitorovací markery u rostlin Klasický model Zea mays, kukuřice: Gen B1 odpovídá za červenou pigmentaci, rostliny s paramutovaným B jsou zelené. Klasy se segregující inzercí transpozonu Spm v genu B-Peru požadovaném pro antokyanový pigment. Červená zrna jsou revertanty, ve kterých je Spm z genu excizován.
5 Epigenetické monitorovací markery u rostlin Klasický model tabák, Nicotiana tabacum: NPTII
6 Epigenetické mechanismy u rostlin Úvod srovnání rostlin a živočichů Klasické epigenetické systémy: transpozony, paramutace, nukleolární dominance Transgeny a viry zprostředkované umlčování genů Epigenetika ve vývojových procesech
7 Cyklická aktivita transpozonů
8 DNA metyltransferázy zajišťují stabilitu genomu inaktivací parazitických mobilních elementů Barbara McClintock Nina Fedoroff Rob Martienssen Tim Bestor ( ) (Pennsylvania 1993) (Cold Spring 2001) (NY 1998)
9 Vliv transpozonů na genovou expresi (přilehlých oblastí chromozomů) metylace Ektopická inaktivace dihydroflavonol-reduktázového genu (šíření metylačního umlčování) z transpozonu MuLE (bílé sektory v koruně Ipomea purpurea, povojník, svlačcovité) Ektopická aktivace metastabilních epialel pro světlé skvrny (hcf109) a nekrotické leze (les28) způsobená aktivním Mutátorovým transpozonem
10 Jurek Paszkowski U of Geneva
11 Paramutace
12 PARAMUTACE (ne) stabilně dědičné alelické interakce Alex Brink (Madison 1956) Mary Alleman (Duquesne U) Vicki Chandler (Arizona) epigeneticky pozměněná alela R-r!
13 Interalelické komunikace v lokusu b1 u kukuřice paramutagenní alela B slabá exprese metylovaná repetice paramutace paramutovatelná alela B-I silná exprese nemetylovaná repetice Mop1, RNA-dependentní RNA polymeráza B * = paramutovaná alela B
14 standardní alela Kit (tyrosin kinázový receptor) inzerční mutageneze s reportérem beta-galaktosidázy Paramutace fungují i u myší?
15
16 Nukleolární dominace
17 Jadérková dominance Prof. Michail Navašin (1928) Crepis capillaris (differential amphiplasty)
18 Arabidopsis thaliana x A. arenosa = A. suecica A. thaliana A. arenosa hybrid A. suecica aktivní rdna jen A. arenosa
19 Nukleolární dominance je způsobována mechanizmy metylace DNA a modifikací histonů
20 Epigenetické mechanismy u rostlin Úvod srovnání rostlin a živočichů Klasické epigenetické systémy: transpozony, paramutace, nikleolární dominance Transgeny a viry zprostředkované umlčování genů Epigenetika ve vývojových procesech
21 Umlčování genů (kosuprese) transgenem Transgeny mohou umlčovat endogenní geny Více kopií transgenů, více umlčování Zvlášť účinné jsou obrácené repetice Umlčené geny jsou často metylovány Umlčování může být dědičné Umlčené geny mohou být paramutagenní
22 Transkripční a post-transkripční umlčování (TGS and PTGS) Umlčování může být transkripční, post-transkripční či obojí Transkripční umlčování souvisí s metylací promotoru PTGS souvisí s metylací kódující sekvence Pro počátek umlčování není nezbytná metylace promotoru Metylace je nezbytná pro udržování umlčení
23 PostTranskripční genové umlčování a RNA interference - spojitost? David Baulcombe (Norwich) Marjori Matzke (Vienna) PostTranskripční genové umlčování se vyskytuje u rostlin a hub transformovaných cizí nebo endogenní DNA a má následek v redukované akumulaci RNA molekul se sekvenční podobností k introdukované molekule nukleové kyseliny. Hamilton and Baulcombe, Science 286: 952, 1999
