IV. CVIENÍ ZE STATISTIKY

Rozměr: px
Začít zobrazení ze stránky:

Download "IV. CVIENÍ ZE STATISTIKY"

Transkript

1 IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní data? Krátce si pipomeme základní fakta ze statistické teorie testování hypotéz. a) Hodnocení rozdíl dvou výbrových prmr nezávislých soubor dvouvýbrový t-test. Teoretický úvod: Pedpokládejme, že máme dva nezávislé soubory reprezentující dv populace. Pedpokládejme, že sledovaná numerická veliina je v obou populacích normáln rozložená s neznámými populaními prmry µ 1 a µ 2. Nulová hypotéza pedpokládá nulový rozdíl mezi populaními prmry, tedy že µ 1 = µ 2. K tomu, abychom mohli prmry dvou populací porovnat, je teba spoítat testovou statistiku t. Výpoet je založen na rozdílu mezi prmry obou výbr, variabilit sledované veliiny a velikosti obou výbr. Pesný vzorec naleznete ve výukových textech. Tato testová statistika je rozložena podle Studentova t-rozdlení s n 1 + n 2-2 stupni volnosti. Stupn volnosti jsou parametrem t-rozdlení. Pomocí statistického modulu programu Excel najdeme pesnou p-hodnotu. Tato pravdpodobnost odpovídá pravdpodobnosti výskytu takovéto nebo ješt extrémnjší hodnoty testového kritéria t za pedpokladu platnosti nulové hypotézy. Pokud je menší než 0,05, nulovou hypotézu zamítáme. Znamená to, že pravdpodobnost, že by pozorované rozdíly vznikly pouze náhodou, je menší než 5 %. Klasický dvouvýbrový t-test, krom normálního rozložení sledované veliiny, pedpokládá také, že rozptyly jsou v obou populacích shodné. Tento pedpoklad se testuje na základ výbrových odhad smrodatných odchylek s 1 a s 2 F-testem. V pípad nestejných smrodatných odchylek se použije modifikovaný výpoet testové statistiky t a také poet stup volnosti je výsledkem pomrn složitého výpotu. Data, se kterými budete pracovat, naleznete v souboru F:\SOFTWARE\biostatistika\data\analýza dat.xlsx 1

2 Na listu dvouvýbrový t-test jsou data 237 zamstnanc nemocnice. Ve sloupci A Zamstnanec. je uvedena identifikace. Druhý sloupec (B) Vk udává vk zamstnance v letech. Tetí sloupec (C) Cholesterol obsahuje informaci o hodnot celkového cholesterolu meného v mmol/l, ve sloupci D je zadána hodnota body mass indexu BMI každého zamstnance a znak Kouení rozlišuje kuáky (kódováno 1) a nekuáky (kódováno 2). Zadání úkolu Vaším úkolem bude provit, jestli zamstnanci, kteí kouí, jsou stejn staí jako zamstnanci, kteí nekouí i zda se tyto skupiny vkov odlišují. Dále je teba zjistit, jestli má kouení vliv na hodnoty celkového cholesterolu a BMI. Stanovíme nulové a alternativní hypotézy: 1. Nulová hypotéza: Kuáci a nekuáci se neliší ve vku. Alternativní hypotéza: Kuáci a nekuáci se liší ve vku. 2. Nulová hypotéza: Kuáci a nekuáci se neliší v celkovém cholesterolu. Alternativní hypotéza: Kuáci a nekuáci se liší v celkovém cholesterolu. Postup ovení první hypotézy: 1. Pomocí F-testu ovíme zda, rozptyl veliiny Vk je stejný v populaci kuák a v populaci nekuák. Tento nástroj je obsažen v položce Analýza dat. (Analýzu dat nastavte stejným zpsobem jako pi použití nástroje Popisná statistika kliknte na ikonu, otevete Možnosti aplikace Excel, vyberte položku Doplky, nastavte Analytické nástroje jako 2

