TELMG Modul 10: Základy relativistické elektrodynamiky

Rozměr: px
Začít zobrazení ze stránky:

Download "TELMG Modul 10: Základy relativistické elektrodynamiky"

Transkript

1 Budeme se zabývat výhradně elektromagnetikým polem ve vakuu Nejprve velmi stručně zrekapitulujeme potřebné poznatky ze speiální teorie relativity Einsteinovy postuláty Maxwellovy rovnie elektromagnetikého pole nejsou invariantní vůči Galileově transformai Můžeme to nahlédnout nejjednodušeji tak uvědomíme-li si že z MR pro vakuum plyne ryhlost světla ve vakuu univerzální konstantou = ( ε ) ož je v rozporu s klasikým adičním teorémem ryhlostí podle kterého by měl pozorovatel pohybujíí se ryhlostí v vůči zdroji světla naměřit ryhlost světla ± v Přesná měření (např slavný Mihelsonův-Morleyův pokus) ukázala také experimentálně že ryhlost světla ve vakuu je nezávislá na ryhlosti pozorovatele Albert Einstein r 95 formuloval dva postuláty: - obený prinip relativity: tvar fyzikálníh zákonů (všeh nejen mehanikýh) nezávisí na volbě (ineriální) soustavy - prinip konstantní ryhlosti světla: ve všeh (ineriálníh) soustaváh má ryhlost světla stejnou velikost Lorentzova transformae Uvažujme dva souřadné systémy S a S kde systém S se vůči S pohybuje ryhlostí v v kladném směru osy x V čase t = t = nehť osy obou systémů splývají Z Einsteinovýh postulátů plyne vztah mezi čárkovanými a nečárkovanými proměnnými: kde γ = v vx x = γ ( x vt) y = y z = z t = γ t je činitel který může nabývat hodnot od do Uvedený vztah nazýváme Lorentzovou transformaí Einsteinův adiční teorém ryhlostí Pro transformai ryhlosti z Lorentzovy transformae snadno nalezneme dx vx v v x = dt vv x dy vy v y = dt γ vv x dz vz v z = dt γ vv x Relativita současnosti Události současné v soustavě S tzn t = t = t ale nesoumístné (přesněji x x) pozoruje pozorovatel v různýh časeh vx t = γ t v Časový interval mezi nimi v S je t = t t = γ ( x x) Dilatae času - Dvě soumístné události v S (stačí x = x) nesoučasné ( t t ) nastanou v S v časeh vx t = γ t tzn že časový interval mezi nimi

2 ( ) t = t t = γ t t = γ t Uvedenými událostmi může být např odečítání údajů na hodináh pevně spojenýh se soustavou S Protože γ můžeme říi že pozorovatel v S naměří γ -krát delší časový interval než pozorovatel v S ož je jev známý jako dilatae času Vlastní čas Nejkratší časový interval τ naměří pozorovatel v klidu vůči pozorovanému tělesa (hodinám) Čas měřený tímto pozorovatelem nazýváme vlastním časem tělesa a platí pro něj vztah dτ = dt γ kde dt je odpovídajíí časový interval měřený v jiné než klidové soustavě Vlastní čas je tzv Lorentzovským invariantem má stejnou hodnotu ve všeh ineriálníh soustaváh Kontrake délek Tělesa která se vůči pozorovateli pohybují se jeví podélně zkráena na délku l podle vztahu l l = γ kde l představuje tzv klidovou délku tyče Dohází k délkové kontraki Odvození viz seminář příklad Prostoročasový interval Je definován vztahem s = t x y z resp v difereniální formě ds = dt dx dy dz Jednoduhým výpočtem s resp ds se dá dokázat že prostoročasový interval () je Lorentzovským invariantem prostoročasový interval se tedy hová obdobně jako délkový interval dl = dx + dy + dz při Galileově transformai Minkovského formalismus Ukazuje se formálně užitečným zavést místo prostorovýh souřadni xyz a času t čtyřrozměrný prostor zvaný Minkovského prostoročas vztahy x = x x = y x3 = z x4 = it kde i je imaginární jednotka Čtvrtá (časová) souřadnie je tudíž ryze imaginární Prostoročasový interval lze nyní vyjádřit vztahy s = x x resp ds dx dx = V uvedenýh vztazíh i dále platí Einsteinova sčítaí konvene kdy sčítáme přes index který se ve vzori objeví dvakrát (řeké indexy probíhají hodnoty od do 4 latinské od do 3)