24 umlčená chalkon syntáza aktivní chalkon syntáza
25 klonování genu do virového vektoru transformace do agrobakteria, binární systém cdna knihovna infekce rostlin kandidátní gen šíření viru, indukce umlčování poranění vakuum změna fenotypu způsobená umlčením homologní mrna injekce Metoda VIGS (= virus-induced gene silencing) jako nástroj ke studiu funkce rostlinných genů
26 primární transformace agrobakteriálním vektorem injekce agrobakteria s virovou a GFP sekvencí DNA obranná reakce rostliny (RNAi), posttranskripční umlčování transgenu systémové šíření virové sekvence UMLČOVÁNÍ TRANSGENU SEKUNDÁRNÍ AGROINFEKCÍ S VIROVÝM VEKTOREM původní transgenní rostlina exprimující zeleně fluoreskující protein umlčení GFP rostlina po posttranskripčním umlčení transgenu GFP Nicotiana benthamiana
27 MECHANISMY RNA INTERFERENCE U ROSTLIN (hlavně posttranskripční umlčování, ale též transkripční): obrácené DNA repetice mirna jsou ssrna obvykle endogenního původu, závislé na RDRP a fungují jako přirozené supresory translace na bázi částečné homologie s mrna. sirna jsou dsrna, u rostlin odpovídají za obranu vůči virům, štěpí perfektně homologní mrna sekvence. DNA metylace a suprese transkripce pozorovány u transgenů virová ssrna RNA-dependentní RNA polymeráza tvoří dsrna RNA-induced silencing complex (RISC; Argonaut) potlačuje translaci nebo štěpí mrna aberantní RNA, vlásenková struktura (vnitřní homologie), exogenní dsrna Dicer štěpí dsrna na kratší fragmenty (si-dsrna) small interfering ssrna mrna substrát
28 Epigenetické mechanismy u rostlin Úvod srovnání rostlin a živočichů Klasické epigenetické systémy: transpozony, paramutace, nikleolární dominance Transgeny a viry zprostředkované umlčování genů Epigenetika ve vývojových procesech
29 Meiotický přenos epigenetického stavu (fenotypu) aneb environmentální indukce dědičných změn - genotrofy u lnu (vliv podnebí a hnojení na větvení) LIN specific sequence bez hnojení F0 bez hnojení F1, F2, wt hnojení bez hnojení F1, F2, F0
30 Gagea lutea (Liliaceae) křivatec žlutý model studia tetrasporického zárodečného vaku (Fritillaria), endospermu a fakultativního heterochromatinu 5n = 180
31 Vernalizace
32 Meioticky NEpřenášený epigenetický stav ovlivněný prostředím - vernalizace
33 Metylace DNA a řízení květních procesů
34 Katastrální gen SUPERMAN CTATG T.T.CTTA clark kent hypermetylovaná alela genu SUP standardní alela genu SUP (nemetylovaná) CTATG C.C.CTTA genomové (siřičitanové) sekvenování
35 Proteiny POLYCOMB
36 Úlohy komplexů POLYCOMB v životním cyklu rostlin
37 Proteiny skupiny POLYCOMB - jsou antagonisty (represory) homeotických genů s homeoboxem či MADS doménou - specifikují místo účinku homeotických transkripčních faktorů Arabidopsis CURLY LEAF versus AGAMOUS Justin Goodrich (Edinburgh) listy wild-typu listy mutace clf : ektopická exprese květního genu AG
38 Parentální imprinting u rostlin : maternální efekt genu MEDEA wt MM / - Ueli Grossniklaus (Zurich 1998) maternální wt-alela: kontrola (redukce) embryonální proliferace... pohádka o Otesánkovi, aneb infanticida mm / - mutace medea
39 udržovací metylace DNA spermie dvojí oplození umlčený gen MEDEA vegetativní fáze vývoje vaječná buňka centrální buňka samičí gamety demetyláza založení exprese MEDEA v endospermu embryo Irreversibilní demetylace genu MEDEA v samičím gametofytu Arabidopsis (konvergentní evoluce se savčím imprintingem)