3 Aktivní doplnk k dispozici a kliknte na tlaítko Pejít, zaškrtnte Analytické nástroje a potvrte OK. 2. Z hlavního menu vyberte položku Data a kliknte na položku Analýza dat. 3. Ze seznamu analytických nástroj vyberte Dvouvýbrový F-test pro rozptyl. Vyplte dialogové okno Dvouvýbrový F-test pro rozptyl. Do pole 1. soubor zadejte adresu bunk, které obsahují vk kuák buky B2:B97. Do pole 2. soubor zadejte adresu bunk, které obsahují vk nekuák buky B98:B238. Hladinu alfa ponechte nastavenou na standardní hodnotu 0,05 a do pole Výstupní oblast zadejte adresu buky K1. Potvrte tlaítkem OK. Dostanete výstupní tabulku: 3

4 Soubor 1 pedstavuje kuáky, Soubor 2 nekuáky. St. hodnota je aritmetický prmr veliiny Vk pro 1. i 2. soubor. Rozptyl nám udává hodnotu rozptylu v obou souborech. V ádku Pozorování je uvedeno, kolik pacient bylo zaazeno do jednotlivých soubor. Položka Rozdíl nám udává poet stup volnosti. Název rozdíl je pekladatelskou chybou. Dále je uvedena hodnota testového kriteria F, dosažená hladina statistické významnosti P a kritická hodnota F krit. Pokud je p-hodnota vtší nebo rovna 0,05, znamená to, že rozptyly v obou populacích jsou shodné. Pokud je p-hodnota menší než 0,05, rozptyly ve sledovaných populacích nejsou shodné. V tomto pípad p = 0,205, což je vtší než 0,05, rozptyly jsou tedy shodné. Provedení t-testu. 4. Kliknte na Analýza dat a z nabídky analytických nástroj vyberte Dvouvýbrový t-test s rovností rozptyl. 5. Vyplte dialogové okno Dvouvýbrový t-test s rovností rozptyl obdobným zpsobem jako v pípad F-testu. Soubory jsou totožné, hypotetický rozdíl stedních hodnot je roven 0, hodnotu hladiny alfa nechejte na hodnot 0, Do pole Výstupní oblast zadejte adresu buky K12. Kliknte na OK 4

5 Tabulka s výsledky t-testu Soubor 1 pedstavuje opt kuáky, Soubor 2 zamstnance nekuáky. St. hodnota je aritmetický prmr veliiny Vk u kuák a nekuák. Rozptyl nám udává hodnotu rozptylu v obou souborech. V ádku Pozorování je uvedeno, kolik osob bylo zaazeno do jednotlivých soubor. V následujícím ádku je spoítán Spolený rozptyl pro 1. a 2. soubor. Hyp. rozdíl stedních hodnot je nulový, což je v souladu s naší nulovou hypotézou. Položka Rozdíl nám udává poet stup volnosti. K výpotu bylo použito vzorce n 1 + n 2-2 = = 235. Dále je uvedena hodnota testového kriteria t Stat, dosažená hladina statistické významnosti P (1) pro jednostranný test (1) a kritická hodnota t krit pro jednostranný test. Vzhledem k oboustranné formulaci alternativní hypotézy nás zajímá hladina dosažené statistické významnosti pro oboustranný test P (2) = 0,026. Je zejmé, že dosažená hodnota signifikance je podstatn menší než stanovená hladina 0,05, je tedy oprávnné zamítnout nulovou hypotézu. Závr testování: Zamítáme nulovou hypotézu: Kuáci a nekuáci se neliší ve vku. Dvouvýbrovým t-testem bylo prokázáno, že kuáci jsou statisticky významn mladší než nekuáci. Prmrný vk kuák je 34,8 rok, nekuák 38,2 rok. Postup ovení druhé hypotézy: Nulová hypotéza: Kuáci a nekuáci se neliší v celkovém cholesterolu. Alternativní hypotéza: Kuáci a nekuáci se liší v celkovém cholesterolu. Postup bude obdobný jako v prvním píkladu: 1. Pomocí F-testu opt ovte zda, rozptyl veliiny celkový cholesterol je stejný v populaci kuák a v populaci nekuák. 2. Vyberte položku Data v hlavním menu a kliknte na Analýza dat. Vyplte dialogové okno Dvouvýbrový F-test pro rozptyl: 5