3 Matie Lorentzovy transformae Lorentzovu transformai lze vyjádřit pomoí proměnnýh x takto: ( iβ ) x = γ x x x = x x3 x3 4 = x γ ( x iβx ) = 4 4 v kde byl zaveden obvyklý symbol β = Soustavu můžeme vyjádřit v matiovém tvaru rovnií x = Lx kde zavedená matie Lorentzovy transformae L má tvar L γ iβγ = -iβγ γ Jedná se o tzv ortogonální matii tzn že matie inverzní vznikne transpozií (záměnou řádků a sloupů) a že platí pro odvozování důležitý vztah L L = δ kde δ λ je Kronekerův tenzor Čtyřvektory a čtyřtenzory λ λ Analogiky pojmu vektor a tenzor v třídimenzionálním prostoru zavádíme pojmy čtyřvektor a čtyřtenzor v prostoročase: Veličiny A které se transformují stejně jako souřadnie tj podle vztahu A = LA nazýváme čtyřvektory Veličiny T které se transformují podle vztahu T = Lκ Lλ Tκλ nazýváme čtyřtenzory druhého řádu Obdobně pro vyšší řády Invarianty Lorentzovy transformae např prostoročasový interval ds vlastní čas dτ klidovou délku l atd označujeme také jako prostoročasové skaláry Důležitým invariantem je kromě uvedenýh objemový element čtyřprostoru 4 dω d x = dxdxdx3dx4 ož je obdoba objemového elementu dv dxdydz v třídimenzionálním prostoru Analogiky jako v 3D-prostoru platí že derivae čtyřvektoru podle skaláru je čtyřvektor derivae A čtyřvektoru podle souřadni tvoří čtyřtenzor atd V dalším používáme složkový zápis tzn že např x znamená čtyřvektor ( ) 3 4 xxxx nikoliv pouze jednu složku

4 Čtyřryhlost dx Veličina u = tvoří čtyřvektor zvaný čtyřryhlost Na základě vyjádření vlastní času podle (7) dτ můžeme čtyřryhlost vyjádřit pomoí obyčejné ryhlosti v jako u = ( γv iγ ) () Podobně se dají definovat veličiny jako čtyřhybnost čtyřzryhlení čtyřsíla a formulovat relativistikou mehaniku ož přesahuje ráme tohoto kursu My se v dalším omezíme pouze na relativistikou formulai základů elektrodynamiky Transformae objemové hustoty elektrikého náboje Množství elektrikého náboje dq je invariantem tzn nezávisí na volbě referenčního systému tj dq = dq Objemový element dv není jak víme invariantem protože v důsledku kontrake podélnýh dv rozměrů platí dv = kde dv je objemový element ve své klidové soustavě γ Uvažujme objemový element dv obsahujíí náboj dq který je v klidu vůči systému S Protože dq dq je lorentzovským invariantem ale dv nikoliv není ani objemová hustota náboje ρ = dv invariantem nýbrž se transformuje podle vztahu ρ = γρ kde symbolem ρ je označena klidová hustota ρ elektrikého náboje kterou by naměřil pozorovatel v S Transformae proudové hustoty čtyřproud Vpřípadě pohybu elektrikýh nábojů tj nenulové proudové hustoty elektrikého proudu j = ρv se transformační vztahy ještě víe komplikují neboť je nutno kromě objemové kontrake nutno uvážit také Einsteinův adiční teorém ryhlostí pro ryhlost v proudovýh nosičů a vzájemnou ryhlost referenčníh soustav v Dá se však ukázat že veličina dx j ρ = ρ dt ( j i ) tvoří čtyřvektor tzn transformuje podle vztahu j = L j Konkrétní výpočet dává transformační vztahy v j = γ ( j ρv) j = j j 3 = j3 ρ = γ ρ j Veličinu j nazýváme čtyřvektorem proudové hustoty elektrikého proudu zkráeně čtyřproudem Tato veličina v sobě zahrnuje všehny tři složky vektoru j proudové hustoty i objemovou hustotu ρ elektrikého náboje Kovariantní tvar rovnie kontinuity elektrikého proudu Kovariantním tvarem určité rovnie nazýváme takový tvar ze kterého je patrno že uvedená rovnie je invariantní vůči Lorentzově transformai Nejčastěji se jedná o rovnii ve které vystupují pouze prostoročasové čtyřtenzory (včetně čtyřvektorů a skalárů) a ve které jsou použity pouze čtyřtenzorové operae (jejímiž produkty jsou opět čtyřtenzory obeně různýh řádů) Pak je invariane vůči Lorentzově transformai automatiky zaručena ρ Zavedením čtyřproudu j snadno upravíme rovnii kontinuity elektrikého proudu div j + = na tvar