40 DEMETER řídí maternální expresi genu MEDEA DME / DME dme / DME dme / dme abort viabilní Steve Jacobsen (UCLA 2002) GUS exprese DME v centrální buňce samičího gametofytu (DNA glykosyláza?) GFP
41 Imprintované geny u rostlin Gen druh exprese mechanismus funkce MEDEA Arabidopsis maternální Polycomb remodelování chromatinu PHERES1 Arabidopsis paternální Polycomb transkripční faktor FWA Arabidopsis maternální DNA-metyltransferáza transkripční faktor FIS2 Arabidopsis maternální DNA-metyltransferáza remodelování chromatinu FIE Arabidopsis maternální? remodelování chromatinu AGL80 Arabidopsis maternální? transkripční faktor AtFH5 Arabidopsis maternální? regulace aktinu FIE1 kukuřice maternální DNA-metyltransferáza remodelování chromatinu FIE2 kukuřice maternální DNA-metyltransferáza remodelování chromatinu R kukuřice maternální? syntéza pigmentu Oidipovský komplex
MECHANIZMY EPIGENETICKÝCH PROCESŮ
MECHANIZMY EPIGENETICKÝCH PROCESŮ METYLACE DNA Metylace DNA Adice metylové skupiny (CH 3 ) na 5. uhlík cytosinu Obvykle probíhá pouze na cytosinech 5 vůči guanosinu (CpG) Cytosin NH 2 5-Metylcytosin NH
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Terapeutické klonování, náhrada tkání a orgánů
Transfekce, elektroporace, retrovirová infekce Vnesení genů Vrstva fibroblastů, LIF Terapeutické klonování, náhrada tkání a orgánů Selekce ES buněk, v nichž došlo k začlenění vneseného genu homologní rekombinací
Modifikace dědičné informace rostlin
Modifikace dědičné informace rostlin Lukáš Fischer, KFR PřF UK Jak zlepšit vlastnosti rostlin Principy a klasické způsoby přípravy geneticky modifikovaných rostlinných buněk a celých rostlin Genový přenos
EPIGENETIKA reverzibilních změn funkce genů, Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická
EPIGENETIKA Epigenetika se zabývá studiem reverzibilních změn funkce genů, aniž by při tom došlo ke změnám v sekvenci jaderné DNA. Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Na rozdíl od genomiky se funkční genomika zaměřuje na dynamické procesy, jako je transkripce, translace, interakce protein - protein.
FUNKČNÍ GENOMIKA Co to je: Oblast molekulární biologie která se snaží o zpřístupnění a využití ohromného množství dat z genomových projektů. Snaží se popsat geny, a proteiny, jejich funkce a interakce.
Bi8240 GENETIKA ROSTLIN
Bi8240 GENETIKA ROSTLIN Prezentace 02 Reprodukční vývoj Indukce kvetení doc. RNDr. Jana Řepková, CSc. repkova@sci.muni.cz 1. Indukce kvetení a tvorba květů 2. Tvorba reprodukčních orgánů a gamet 3. Opylení,
Modifikace dědičné informace rostlin I. modifikace
Modifikace dědičné informace rostlin I Klasická genetická modifikace Lukáš Fischer, KEBR Legislativa: Genetická modifikace (GM) = vnesení genetické informace (úseku DNA) či změna > 20 nt způsobem, který
Bakteriální transpozony
Bakteriální transpozony Transpozon = sekvence DNA schopná transpozice, tj. přemístění z jednoho místa v genomu do jiného místa Transpozice = proces přemístění transpozonu Transponáza (transpozáza) = enzym
EPIGENETICKÁ DĚDIČNOST
Epigenetika EPIGENETICKÁ DĚDIČNOST Pojmenovaná britským biologem Conradem Waddingtonem r. 1940, Něco navíc, mimo v porovnání s mendelistickou genetikou, Umožňuje buňkám s identickým genotypem vznik odlišných
Modifikace dědičné informace rostlin II