6 Potvrte tlaítkem OK. Tabulka s výsledky F-testu:. Soubor 1 pedstavuje kuáky, Soubor 2 nekuáky. St. hodnota je aritmetický prmr celkového cholesterolu pro 1. i 2. soubor. Rozptyl nám udává hodnotu rozptylu v obou souborech. V ádku Pozorování je uvedeno, kolik osob bylo zaazeno do jednotlivých soubor. Položka Rozdíl nám udává poet stup volnosti. Dále je uvedena hodnota testového kriteria F, dosažená hladina statistické významnosti P a kritická hodnota F krit. Dosažená hladina statistické významnosti pro F-test nabyla hodnoty 0,011, je tedy menší než 0,05, rozptyly v obou populacích tedy nejsou shodné. Vidíme, že veliina celkový cholesterol je ve skupin kuák variabilnjší (má vtší rozptyl) než ve skupin nekuák. Provete dvouvýbrový t-test. 3. Zvolte Analýza dat a z nabídky analytických nástroj vyberte Dvouvýbrový t-test s nerovností rozptyl. 6

7 4. Vyplte dialogové okno Dvouvýbrový t-test s nerovností rozptyl obdobným zpsobem jako v pípad F-testu. Soubory jsou totožné, hypotetický rozdíl stedních hodnot je roven 0, hodnotu hladiny alfa nechejte na hodnot 0, Kliknte na OK. Tabulka s výsledky t-testu Soubor 1 pedstavuje kuáky, Soubor 2 nekuáky. St. hodnota je aritmetický prmr celkového cholesterolu kuák a nekuák. Všimnte si tchto hodnot, které se píliš neliší (5,096 mmol/l u kuák a 5,0132 u nekuák). Položka Rozptyl nám udává hodnotu rozptyl sledované veliiny v obou souborech. 7

8 V ádku Pozorování je uvedeno, kolik osob bylo zaazeno do jednotlivých soubor. Položka Rozdíl nám udává poet stup volnosti. K výpotu potu stup volnosti bylo použito složitjšího vzorce než v pedchozím píkladu, kde byl splnn pedpoklad rovnosti rozptyl. Dále je uvedena hodnota testového kriteria t Stat, dosažená hladina statistické významnosti P (1) pro jednostranný test a kritická hodnota t krit pro jednostranný test (1). Vzhledem k oboustranné formulaci alternativní hypotézy nás zajímá hladina dosažené statistické významnosti pro oboustranný test P (2) = 0,590. Je zejmé, že dosažená hodnota signifikance je vtší než stanovená hladina 0,05, a tudíž není možné zamítnout nulovou hypotézu. 1) Závr testování: Pijímáme nulovou hypotézu: Kuáci a nekuáci se neliší v celkovém cholesterolu. Úkol k samostatnému ešení: Zjistte, zda kouení ovlivuje tlesnou hmotnost zamstnanc nemocnice. Tlesná hmotnost je vyjádena indexem BMI. Návod: Stanovte nulovou a alternativní hypotézu. Ovte, zda rozptyly veliiny BMI jsou shodné v obou zkoumaných populacích (u kuák a nekuák). Zvolte vhodný typ dvouvýbrového t-testu. Provete t-test a na základ dosažené hladiny statistické významnosti (p-hodnoty) rozhodnte o platnosti dané nulové hypotézy. b) Hodnocení rozdíl dvou výbrových prmr párových dat párový t-test. Teoretický úvod: Nyní uvažujme situaci, kdy na skupin vybraných jedinc provedeme urité mení a potom znovu za jiných okolností nebo po provedení uritého zásahu (léby apod.) provedeme totéž mení na týchž jedincích ješt jednou. Pjde o to zjistit, zda ml zásah vliv na prmrnou hodnotu sledované veliiny, jinými slovy, zda se prmr ped zásahem µ 1 rovná prmru po zásahu µ 2. Nulová hypotéza opt pedpokládá, že se tyto prmry neliší. Ze sledované populace poídíme náhodný výbr o rozsahu n jedinc. Provedeme dvakrát mení dané numerické veliiny jednou ped zásahem, podruhé po zásahu a spoteme rozdíl tchto hodnot pro každého jedince. Získáme tak n dvojic mení a n rozdíl. Spoteme prmr tchto rozdíl (diferencí) a oznaíme d. Pokud platí nulová hypotéza a zásah neml na menou veliinu žádný vliv, bude d velice blízký nule. Bude-li naopak d od nuly daleko, bude to svdit o tom, že zásah uritým zpsobem ovlivnil sledovanou numerickou veliinu. K tomu abychom mohli vyjádit, jak daleko je d od nuly, spoítáme hodnotu testové statistiky t. Výpoet statistiky t vychází z prmrné diference d, rozptylu diferencí a rozsahu náhodného výbru. Pesný vzorec naleznete ve výukových textech. Tato testová statistika je rozložena podle Studentova t-rozdlení s n - 1 stupni volnosti. Pomocí statistického modulu programu Excel najdeme pesnou p hodnotu. Tato pravdpodobnost odpovídá pravdpodobnosti výskytu takovéto nebo ješt extrémnjší hodnoty testového kritéria za pedpokladu, že platí 8