5 j = Levá strana rovnie vyjadřuje tzv čtyřdivergeni čtyřvektoru j Čtyřpoteniál Obdobně jako se podařilo z veličin j a ρ vytvořit čtyřvektor j dá se z vektorového poteniálu A a skalárního poteniálu ϕ složit čtyřvektor A Ai ( ) ϕ Jedná se o tzv čtyřpoteniál elektromagnetikého pole Kovariantní tvar rovni pro poteniály ρ Vyjdeme z rovni pro poteniály ve vakuu A= j ϕ = které snadno přepíšeme na ε ε tvar ( A) = j ( iϕ ) = j4 Zavedením čtyřpoteniálu A můžeme obě rovnie nahradit ε ε jedinou A = j ε ϕ Obdobně Lorentzovu podmínku pro vakuum div A + = zjednodušit na tvar můžeme zavedením čtyřpoteniálu Α = nebo-li čtyřdivergene čtyřpoteniálu se rovná nule Tenzor elektromagnetikého pole Tenzorem elektromagnetikého pole nazýváme antisymetriký čtyřtenzor F A A Z definie čtyřpoteniálu můžeme elkem snadno získat expliitní tvar tenzoru elektromagnetikého pole (viz seminář příklad ): F B3 B -ie B B -ie 3 = B B -ie3 ie ie ie3 Je zřejmé že složkami tenzoru elektromagnetikého pole jsou složky vektorů E a B elektromagnetikého pole ož odůvodňuje jeho název

6 Kovariantní tvar kalibračníh rovni pro poteniály Z definie tenzoru elektromagnetikého pole plyne že se jeho složky (a tudíž i vektory pole) nezmění nahradíme-li čtyřpoteniál podle shématu f Α Α + x Uvedená záměna není ovšem ni jiného než známá kalibrační invariantnost f ϕ ϕ zapsaná ve čtyřvektorové podobě t Kovariantní tvar Maxwellovýh rovni A A+ grad f Z definie tenzoru elektromagnetikého pole plynou následujíí rovnie (odvození viz seminář příklady 3 a 4): λ λ + + = λ = ε j Uvedené rovnie představují kovariantní tvar Maxwellovýh rovni pro vakuum B První rovnie zastupuje rovnie div B = rot E + = druhá rovnie je ekvivalentní rovniím ρ E div E = rot H ε ε = j Odvození viz seminář příklady 5 a 6 Transformační vztahy pro vektory pole Při hledání transformačníh vztahů pro vektory pole E B vyjdeme z toho že jejih složky jsou současně složkami tenzoru elektromagnetikého pole F jehož transformační předpis známe Tak např pro složku F musí platit F = L κl λfκλ Z hodnot L λ je nenulová pouze L = z hodnot L κ pouze L = γ a L4 = iβγ tudíž F = γf + iβγf4 Dosadíme za F = B 3 F = B3 v F4 = ie odkud po elementární úpravě obdržíme výsledek B 3 = γ B3 E Obdobně jednoduše se dají spočítat ostatní komponenty vektorů E B uveďme pouze výsledky: E = E E γ ( E v B ) = E = γ ( E + v B ) B = B v B = γ B + E 3 v B 3 = γ B3 E Provedeme-li rozklad vektorů pole na složky podélné a kolmé k vektoru ryhlosti v můžeme transformační vzore přepsat na tvar E = γ ( E + v B) E = E B = B B = γ B v E