Modifikace dědičné informace rostlin II Lukáš Fischer, KFR PřF UK Obsah přednášky Jak zlepšit vlastnosti rostlin Principy přípravy GMR Příprava genových konstruktů Genový přenos do jaderného a plastidového
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
RNA. Vlákno kovalentně vázaných nukleotidů. Biochemicky odlišitelná od DNA (hydroxyl na C2 pentózy,
RNA Vlákno kovalentně vázaných nukleotidů. Biochemicky odlišitelná od DNA (hydroxyl na C2 pentózy, uracil místo thyminu) mrna kopíruje genetickou informaci z molekuly DNA, přenáší ji do místa, kde dojde
RNA interference (RNAi)
Liběchov, 29. 11. 2013 RNA interference (RNAi) post-transkripční umlčení genové exprese přirozený mechanismus regulace genové exprese a genomové stability obranný antivirový mechanismus konzervovaný mechanismus
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
Mendelova genetika v příkladech. Transgenoze rostlin. Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno
Mendelova genetika v příkladech Transgenoze rostlin Ing. Petra VESELÁ, Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
EPIGENETIKA : rehabilitace kacířství? Boris Vyskot Laboratoř vývojové genetiky, Biofyzikální ústav AV ČR v Brně
EPIGENETIKA : rehabilitace kacířství? Boris Vyskot Laboratoř vývojové genetiky, Biofyzikální ústav AV ČR v Brně Negeneticky kódovaná informace (tj. mimo sekvence nukleotidů) je přenášena mitoticky v průběhu
Transpozony - mobilní genetické elementy
Transpozony - mobilní genetické elementy Tvoří pravidelnou součást genomu prokaryot i eukaryot (až 50% genomu) Navozují mutace genů (inzerční inaktivace, polární mutace, změny exprese genů) Jsou zodpovědné
Biologická úloha RNA
Biologická úloha RNA mrna kopíruje genetickou informaci z molekuly DNA, přenáší ji do místa, kde dojde k překladu do struktury proteinu trna překládá kód sekvence bází do sekvence aminokyselin. cca 80
Medicínské aspekty epigenetiky. Boris Vyskot Oddělení vývojové genetiky, Biofyzikální ústav AV ČR v Brně
Medicínské aspekty epigenetiky Boris Vyskot Oddělení vývojové genetiky, Biofyzikální ústav AV ČR v Brně Negeneticky kódovaná informace (tj. mimo sekvence nukleotidů) je přenášena mitoticky v průběhu ontogeneze
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Chromatin. Struktura a modifikace chromatinu. Chromatinové domény
Chromatin Struktura a modifikace chromatinu Chromatinové domény 2 DNA konsensus 5 3 3 DNA DNA 4 RNA 5 ss RNA tvoří sekundární strukturu s ds vlásenkami ds forms 6 of nucleic acids Forma točivost bp/turn
Molekulární biotechnologie č.12. Využití poznatků molekulární biotechnologie. Transgenní rostliny.
Molekulární biotechnologie č.12 Využití poznatků molekulární biotechnologie. Transgenní rostliny. Transgenní organismy Transgenní organismus: Organismus, jehož genom byl geneticky modifikován cizorodou
SLOVNÍČEK NEJDŮLEŽITĚJŠÍCH TERMÍNŮ Prof. Boris Vyskot (kapitola z připravovaných skript EPIGENETIKA, vyjde na UP v příštím roce)
SLOVNÍČEK NEJDŮLEŽITĚJŠÍCH TERMÍNŮ Prof. Boris Vyskot (kapitola z připravovaných skript EPIGENETIKA, vyjde na UP v příštím roce) Acetylace a deacetylace histonů (histone acetylation, deacetylation) - jedna
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
Rostlinné biotechnologie
Fyziologie rostlin Letní semestr 2013 Rostlinné biotechnologie Lukáš Fischer klasické šlechtění příprava geneticky modifikovaných rostlin příklady praktického využití GM rostlin využití GM rostlin v exp.