9 nulová hypotéza. Pokud je dosažená hladina statistické významnosti p menší než 0,05, nulovou hypotézu zamítáme. Znamená to, že pravdpodobnost, že by pozorované rozdíly vznikly pouze náhodou, je menší než 5 %. Data, se kterými budete pracovat, naleznete v souboru F:\SOFTWARE\biostatistika\data\analýza dat.xlsx na listu párový t-test Na listu párový t-test jsou zaznamenána data pacient, kterým byla transplantována ledvina. Ve sloupci (A) Pacient. je uvedena identifikace. Ve sloupci (B) je zaznamenán Vk pacienta v letech, ve sloupci (C) jeho Pohlaví a ve sloupci (D) je uvedeno Imunosupresivum, které pacienti po transplantaci užívali. Ve sloupcích (E) a (F) najdete hodnoty Kreatininu namené ped transplantací a 6 msíc po transplantaci v µmol/l. Ve sloupcích (G) a (H) jsou hodnoty Albuminu namené ped transplantací a 6 msíc po transplantaci v g/l. Ve sloupcích (I) a (J) najdete hodnoty Kyseliny moové namené ped transplantací a 6 msíc po transplantaci v µmol/l. Je zejmé, že všechny veliiny ve sloupcích (E) až (J) jsou kvantitativního typu a byly získány opakovaným mením. Jedná se tedy o párová data páry jsou vyznaeny barevným oznaením sloupc stejnou barvou. Zadání úkolu Vaším úkolem bude posoudit, zda vlivem transplantace došlo ke zmnám biochemických parametr kreatininu, albuminu a kyseliny moové. Stanovíme nulovou a alternativní hypotézu: Nulová hypotéza: Hladina kreatininu 6 msíc po transplantaci ledviny se neliší od hladiny ped transplantací. Alternativní hypotéza: Hladina kreatininu 6 msíc po transplantaci ledviny se liší od hladiny ped transplantací. 9

10 Postup ovení hypotézy: 1. Kliknte na položku Analýza dat v hlavním menu a z nabídky analytických nástroj vyberte Dvouvýbrový párový t-test na stední hodnotu. Slovo dvouvýbrový zde nemá opodstatnní, pracujeme pouze s jedním výbrem, jedná se opt o pekladatelskou chybu. Výbr potvrte tlaítkem OK. Dostanete dialogové okno: 2. Do pole 1. soubor zadejte adresu oblasti bunk s hodnotami ze sloupce E Kreatinin ped transplantací. 3. Do pole 2. soubor zadejte adresu oblasti bunk s hodnotami ze sloupce F Kreatinin 6 msíc po transplantaci. 4. Do pole Hypotetický rozdíl stedních hodnot napište íslo nula (nulová hypotéza pedpokládá, že rozdíl stedních hodnot (prmr) je roven nule). 5. Zatrhnte políko Popisky, protože jste v polích 1. a 2. soubor zadali data i s bukami v prvním ádku, kde jsou popisky. Do pole Výstupní oblast zadejte adresu L1. 6. Kliknte na OK.. 10

