Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1"

Transkript

1 ? Šárka Hudecová Katedra i a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr ? Statistika = věda o získávání, zpracování a interpretaci informace obsažené v empirických pozorováních skutečného světa (v naměřených datech, průzkumech apod.) Základní dělení popisná (deskriptivní) popis konkrétních dat několika čísly a obrázky stručně vystihnout důležité závěry pouze o daných datech, nelze zobecňovat induktivní (konfirmatorní) na základě dat umožňuje odpovídat na obecné otázky o populaci závěry lze zobecnit odhady populačních parametrů předpoklady, znalost statistických metod důležitá je interpretace 1 Založeno na materiálech doc. Michala Kulicha Populace vs. data Kde, kdy a proč se používá? Zkoumáme složitý systém?? nelze jednoduše pochopit nebo popsat pouze na základě teorie (tj. potřebujeme empirické zkušenosti) za stejných nebo podobných podmínek se může projevovat odlišným způsobem náhoda příklady: lidská společnost, ekonomika, lidské tělo, ekosystém, sport, vědecký experiment,... Druhy statistických úloh Konkrétní data Celá populace odhady parametrů výpočet číselných charakteristik testování hypotéz ověřování pravdivosti výroků predikce předpovědi optimalizace hledání optimálních parametrů

2 : data z přednášek z minulých let Statistický přístup k řešení problémů? Na základě údajů z let lze usuzovat že by tu dnes mělo být 60 % žen a 40% mužů přítomné studentky budou v průměru 168 cm vysoké, s hmotností 60 kg a velikostí bot asi 38,5 přítomní studenti budou v průměru 183 cm vysocí s hmotností 76 kg a velikostí bot asi 43 přes 30 % přítomných bude z Prahy, kolem 11 % ze středočeského kraje a jen velmi málo studentů bude ze Slovenska a Moravy? 1 reálný problém, domněnka apod. 2 plán experimentu 3 sběr dat 4 výběr vhodného ního modelu 5 formulace problému v řeči matematické statistiky 6 aplikace statistických metod 7 interpretace, závěry, publikace... nejvíce z přítomných má narozeniny v květnu, nejméně v únoru a březnu Oblasti aplikace statistiky Obsah přednášky? Přírodní vědy medicína, genetika, farmakologie, biologie, chemie, fyzika, meteorologie... Ekonomie makro & mikroekonomie, bankovnictví, pojišt ovnictví,... Technické vědy telekomunikace, doprava, počítače, strojírenství, kontrola jakosti, řízení a organizace výroby,... Společenské vědy sociologie, behaviorální vědy, archeologie, lingvistika, antropologie...? Cíl přednášky= porozumět základním principům statistických metod a pochopit řešení vybraných jednoduchých problémů. Dvě základní části Základy i nezbytný teoretický základ pro výklad statistických metod, náhodná veličina a její rozdělení, střední hodnota, nezávislost,... Statistika popisné statistiky jako odhady populačních parametrů odhady, intervaly spolehlivosti, testy statistických hypotéz základní metody (vybrané testy) A mnoho dalších (sport, marketing,...) Důležité je osvojení si hlavních principů, pojmů, základních metod. Nikoliv učení se vzorečků.

3 Teorie i : matematický model náhody Co to je náhoda? Kde se s ní setkáváme? zkoumá náhodné jevy, tj. jevy, které mohou, ale nemusí nastat. S jakou í daný jev nastane? Jsou dané jevy na sobě nezávislé? náhodný pokus výsledek předem neurčitý (náhoda) množina všech možných výsledků Ω náhodný jev je tvrzení o výsledku pokusu, tj. A Ω prvky Ω se nazývají elementární náhodné jevy jev nemožný nenastává nikdy jev jistý je celá množina Ω a nastává vždy (Hod kostkou) Ω = {1,2,3,4,5,6} A = [padne sudé číslo] = {2,4,6} (Pohlaví 2 sourozenců) Ω = {KK,DK,KD,DD} nebo Ω = {KK,DK,DD} A = [alespoň jeden kluk] = {KK,KD,DK} nebo à = [alespoň jeden kluk] = {KK,KD} Operace s náhodnými jevy Operace s náhodnými jevy - příklady Uvažujme náhodné jevy A,B Ω. podjev A B znamená A B jev opačný A c nastane A nenastane průnik jevů A B nastane nastanou zároveň A i B sjednocení jevů A B nastane nastane alespoň jeden z jevů A a B neslučitelné (disjunktní) jevy: A B = Podobně průnik a sjednocení více jevů A 1,...,A k : k A i = A 1 A 2 A k (všechny musí nastat); i=1 k A i = A 1 A 2 A k (alespoň jeden musí nastat). i=1 (Hod kostkou) Množina všech výsledků: Ω = {1,2,3,4,5,6} A = [padne sudé číslo] = {2,4,6}, B = [padne číslo větší než 3] = {4,5,6} jev opačný A c = [padne liché číslo] = {1,3,5}, B c = [padne číslo menší rovno třem] = {1,2,3} průnik A B = [padne sudé číslo větší než 3] = {4,6} sjednocení A B = [padne číslo sudé nebo větší než 3] = {2,3,4,6}