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
Bi8240 GENETIKA ROSTLIN
Bi8240 GENETIKA ROSTLIN Prezentace 03 Reprodukční vývoj apomixie doc. RNDr. Jana Řepková, CSc. repkova@sci.muni.cz 1. Pohlavní amfimixis megasporogeneze megagametogeneze mikrosporogeneze mikrogametogeneze
Molekulární mechanismy formování epigenomu
lncrna a epigenom Molekulární mechanismy formování epigenomu Epigenetika = věda o stabilních genetických modifikacích, které vedou ke změně exprese a funkce genů beze změny sekvence DNA Epigenetické procesy
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis
TUBULIN-FOLDING COFACTOR A (TFC A) u Arabidopsis Mikrotubuly Formace heterodimerů α/βtubulinu Translace α a β -tubulin monomerů chaperonin c-cpn správný folding α-tubulin se váže na TFC B a β na TFC
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Bakalářské práce. Magisterské práce. PhD práce
Bakalářské práce Magisterské práce PhD práce Témata bakalářských prací na školní rok 2015-2016 1 Název Funkční analýza jaderných proteinů fosforylovaných pomocí mitogenaktivovaných proteinkináz. Školitel
EPIGENETICKÁ DĚDIČNOST
Epigenetika EPIGENETICKÁ DĚDIČNOST Pojmenovaná britským biologem Conradem Waddingtonem r. 1940, Něco navíc, mimo v porovnání s mendelistickou genetikou, Umožňuje buňkám s identickým genotypem vznik odlišných
Co lze u rostlin manipulovat
Obsah přednášky 1) Co lze u rostlin manipulovat 2) Genový knock-out, knock-down, knock-in 3) Klonování sekundárních metabolitů 4) Metody identifikace transgenních rostlin 5) Molecular pharming 6) Protilátky,
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Univerzita Palackého v Olomouci. Bakalářská práce
Univerzita Palackého v Olomouci Bakalářská práce Olomouc 2012 Ludmila Brtišová Univerzita Palackého v Olomouci Přírodovědecká fakulta Katedra buněčné biologie a genetiky Využití gun bombardment pro inokulaci
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Buněčné jádro a viry
Buněčné jádro a viry Struktura virionu Obal kapsida strukturni proteiny povrchove glykoproteiny interakce s receptorem na povrchu buňky uvnitř nukleocore (ribo )nukleova kyselina, virove proteiny Lokalizace
MENDELOVSKÁ DĚDIČNOST
MENDELOVSKÁ DĚDIČNOST Gen Část molekuly DNA nesoucí genetickou informaci pro syntézu specifického proteinu (strukturní gen) nebo pro syntézu RNA Různě dlouhá sekvence nukleotidů Jednotka funkce Genotyp
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém
Nové přístupy v modifikaci funkce genů: CRISPR/Cas9 systém Lesk a bída GM plodin Lesk a bída GM plodin Problémy konstrukce GM plodin: 1) nízká efektivita 2) náhodnost integrace transgenu 3) legislativa
Kontrola genové exprese
Základy biochemie KBC/BC Kontrola genové exprese Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
Výuka genetiky na PřF OU K. MALACHOVÁ
Výuka genetiky na PřF OU K. MALACHOVÁ KATEDRA BIOLOGIE A EKOLOGIE BAKALÁŘSKÉ STUDIJNÍ PROGRAMY Experimentální Systematická Aplikovaná (prezenční, kombinovaná) Jednooborová Dvouoborová KATEDRA BIOLOGIE
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Fyzické mapování Fyzické cytogenetické a fyzické molekulární mapy Ing. Hana Šimková, CSc. Cíl přednášky
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Molekulární procesy po fertilizacinormální či abnormální po ART?
Molekulární procesy po fertilizacinormální či abnormální po ART? Aleš Hampl Již více jak MILION dětí bylo na světě počato pomocí ART ART jako zdroj zvýšeného rizika:? Kongenitální malformace (Ericson and
Některé významné aspekty vývojové biologie v medicíně
Některé významné aspekty vývojové biologie v medicíně - terapie infertility (in vitro oplození) - genetické poruchy vývoje člověka - malformace (Down, Waardenburg, Martin-Bell) - teratogeneze (alkohol,
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
Jádro. jakožto buněčný kompartment
Jádro jakožto buněčný kompartment Struktura jádra nuclear envelope (NE) vnitřní a vnější jaderná membrána, jaderné póry jaderná lamina (interakce s póry a chromatinem v interfázi) nukleoplasma chromatin
Dědičnost mísením (Blending inheritance)
Dědičnost Dědičnost Dědičnost mísením (Blending inheritance) Mendelova teorie dědičnosti (1866) 1. Zákon o čistotě a segregaci vloh Vlohy pro jednotlivé znaky se vzájemně nemísí a v dalších generacích
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Mendelovská genetika - Základy přenosové genetiky Základy genetiky Gregor (Johann)
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
Genetika bakterií. KBI/MIKP Mgr. Zbyněk Houdek
Genetika bakterií KBI/MIKP Mgr. Zbyněk Houdek Bakteriofágy jako extrachromozomální genomy Genom bakteriofága uvnitř bakterie profág. Byly objeveny v bakteriích už v r. 1915 Twortem. Parazitické org. nemají
Zdrojem je mrna. mrna. zpětná transkriptáza. jednořetězcová DNA. DNA polymeráza. cdna
Obsah přednášky 1) Klonování složených eukaryotických genů 2) Úprava rekombinantních genů 3) Produkce rekombinantních proteinů v expresních systémech 4) Promotory 5) Vektory 6) Reportérové geny Zdrojem
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Transgeneze u ptáků: očekávání vs. realita
Transgeneze u ptáků: očekávání vs. realita Proč ptáci? Kuře - základní model v anatomii, embryologii, vývojové biologii množství získaného proteinu nižší riziko cross reaktivity s tím spojená možnost produkce
Výzkumné centrum genomiky a proteomiky. Ústav experimentální medicíny AV ČR, v.v.i.