11 Dostanete následující tabulku: V prvním ádku je uveden aritmetický prmr hladiny kreatininu zjištný ped transplantací (1. sloupec) a po transplantaci (2. sloupec). Všimnte si znaného rozdílu mezi obma hodnotami. V druhém ádku jsou uvedeny rozptyly veliiny, tetí ádek Pozorování nás informuje o potu jedinc, kteí byli zaazeni do sledování. Na dalším ádku je vypoítán Pearsonv korelaní koeficient, jehož hodnota vypovídá o tém nulové korelaci mezi hodnotami zjištnými ped transplantací a po transplantaci. Hyp. rozdíl st. hodnot je roven 0, tak jak to pedpokládá stanovená nulová hypotéza. Položka Rozdíl udává poet stup volnosti vypoítaný podle vzorce n 1 = 50 1 = 49. Dále je uvedena hodnota testové statistiky t Stat, dosažená hladina statistické významnosti P pro jednostranný test (1), kritická hodnota pro jednostranný test. Pro posouzení platnosti nulové hypotézy je nejdležitjší hodnota dosažené statistické významnosti pro oboustranný test P(2), která je v našem pípad rovna 2,968* Je zejmé, že dosažená hodnota signifikance je podstatn menší než stanovená hladina 0,05, jsme tedy oprávnni zamítnout nulovou hypotézu. 7. Uiníme závr testování: Zamítáme nulovou hypotézu: Hladina kreatininu 6 msíc po transplantaci ledviny se neliší od hladiny ped transplantací. a pijímáme alternativní hypotézu: Hladina kreatininu 6 msíc po transplantaci ledviny se liší od hladiny ped transplantací. Prmrná hladina kreatininu se vlivem transplantace ledviny statisticky významn snížila, z prmrné hodnoty 642,14 µmol/l na prmrnou hodnotu 124,64 µmol/l. Pro porovnání uvádíme tabulku s referenními mezemi kreatininu: 11

12 Úkol k samostatnému ešení: Posute, zda vlivem transplantace došlo ke zmnám dalších biochemických parametr albuminu a kyseliny moové. Návod: Stanovte nulové a alternativní hypotézy. Provete t-testy, v prvním pípad porovnejte hodnoty sloupc G a H, ve druhém úkolu porovnejte hodnoty obsažené ve sloupcích I a J. Na základ dosažených hladin statistické významnosti (p-hodnoty) rozhodnte o platnosti nulových hypotéz. 12

III. CVIENÍ ZE STATISTIKY

III. CVIENÍ ZE STATISTIKY III. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data pomocí chí-kvadrát testu, korelaní a regresní analýzy. K tomuto budeme používat program Excel 2007 MS Office,

Více

Statistický popis dat. Tvorba kontingenních tabulek. Grafická prezentace dat.

Statistický popis dat. Tvorba kontingenních tabulek. Grafická prezentace dat. Statistický popis dat. Tvorba kontingenních tabulek. Grafická prezentace dat. Po pihlášení se do sít (viz login name + password v okn Login) budete mít pistupný síový disk F:\, na kterém jsou uložena data

Více

Zásady tvorby databáze, seznamy, organizace dat, tídní, funkce, výpoty a souhrny v Excelu

Zásady tvorby databáze, seznamy, organizace dat, tídní, funkce, výpoty a souhrny v Excelu Zásady tvorby databáze, seznamy, organizace dat, tídní, funkce, výpoty a souhrny v Excelu Po pihlášení se do sít (viz login name + password v okn Login) budete mít pístupný síový disk F:\, na kterém jsou

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Vysoká škola báská Technická univerzita Ostrava Institut geoinformatiky. Analýza dojíždní z dotazníkového šetení v MSK. Semestrální projekt

Vysoká škola báská Technická univerzita Ostrava Institut geoinformatiky. Analýza dojíždní z dotazníkového šetení v MSK. Semestrální projekt Vysoká škola báská Technická univerzita Ostrava Institut geoinformatiky Analýza dojíždní z dotazníkového šetení v MSK Semestrální projekt 18.1.2007 GN 262 Barbora Hejlková 1 OBSAH OBSAH...2 ZADÁNÍ...3