4 i objektivní číselné vyjádření naděje, že nastane jev A přiřazuje náhodnému jevu A reálné číslo z intervalu [0, 1] (zkráceně pst, značeno P) musí mít následující vlastnosti: 1 0 P(A) 1 2 P(Ω) = 1, P( ) = 0, 3 je-li A B =, pak P(A B) = P(A)+P(B) Z těchto vlastností pak dále vyplývá 4 P(A c ) = 1 P(A), 5 pro B A je P(B) P(A) a P(A B) = P(A) P(B) 6 P(A B) = P(A)+P(B) P(A B) Předpoklady: Ω je konečná, tj. Ω = {ω 1,...,ω N } všechny elementární jevy ω i Ω jsou stejně pravděpodobné jevu A Ω je definována jako P(A) = A Ω = A N, kde A značí počet prvků množiny A. má zjevně všechny požadované vlastnosti. i příklad 1 i příklad 2 (Hod kostkou) (Hod dvěma kostkami) Ω = {1,2,3,4,5,6}, uvažujeme náhodné jevy A = [padne sudé číslo] = {2,4,6}, B = [padne číslo větší než 3] = {4,5,6} Pak P(A) = 3 6 = 1 2, P(B) = 3 6 = 1 2, P(A B) = 2 6 = 1 3, Házímeme dvěma kostkami (modrá a zelená). Zajímá nás jevu A = [součet je alespoň 10]. Ω je množina všech uspořádaných dvojic z čísel 1,2,3,4,5,6. Všech možností je: Ω = 6 6 = 36. Příznivé možnosti: (4,6), (5,5), (5,6), (6,4), (6,5), (6,6). Proto B = 6 a tedy P(B) = 6 36 = 1 6. P(A B) = 4 6 = P(A)+P(B) P(A B) = Poznámka: Kombinatorické pojmy (permutace, kombinační čísla apod.)

5 Nevýhody klasické i i má dva velmi omezující předpoklady: 1 konečný počet elementárních jevů 2 elementární jevy ω musí být stejně pravděpodobné Kdy nám klasická nestačí? nestejně pravděpodobné elem. jevy ω (nesymetrická mince) Ω není konečná (házíme na koš, dokud se netrefíme) Ω je abstraktní, nelze jednoduše popsat ω (chceme mluvit o i bankrotu banky apod.) Necht Ω je libovolná množina. í nazveme libovolnou funkci P definovanou na podmnožinách Ω, která má následující vlastnosti: 1 0 P(A) 1 pro libovolné A Ω, 2 P(Ω) = 1, 3 pro všechny A 1,A 2,... Ω takové, že A i A j = i j, platí ( ) P A i = P(A i ). i=1 i=1 Obou předpokladů se potřebujeme zbavit obecnější a abstraktnější axiomatická i. Poznámky Poznámky i: připouští konečné, spočetné i nespočetné množiny Ω elementární jevy nemusí být stejně pravděpodobné pro danou Ω lze zavést mnoho různých í mezi nimi si musíme sami zvolit (většinou to přirozeně vyplyne) Dále budeme (teoreticky) pracovat s obecnou axiomatickou definicí i. V příkladech ale budeme většinou používat klasickou. Poznámka pro náročné: Ve skutečnosti se zavádí jen pro tzv. měřitelné množiny, ne nutně pro všechny podmnožiny Ω (neměřitelnou množinu nepovažujeme za náhodný jev). Při nespočetné Ω (třeba Ω = R) nelze totiž rozumně zavést, která funguje pro všechny podmnožiny Ω.