Výzkumné centrum genomiky a proteomiky Ústav experimentální medicíny AV ČR, v.v.i. Systém pro sekvenování Systém pro čipovou analýzu Systém pro proteinovou analýzu Automatický sběrač buněk Systém pro sekvenování
Směsná dědičnost (blending inheritance)
Dědičnost Dědičnost Směsná dědičnost (blending inheritance) Fleeming Jenkin kritizuje Darwinovu teorii evoluce. Mendelova teorie dědičnosti (1866) 1. Zákon o čistotě a segregaci vloh Vlohy pro jednotlivé
Buněčné dělení ŘÍZENÍ BUNĚČNÉHO CYKLU
BUNĚČNÝ CYKLUS Buněčné dělení Cykliny a na cyklinech závislé proteinkinázy (Cyclin- Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího systému buněčného cyklu 8 cyklinů
- studium mechanismů řídících genovou expresi
Přenosy genů do živých buněk (transfekce) Účel: studium funkce genů - studium mechanismů řídících genovou expresi - biotechnologie - genové trerapie Klasifikace transfekčních postupů Podle stability transgenu:
DĚDIČNOST MÍSENÍM (BLENDING INHERITANCE)
Dědičnost DĚDIČNOST MÍSENÍM (BLENDING INHERITANCE) Pokud by dědičnost fungovala takto, tak by se všechny příznivé vlastnosti v každé následující generaci ředily, dokud by nevymizely. Darwinova evoluční
Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno
Retinoblastom Mgr. Veronika Peňásová vpenasova@fnbrno.cz Laboratoř molekulární diagnostiky, OLG FN Brno Klinika dětské onkologie, FN Brno Retinoblastom (RBL) zhoubný nádor oka, pocházející z primitivních
Vztah evoluce a ontogeneze. Evolution & Development (Evo-Devo) Prof. Boris Vyskot
Vztah evoluce a ontogeneze Evolution & Development (Evo-Devo) Prof. Boris Vyskot Vývoj (individuální vývin, ontogeneze, development) je geneticky programovaný a cyklický. Evoluce (historický vývoj, fylogeneze)
Detlef Weigel ( )
VORF-8 2015 Detlef Weigel (15. 12. 1961) 1 Max Planck Institute for Developmental Biology Department of Molecular Biology Spemannstrasse 37-39 D-72076 Tübingen Germany http://www.weigelworld.org/ Max Planck
Struktura a analýza rostlinných genomů Jan Šafář
Struktura a analýza rostlinných genomů Jan Šafář Ústav experimentální botaniky AV ČR, v.v.i Centrum regionu Haná pro biotechnologický a zemědělský výzkum Proč rostliny? Proč genom? Norman E. Borlaug Zelená
Vztah genotyp fenotyp
Evoluce fenotypu II Vztah genotyp fenotyp plán? počítačový program? knihovna? genotypová astrologie (Jablonka a Lamb) Modely RNA - různé vážení: A-U, G-C, G-U interakcí, penalizace za neodpovídající si
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková
Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00
Dědičnost pohlaví Genetické principy základních způsobů rozmnožování
Dědičnost pohlaví Vznik pohlaví (pohlavnost), tj. komplexu znaků, vlastností a funkcí, které vymezují exteriérové i funkční diference mezi příslušníky téhož druhu, je výsledkem velmi komplikované série
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY
BUNĚČNÁ TRANSFORMACE A NÁDOROVÉ BUŇKY 1 VÝZNAM BUNĚČNÉ TRANSFORMACE V MEDICÍNĚ Příklad: Buněčná transformace: postupná kumulace genetických změn Nádorové onemocnění: kolorektální karcinom 2 3 BUNĚČNÁ TRANSFORMACE
Vytvořilo Oddělení lékařské genetiky FN Brno
GONOSOMY GONOSOMY CHROMOSOMY X, Y Obr. 1 (Nussbaum, 2004) autosomy v chromosomovém páru homologní po celé délce chromosomů crossingover MEIÓZA Obr. 2 (Nussbaum, 2004) GONOSOMY CHROMOSOMY X, Y ODLIŠNOSTI