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

Informatika B Píklad 05 MS Excel

Informatika B Píklad 05 MS Excel Informatika B Píklad 05 MS Excel TÉMA: Vytváení vzorc, pojmenování oblastí Sekretáka spolenosti Naše zahrada, a.s. dostala za úkol provést urité výpoty v sešit se seznamy zboží. Práci si usnadnila pojmenováním

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

DUM. Databáze - úvod

DUM. Databáze - úvod DUM Název projektu íslo projektu íslo a název šablony klíové aktivity Tematická oblast - téma Oznaení materiálu (pílohy) Inovace ŠVP na OA a JŠ Tebí CZ.1.07/1.5.00/34.0143 III/2 Inovace a zkvalitnní výuky

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

Zbytky zákaznického materiálu

Zbytky zákaznického materiálu Autoi: V Plzni 31.08.2010 Obsah ZBYTKOVÝ MATERIÁL... 3 1.1 Materiálová žádanka na peskladnní zbytk... 3 1.2 Skenování zbytk... 7 1.3 Vývozy zbytk ze skladu/makulatura... 7 2 1 Zbytkový materiál V souvislosti

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

R O V N O B Ž N Í K (2 HODINY)

R O V N O B Ž N Í K (2 HODINY) R O V N O B Ž N Í K (2 HODINY)? Co to vlastn rovnobžník je? Na obrázku je dopravní znaka, která íká, že vzdálenost k železninímu pejezdu je 1 m (dva pruhy, jeden pruh pedstavuje vzdálenost 80 m): Pozorn

Více

2. M ení t ecích ztrát na vodní trati

2. M ení t ecích ztrát na vodní trati 2. M ení t ecích ztrát na vodní trati 2. M ení t ecích ztrát na vodní trati 2.1. Úvod P i proud ní skute ných tekutin vznikají následkem viskozity t ecí odpory, tj. síly, které p sobí proti pohybu ástic

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

Statistická analýza volebních výsledk

Statistická analýza volebních výsledk Statistická analýza volebních výsledk Volby do PSP R 2006 Josef Myslín 1 Obsah 1 Obsah...2 2 Úvod...3 1 Zdrojová data...4 1.1 Procentuální podpora jednotlivých parlamentních stran...4 1.2 Údaje o nezamstnanosti...4

Více

Jednotlivé mezivýsledky, získané v prbhu analýzy rozptylu, jsou prbžn a systematicky zaznamenávány v tabulce ANOVA. Prmrný tverec. volnosti SS B.

Jednotlivé mezivýsledky, získané v prbhu analýzy rozptylu, jsou prbžn a systematicky zaznamenávány v tabulce ANOVA. Prmrný tverec. volnosti SS B. Ing. Martna Ltschmannová Statsta I., cvení ANOVA Rozšíením dvouvýbrových test pro stední hodnoty je analýza rozptylu nebol ANOVA, terá umožuje srovnávat nol stedních hodnot nezávslých náhodných výbr. Analýza

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Tabulkový procesor Excel

Tabulkový procesor Excel Tabulkový procesor Excel Excel 1 SIPVZ-modul-P0 OBSAH OBSAH...2 ZÁKLADNÍ POJMY...4 K EMU JE EXCEL... 4 UKÁZKA TABULKOVÉHO DOKUMENTU... 5 PRACOVNÍ PLOCHA... 6 OPERACE SE SOUBOREM...7 OTEVENÍ EXISTUJÍCÍHO

Více

Správa obsahu ízené dokumentace v aplikaci SPM Vema

Správa obsahu ízené dokumentace v aplikaci SPM Vema Správa obsahu ízené dokumentace v aplikaci SPM Vema Jaroslav Šmarda, smarda@vema.cz Vema, a. s., www.vema.cz Abstrakt Spolenost Vema patí mezi pední dodavatele informaních systém v eské a Slovenské republice.