7 V případě v << můžeme položit γ a dostaneme přibližné vztahy E E+ v B B B v E Z výsledků plyne že čistě elektriké pole v S ( B = ) má v S nenulovou magnetikou složku B v E Magnetiké pole je tedy relativistikým efektem druhého řádu (člen úměrný v / ) Přesto se v praxi projevuje i při nerelativistikýh ryhlosteh nábojů neboť i při relativně malýh proudeh dohází k pohybu obrovského množství elementárníh nosičů náboje (např pro proud velikosti A 8 dostáváme /e 6 elektronů prošlýh průřezem vodiče za s) Příklad (řešený) Odvoďte vztah pro kontraki délek Seminář Řešení: Z Lorentzovy transformae plyne že dvě současné nesoumístné události v S ( t = t = t) mají v S x -ové souřadnie rovny x γ ( x vt) = a tedy jejih podélná vzdálenost ( ) l x x = γ x x = γl () kde l x x Nehť pozorovatel v S měří délku tyče která je vůči S v klidu Uvedené události jsou nyní definovány jako současné přiložení délkového měřidla (v čase t ) k oběma konům tyče (souřadnie x > x) Naměří vzdálenost l = x x Pozorovatel v S vidí tyto události také lokalizovány na obou koníh tyče (souřadnie x x ) ve vzdálenosti l = x x = l To že události pro něj nastávají v různýh časeh t t nevadí neboť tyč je vůči němu v klidu Dosazením do vztahu () dostáváme l Příklad (řešený) = γ l odkud Odvoďte expliitní tvar tenzoru magnetikého pole Řěšení l = l /γ Z antisymetrie tenzoru F plyne že má obeně 6 různýh složek Spočítejme nejprve složku F Na základě definie čtyřpoteniálu a známého vztahu B = rot A obdržíme ( ) ( ) Α Α A A A A F = = = ( rot A ) = B3 3 y y Obdobně F3 = B F3 = B A Nyní spočítejme složku F 4 S využitím vztahu E = gradϕ obdržíme Α Α ( A 4 ) ( iϕ ) A ϕ F4 = = i ie x4 x i t x = t x Obdobně F4 = ie F43 = ie3

8 Příklad 3 λ λ Odvoďte rovnii + + = λ pro tenzor elektromagnetikého pole F Návod: Stačí dosadit definiční vztah F A A Příklad 4 Odvoďte rovnii = ε j pro tenzor elektromagnetikého pole F Návod: Nejprve přímým výpočtem ověřte že pro čtyřdivergeni tenzoru F platí rovnii pro čtyřpoteniál ve vakuu A = j ε = A a pak použijte Příklad 5 λ λ Ověřte že rovnie + + = λ B rot E + = vyjadřuje IV a II MR pro vakuum tj rovnie div B = Návod: Uvedená rovnie představuje elkem 64 rovni ale z důvodu antisymetrie tenzoru F jsou pouze 4 nezávislé Použijte pouze rovnii s indexy λ = = = 3 a rovnii s indexy λ = i = j = 4 Do vzniklýh rovni dosaďte za složky tenzoru F expliitní vyjádření pomoí složek vektorů pole Příklad 6 Ověřte že rovnie E rot H ε = j = ε j vyjadřuje III a I MR pro vakuum tj rovnie ρ div E = ε Návod: Dosaďte za složky tenzoru F expliitní vyjádření pomoí složek vektorů pole Rozepište čtyřproud j podle definie

Speciální teorie relativity IF

Speciální teorie relativity IF Speiální teorie relativity IF Speiální teorie relativity Newtonovy pohybové zákony umožňují popis hování těles pohybujííh se nízkými ryhlostmi. Při ryhlosteh, kterýh dosahují částie v uryhlovačíh, však

Více

Dodatek: Speciální teorie relativity

Dodatek: Speciální teorie relativity Dodatek: Speiální teorie relativity V tomto dodatku jsou diskutovány důsledky speiální teorie relativity pro kinematiku a dynamiku, nebot speiální teorie relativity je základem pro všehna měření v prostoročase.

Více

TELMG Modul 03: Maxwellovy rovnice. I. a II. MR: aplikací plošného integrálu a Stokesovy věty integrálního počtu

TELMG Modul 03: Maxwellovy rovnice. I. a II. MR: aplikací plošného integrálu a Stokesovy věty integrálního počtu Difereniální a integrální tvar Maxwellovýh rovni kot James Clerk Maxwell (1831-1879) Integrální tvar Difereniální tvar d I Hdl = I + d dt D D rot H = j+ d II Edl = d dt B B rot E = III D d = Q div D =

Více

Operace s polem příklady

Operace s polem příklady Equation Chapter 1 Setion 1 1 Gradient Operae s polem příklady Zadání: Nadmořská výška libovolného bodu na povrhu kope je dána formulí h(x y) = A exp [ (x/l 0 ) 9(y/l 0 ) ] kde A = 500 m l 0 = 100 m Nalezněte

Více

SPECIÁLNÍ TEORIE RELATIVITY

SPECIÁLNÍ TEORIE RELATIVITY OSTRAVSKÁ UNIVERZITA V OSTRAVĚ SPECIÁLNÍ TEORIE RELATIVITY DALIBOR DVOŘÁK OSTRAVA Obsah Úvod do problematiky 4 Historiké poznámky 4 Vývoj fyziky v 9 století 4 3 Aberae stáli 5 4 Strhávání světla 6 Lorentzova