Nové genové techniky, potraviny a monitoring
21. Konference Monitoringu 2016, SZÚ, Milovy, 6.10. 2016 Nové genové techniky, potraviny a monitoring Veronika Kýrová Vladimír Ostrý Pavla Surmanová Ivana Procházková - Jiří Ruprich Podpořeno MZ ČR RVO
7) Dormance a klíčení semen
2015 7) Dormance a klíčení semen 1 a) Dozrávání embrya a dormance b) Klíčení semen 2 a) Dozrávání embrya a dormance Geny kontrolující pozdní fázi vývoje embrya - dozrávání ABI3 (abscisic acid insensitive
Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny
Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním
8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů
Buněč ěčné dělení BUNĚČ ĚČNÝ CYKLUS ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU cykliny a na cyklinech závislé proteinkinázy (Cyclin-Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Česká komise pro nakládání s geneticky modifikovanými organismy a genetickými produkty (ČK GMO)
Česká komise pro nakládání s geneticky modifikovanými organismy a genetickými produkty (ČK GMO) Stanovisko Věc: Stanovisko ČK GMO k žádosti o dovoz řezaných květů karafiátů linie FLO-40685-2 do EU Stav
Metylace DNA řízená malými RNA u Arabidopsis thaliana RNA-directed DNA methylation in Arabidopsis thaliana
Univerzita Karlova v Praze Přírodovědecká fakulta Studijní program: Molekulární biologie a biochemie organismů Studijní obor: Speciální chemicko-biologické obory Šárka Motylová Metylace DNA řízená malými
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
MOBILNÍ GENETICKÉ ELEMENTY. Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
MOBILNÍ GENETICKÉ ELEMENTY Lekce 13 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. Demerec (1937) popsal nestabilní mutace u D. melanogaster B. McClintocková (1902-1992, Nobelova cena 1983) ukázala ve
Bi8240 GENETIKA ROSTLIN
Bi8240 GENETIKA ROSTLIN Prezentace 04 Inkompatibilita doc. RNDr. Jana Řepková, CSc. repkova@sci.muni.cz Inkompatibilní systémy vyšších rostlin Neschopnost rostlin tvořit semena Funkční gamety zachovány
Dostupnost živin jako faktor utvářející morfologii kořenů (trofomorfogeneze) Vliv dusíkatých látek, fosfátů, síranů a iontů železa
Dostupnost živin jako faktor utvářející morfologii kořenů (trofomorfogeneze) Vliv dusíkatých látek, fosfátů, síranů a iontů železa Co je ovlivněno? Primární kořen Laterální kořen Kořenové vlásky (tvoří
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií
Obecná genetika Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií Ing. Roman Longauer, CSc. Ústav zakládání a pěstění lesů, LDF MENDELU Brno Tento projekt je spolufinancován Evropským
Genetika pohlaví genetická determinace pohlaví
Genetika pohlaví Genetická determinace pohlaví Způsoby rozmnožování U nižších organizmů může docházet i k ovlivnění pohlaví jedince podmínkami prostředí (např. teplotní závislost pohlavní determinace u
MIKROBIOLOGIE V BIOTECHNOLOGII
Biotechnologie MIKROBIOLOGIE V BIOTECHNOLOGII Využití živých organismů pro uskutečňování definovaných chemických procesů pro průmyslové nebo komerční aplikace Organismus je geneticky upraven metodami genetického
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA
RESTRIKCE A MODIFIKACE FÁGOVÉ DNA po jednom cyklu Kmeny E. coli K a K(P1) + mají vzájemně odlišnou hostitelskou specifitu (K a P1) = obsahují odlišné RM-systémy Experimentální důkaz přítomnosti a působení