Více

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč

STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI. Pavel Praks, Zdeněk Boháč STUDIJNÍ OPORY S PŘEVAŽUJÍCÍMI DISTANČNÍMI PRVKY PRO VÝUKU STATISTIKY PRVNÍ ZKUŠENOSTI Pavel Praks, Zdeněk Boháč Katedra matematiky a deskriptivní geometrie, VŠB - Technická univerzita Ostrava 17. listopadu

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

Cykly Intermezzo. FOR cyklus

Cykly Intermezzo. FOR cyklus Cykly Intermezzo Rozhodl jsem se zaadit do série nkolika lánk o základech programování v Delphi/Pascalu malou vsuvku, která nám pomže pochopit principy a zásady pi používání tzv. cykl. Mnoho ástí i jednoduchých

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

PÍRUKA A NÁVODY PRO ÚELY: - RUTINNÍ PRÁCE S DATY

PÍRUKA A NÁVODY PRO ÚELY: - RUTINNÍ PRÁCE S DATY PÍRUKA A NÁVODY PRO ÚELY: - RUTINNÍ PRÁCE S DATY YAMACO SOFTWARE 2006 1. ÚVODEM Nové verze produkt spolenosti YAMACO Software pinášejí mimo jiné ujednocený pístup k použití urité množiny funkcí, která

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

P ehled nep ítomnosti

P ehled nep ítomnosti Pehled nepítomnosti Modul poskytuje pehled nepítomností zamstnanc na pracovišti. Poskytuje informace o plánované, schválené nebo aktuáln erpané pracovní nepítomnosti zamstnanc v rámci pracovišt VUT a možnost

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

2. Posouzení efektivnosti investice do malé vtrné elektrárny

2. Posouzení efektivnosti investice do malé vtrné elektrárny 2. Posouzení efektvnost nvestce do malé vtrné elektrárny Cíle úlohy: Posoudt ekonomckou výhodnost proektu malé vtrné elektrárny pomocí základních metod hodnocení efektvnost nvestních proekt ako sou metoda

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

Efektivní hodnota proudu a nap tí

Efektivní hodnota proudu a nap tí Peter Žilavý: Efektivní hodnota proudu a naptí Efektivní hodnota proudu a naptí Peter Žilavý Katedra didaktiky fyziky MFF K Praha Abstrakt Píspvek experimentáln objasuje pojem efektivní hodnota stídavého

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Nastavení synchronizace asu s internetovými servery. MS Windows XP

Nastavení synchronizace asu s internetovými servery. MS Windows XP Nastavení synchronizace asu s internetovými servery Tento návod Vám pomže nastavit na Vašem poítai synchronizaci asu s internetovými servery pro operaní systémy MS Windows (XP, Vista), Linux (Ubuntu) a

Více

http://www.jib.cz od A až do Z

http://www.jib.cz od A až do Z od A až do Z Uživatelská píruka Národní knihovna, 2004 Jednotná informaní brána (JIB) nabízí jednotný a snadný pístup k rzným informaním zdrojm, nap. katalogm knihoven, lánkovým bibliografickým a plnotextovým

Více

IMPORT DAT Z TABULEK MICROSOFT EXCEL

IMPORT DAT Z TABULEK MICROSOFT EXCEL IMPORT DAT Z TABULEK MICROSOFT EXCEL V PRODUKTECH YAMACO SOFTWARE PÍRUKA A NÁVODY PRO ÚELY: - IMPORTU DAT DO PÍSLUŠNÉ EVIDENCE YAMACO SOFTWARE 2005 1. ÚVODEM Všechny produkty spolenosti YAMACO Software

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá 1) Lineární i nelineární regrese prostá, korelace Naeditujeme data viz obr. 1. Obr. 1 V menu Statistika zvolíme submenu Pokročilé lineární/nelineární

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Pídavný modul rozvaha lze vyvolat z hlavní nabídky po stisku tlaítka Výkazy / pídavné moduly.