6 poznámky Definice Necht jev B Ω má kladnou, P(B) > 0. Podmíněnou jevu A za podmínky, že nastal jev B, definujeme vztahem P(A B) = P(A B). P(B) Nepodmíněná P(A) vypovídá o i výskytu jevu A v situaci, kdy nemáme žádné dodatečné informace o průběhu nebo výsledku experimentu. P(A B) vypovídá o i výskytu jevu A v situaci, kdy víme, že nějaký jiný jev B určitě nastal (tj. máme dodatečnou informaci) Poznámka Pozor, jevy A a B nelze prohazovat, protože obecně P(A B) P(B A). dostihy Favority dostihu jsou koně Lívanec a Škobrt ák. Kursy bookmakerů naznačují, že vítězství Lívance je 0.2 a Škobrt áka Škobrt ák však před startem spolkl hřebík a nepoběží. Jaká je, že vyhraje Lívanec? Řešení: Jevy: L = [vyhraje Lívanec], Š = [vyhraje Škobrt ák]. Máme P(L) = 0.2, P(Š) = 0.25, L Š =. Odtud P(L Š c ) = P(L Šc ) P(Šc ) = P(L) P(Šc ) = 1/5 3/4 = 4 15., že vyhraje Lívanec, je 4/15 = V šupĺıku jsou tři páry ponožek ze stejného materiálu: zelené, modré a bílé. Po tmě náhodně vyberete dvě ponožky a aniž byste ověřili jejich barvu, vyrazíte v nich do školy. Zjistěte, s jakou í máte obě ponožky stejné barvy, alespoň jedna obutá ponožka je zelená, na pravé noze je zelená ponožka máte obě ponožky stejné, jestliže v šupĺıku určitě zbyl pár zelených ponožek, máte obě ponožky stejné, jestliže na pravé noze máte zelenou.

7 Nezávislost dvou jevů Nezávislost příklady Máme prostor elementárních jevů Ω a P. Definice A, B Ω nazýváme nezávislé, jestliže platí P(A B) = P(A)P(B). V opačném případě je nazýváme závislé. Necht jsou jevy A, B nezávislé a P(A) > 0, P(B) > 0. Pak Házíme dvěma kostkami (zelenou a modrou). Označme jevy A = [na modré kostce padlo sudé číslo], B = [součet čísel na obou kostkách je lichý]. Jsou jevy A a B nezávislé? Máme Ω = {(SS),(LL),(SL),(LS)}, kde S značí sudé číslo a L liché. Pak P(A B) = P(A B) P(B) = P(A)P(B) P(B) = P(A) a podobně P(B A) = P(B). Jevy jsou tedy nezávislé, pokud jednoho jevu není nijak ovlivněna tím, zda druhý jev nastal nebo ne. P(A) = 1 2, P(B) = 1 2, P(A B) = 1 4. Tj. platí podmínka P(A B) = P(A) P(B) a jevy jsou nezávislé. Nezávislost příklady Nezávislost příklady Házíme dvěma kostkami (zelenou a modrou). Označme jevy A = [na modré kostce padlo sudé číslo], B = [součet čísel je větší než 10]. Jsou jevy A a B nezávislé? Ω je množina všech uspořádaných dvojic z čísel 1,2,3,4,5,6, Ω = 36 P(A) = = 1 2, P(B) = 3 36 = 1 12, P(A B) = 2 36 = (Vtip o statistikovi v letadle) Statistik procházel bezpečnostní kontrolou na letišti, když byla v jeho kufru nalezena bomba. Vysvětloval: Podle statistik je přítomnosti bomby v letadle 0, 001. Takže šance, že na palubě budou dvě bomby, je 0, Když si vezmu svoji bombu, cítím se pak mnohem bezpečněji. Bez své osobní bomby proto nikdy necestuji. Označme A = [já mám v letadle bombu], B = [někdo jiný má v letadle bombu]. Jevy A a B jsou zjevně nezávislé (já nejsem člen žádné teroristické skupiny). Proto Tj. neplatí podmínka P(A B) = P(A) P(B) a jevy jsou závislé. P(B A) = P(B) = , a proto si bombu do letadla brát nemusíte.