Pídavný modul rozvaha lze vyvolat z hlavní nabídky po stisku tlaítka Výkazy / pídavné moduly. Výkaz rozvaha Pídavný modul rozvaha lze vyvolat z hlavní nabídky po stisku tlaítka Výkazy / pídavné moduly. Po spuštní modulu se zobrazí základní okno výkazu: V tabulce se zobrazují sloupce výkazu. Ve

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Datový typ POLE. Jednorozmrné pole - vektor

Datový typ POLE. Jednorozmrné pole - vektor Datový typ POLE Vodítkem pro tento kurz Delphi zabývající se pedevším konzolovými aplikacemi a základy programování pro mne byl semestr na vysoké škole. Studenti nyní pipravují semestrální práce pedevším

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

VYUŽITÍ MODULU EXCELENT PRO MANAŽERSKÉ ANALÝZY V APLIKACÍCH VEMA

VYUŽITÍ MODULU EXCELENT PRO MANAŽERSKÉ ANALÝZY V APLIKACÍCH VEMA VYUŽITÍ MODULU EXCELENT PRO MANAŽERSKÉ ANALÝZY V APLIKACÍCH VEMA Ing. Bc. Jaroslav Šmarda Vema, a. s. smarda@vema.cz Abstrakt Ze zkušenosti víme, že nasazení speciálního manažerského informaního systému

Více

Kapitola VII. ANALYSA ROZPTYLU ANOVA.

Kapitola VII. ANALYSA ROZPTYLU ANOVA. Analysa rozptylu ANOVA. 37 Kapitola VII. ANALYSA ROZPTYLU ANOVA. Luděk Dohnal Tato kapitola rozšiřuje téma testování statistické významnosti tím, že popisuje způsob současného porovnání více než dvou sad

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Prostedky automatického ízení

Prostedky automatického ízení VŠB-TU Ostrava / Prostedky automatického ízení Úloha. Dvoupolohová regulace teploty Meno dne:.. Vypracoval: Petr Osadník Spolupracoval: Petr Ševík Zadání. Zapojte laboratorní úlohu dle schématu.. Zjistte

Více

Časové řady - Cvičení

Časové řady - Cvičení Časové řady - Cvičení Příklad 2: Zobrazte měsíční časovou řadu míry nezaměstnanosti v obci Rybitví za roky 2005-2010. Příslušná data naleznete v souboru cas_rada.xlsx. Řešení: 1. Pro transformaci dat do

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x).

V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x). 3. FUNKCE NÁHODNÉ VELIINY as ke studu: 40 mnut Cíl: Po prostudování této kaptol budete umt transformovat náhodnou velnu na náhodnou velnu Y, je l mez tmto náhodným velnam vzájemn jednoznaný vztah VÝKLAD

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

DOPRAVNÍ INŽENÝRSTVÍ

DOPRAVNÍ INŽENÝRSTVÍ VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ ING. MARTIN SMLÝ DOPRAVNÍ INŽENÝRSTVÍ MODUL 1 DOPRAVNÍ A PEPRAVNÍ PRZKUMY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Dopravní inženýrství

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Podílový fond PLUS. komplexní zabezpeení na penzi

Podílový fond PLUS. komplexní zabezpeení na penzi Podílový fond PLUS komplexní zabezpeení na penzi Aleš Poklop, generálníeditel Penzijního fondu eské spoitelny Martin Burda, generálníeditel Investiní spolenosti eské spoitelny Praha 29. ervna 2010 R potebuje

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

OBSAH: SPUŠT NÍ PROGRAMU A P IHLÁŠENÍ DO PROGRAMU...6

OBSAH: SPUŠT NÍ PROGRAMU A P IHLÁŠENÍ DO PROGRAMU...6 OBSAH: 1. SPUŠTNÍ PROGRAMU A PIHLÁŠENÍ DO PROGRAMU...6 Vytvoení nového (zrušení stávajícího) uživatele... 7 Ikony hlavní lišty... 8 Panel píznak... 8 Panel nástroj v tiskových sestavách.... 8 2. EVIDENCE

Více

1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST

1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST 1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST Kombinatorické pravidlo o souinu Poet všech uspoádaných k-tic, jejichž první len lze vybrat n 1 zpsoby, druhý len po výbru prvního lenu n 2 zpsoby atd. až k-tý

Více