8 Nezávislost poznámky Poznámka Jsou-li A,B nezávislé, pak (A,B c ), (A c,b), (A c,b c ) jsou též dvojice nezávislých jevů. Definice A 1,A 2,...,A n Ω nazýváme nezávislé právě když platí P(A 1 A 2 A n ) = P(A 1 )P(A 2 ) P(A n ).

Organizační pokyny k přednášce. Matematická statistika. Co je statistika? Přehled témat

Organizační pokyny k přednášce. Matematická statistika. Co je statistika? Přehled témat Organizační pokyny k přednášce Matematická statistika MS710P05 Zdeněk Hlávka (Šárka Hudecová, Michal Kulich) Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta UK hlavka@karlin.mff.cuni.cz

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost 6. Pravděpodobnost a statistika 6.1. Pravděpodobnost Pravděpodobnost (hovorově šance; značka je P z anglického probability) je hodnota vyčíslující jistotu resp. nejistotu výskytu určité události. K pojmu

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

Základy pravděpodobnosti poznámky. Jana Klicnarová

Základy pravděpodobnosti poznámky. Jana Klicnarová Základy pravděpodobnosti poznámky Jana Klicnarová 1 V této části připomeneme základní pojmy a vztahy pro práci s náhodou. 0.1 Náhodné jevy Uvažujme situace, které mohou a nemusí nastat a o kterých v nějakém

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Mirko Navara Centrum strojového vnímání katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://cmp.felk.cvut.cz/ navara/mvt http://cmp.felk.cvut.cz/

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Gymnázium, Český Krumlov

Gymnázium, Český Krumlov Gymnázium, Český Krumlov Vyučovací předmět Fyzika Třída: 6.A - Prima (ročník 1.O) Úvod do předmětu FYZIKA Jan Kučera, 2011 1 Organizační záležitosti výuky Pomůcky související s výukou: Pracovní sešit (formát

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

9.2.1 Náhodné pokusy, možné výsledky, jevy

9.2.1 Náhodné pokusy, možné výsledky, jevy 9.2.1 Náhodné pokusy, možné výsedky, jevy Předpokady: 9110, 9114 Hodím kámen za normáních okoností jediný výsedek = spadne na zem Hodíme kámen na terč někoik možných výsedků (trefíme desítku, devítku,,

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Metody přírodních věd aplikované na vědy sociální: předpoklad, že lidské chování můžeme do jisté míry měřit a předpovídat.

Metody přírodních věd aplikované na vědy sociální: předpoklad, že lidské chování můžeme do jisté míry měřit a předpovídat. 3. Kvalitativní vs kvantitativní výzkum Kvantitativní výzkum Metody přírodních věd aplikované na vědy sociální: předpoklad, že lidské chování můžeme do jisté míry měřit a předpovídat. Kvantitativní výzkum

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Terminologie ve výzkumu. Markéta Vojtová VOŠZ a SZŠ Hradec Králové

Terminologie ve výzkumu. Markéta Vojtová VOŠZ a SZŠ Hradec Králové Terminologie ve výzkumu Markéta Vojtová VOŠZ a SZŠ Hradec Králové Metoda = návod, způsob, cesta, jak něco poznat, něčeho docílit Kroky vedoucí k určitému cíli musí být zdůvodnitelné Objektivně přiměřené

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Diplomový seminář 1. Akademický rok 2008/2009. 17.9.2009 Ing. Václav Křivohlávek, CSc.

Diplomový seminář 1. Akademický rok 2008/2009. 17.9.2009 Ing. Václav Křivohlávek, CSc. Diplomový seminář 1 Akademický rok 2008/2009 Vybrané metodologické otázky 1. Hierarchie pojmů 2. Věcná a formální struktura práce 3. Základní metody zkoumání a výkladu 4. Etika Hierarchie pojmů Pojmy (resp.

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky STATISTIKA I.

Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky STATISTIKA I. Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky STATISTIKA I. pro kombinované a distanční studium Radim Briš Martina Litschmannová

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Prezentace oboru Letový provoz

Prezentace oboru Letový provoz Prezentace oboru Letový provoz motto: Aktivity v letovém provozu jsou podmíněné vysokou odborností a profesionalitou v oboru doc. Ing. Luděk Beňo, CSc. VŠO Katedra letecké dopravy 1 V čem spočívá rozdíl

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Diskrétní Matematika (456-533 DIM)

Diskrétní Matematika (456-533 DIM) Diskrétní Matematika (456-5 DIM) Doc. RNDr. Petr Hliněný, Ph.D. petr.hlineny@vsb.cz 7. července 005 Verze.0. Copyright c 004 005 Petr Hliněný. Obsah 0. Předmluva.................................... iv

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Kapitola 1. Základy teorie pravděpodobnosti

Kapitola 1. Základy teorie pravděpodobnosti Kapitola 1 Základy teorie pravděpodobnosti 1 2 KAPITOLA 1. ZÁKLADY TEORIE PRAVDĚPODOBNOSTI 1.1 Náhodné jevy, pravděpodobnost 1.1.1 Náhoda, náhodný jev Život je jen náhoda, jak se zpívá v jedné oblíbené

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Nabídka seminářů pro 7.A a 3.B ve školním roce 2015/2016

Nabídka seminářů pro 7.A a 3.B ve školním roce 2015/2016 Nabídka seminářů pro 7.A a 3.B ve školním roce 2015/2016 Studenti si volí semináře s celkovou dotací 4 hodiny týdně. Nabízené semináře mají dotaci 1 hodinu, resp. 2 hodiny týdně. Student si tedy může navolit

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Redukcionismus a atomismus

Redukcionismus a atomismus Redukcionismus a atomismus ČVUT FEL Filosofie 2 Filip Pivarči pivarfil@fel.cvut.cz Co nás čeká? Co je to redukcionismus Směry redukcionismu Redukcionismus v různých odvětvých vědy Co je to atomismus Směry

Více

Citation Statistics. zpráva společné komise. Int. Mathematical Union. Int. Council of Industrial and Applied Mathematics. Institute of Statistics

Citation Statistics. zpráva společné komise. Int. Mathematical Union. Int. Council of Industrial and Applied Mathematics. Institute of Statistics Citation Statistics zpráva společné komise Int. Mathematical Union Int. Council of Industrial and Applied Mathematics Institute of Statistics Citace ze zadání: The drive towards more transparency and accountability

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor002 Vypracoval(a),

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Postgraduální vzdělávání analytiků v klinické biochemii. Milan Jirsa Katedra klinické biochemie IPVZ

Postgraduální vzdělávání analytiků v klinické biochemii. Milan Jirsa Katedra klinické biochemie IPVZ Postgraduální vzdělávání analytiků v klinické biochemii Milan Jirsa Katedra klinické biochemie IPVZ FONS Pardubice 2014 Podmínky pro zařazení Získání odborné způsobilosti k výkonu povolání odborného pracovníka

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Přehled technických norem z oblasti spolehlivosti

Přehled technických norem z oblasti spolehlivosti Příloha č. 1: Přehled technických norem z oblasti spolehlivosti NÁZVOSLOVNÉ NORMY SPOLEHLIVOSTI IDENTIFIKACE NÁZEV Stručná charakteristika ČSN IEC 50(191): 1993 ČSN IEC 60050-191/ Změna A1:2003 ČSN IEC

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Bakalářský studijní obor Manažerská ekonomika specializace Podniková ekonomika a management. pro studenty studující od roku 2011/2012

Bakalářský studijní obor Manažerská ekonomika specializace Podniková ekonomika a management. pro studenty studující od roku 2011/2012 Bakalářský studijní obor Manažerská ekonomika specializace Podniková ekonomika a management pro studenty studující od roku 2011/2012 Studijní obor Manažerská ekonomika V první fázi studia oboru Manažerská

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Postgraduální vzdělávání analytiků v klinické biochemii

Postgraduální vzdělávání analytiků v klinické biochemii Postgraduální vzdělávání analytiků v klinické biochemii M. Jirsa, P. Pecáková, J. Vávrová Katedra klinické biochemie IPVZ FONS Pardubice 2014 upravená verze Podmínky pro zařazení do oboru Získání odborné

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více