Více

Elektrodynamika. 1 Elektrické a magnetické veličiny, jednotky SI

Elektrodynamika. 1 Elektrické a magnetické veličiny, jednotky SI Elektrodynamika Elektriké a magnetiké veličiny, jednotky SI Elektriký proud I je v systému SI základní veličina, jednotka je Ampere A. Definie: Stejné proudy ve rovnoběžnýh dráteh ve vzdalenosti m mají

Více

Nekvantový pohled na fyzikální pole

Nekvantový pohled na fyzikální pole 43 Nekvantový pohled na fyzikální pole Albert Einstein (879 955) Uvažujme nyní myšlenkový experiment, v němž uvnitř vlakového vagónu kmitá foton mezi dvěma planparalelními zradly, vzájemně vzdálenými l,

Více

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2

6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2 6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje

Více

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2 Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

ρ = 0 (nepřítomnost volných nábojů)

ρ = 0 (nepřítomnost volných nábojů) Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika

Více

EKONOMETRIE 10. přednáška Modely zpožděných proměnných

EKONOMETRIE 10. přednáška Modely zpožděných proměnných EKONOMERIE 10. přednáška Modely zpožděnýh proměnnýh Časové posuny mezi působením určitýh faktorů (vyvolány např. informačními, rozhodovaími, instituionálními a tehnologikými důvody). Setrvačnost ve vývoji

Více

1. PROSTOR A ČAS V KLASICKÉ MECHANICE

1. PROSTOR A ČAS V KLASICKÉ MECHANICE FYZIKA PRO IV. ROČNÍK GYMNÁZIA SPECIÁLNÍ TEORIE RELATIVITY 1. PROSTOR A ČAS V KLASICKÉ MECHANICE Mgr. Monika Bouhalová Gymnázium, Havířov-Město, Komenského, p.o. III/---01 Zpraováno. ledna 013 Tento digitální

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

Úvod TEORIE RELATIVITY SPECIÁLNÍ A MINIMUM OBECNÉ. Prostor a čas v klasické mechanice

Úvod TEORIE RELATIVITY SPECIÁLNÍ A MINIMUM OBECNÉ. Prostor a čas v klasické mechanice TEORIE RELATIVITY SPECIÁLNÍ A MINIMUM OBECNÉ RNDr. Pael Kantorek Albert Einstein (1879 1955) Úod 19. století še e fyzie objeeno klasiká fyzika běžnýh ryhlostí a hmotností poč.. stol. kantoá fyzika (KF)

Více

Ampérův zákon (1a) zákon elektromagnetické indukce. Gaussův zákon. zákon o neexistenci magnetických nábojů (1d)

Ampérův zákon (1a) zákon elektromagnetické indukce. Gaussův zákon. zákon o neexistenci magnetických nábojů (1d) Učební text k přednáše UFY v obeném tvaru D rot H = j( r, t ) Ampérův zákon (a) B rot E + = zákon elektromagnetiké induke (b) div D = ρ ( r, t ) Gaussův zákon () div B = zákon o neexisteni magnetikýh nábojů

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Speciální teorie relativity IF relativistická kinematika

Speciální teorie relativity IF relativistická kinematika Prinip relatiity Speiální teorie relatiity IF relatiistiká kinematika Newtonoy pohyboé zákony umožňují popis hoání těles pohybujííh se nízkými ryhlostmi Při ryhlosteh, kterýh dosahují částie uryhloačíh,

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

f x = f y j i y j x i y = f(x), y = f(y),

f x = f y j i y j x i y = f(x), y = f(y), Cvičení 1 Definice δ ij, ε ijk, Einsteinovo sumační pravidlo, δ ii, ε ijk ε lmk. Cvičení 2 Štoll, Tolar: D3.55, D3.63 Cvičení 3 Zopakujte si větu o derivovování složené funkce více proměnných (chain rule).

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

Základy teorie relativity

Základy teorie relativity Kapitola 7 Základy teorie relativity 7. Motivace 7.. Co je a co není teorie relativity Speciální teorie relativity (STR) mění velmi podstatně naše pojímání prostoru a času. Zejména v oblasti velmi vysokých

Více

Lorentzova transformace a jednorozměrná vlnová rovnice

Lorentzova transformace a jednorozměrná vlnová rovnice Lorentzova transformace a jednorozměrná vlnová rovnice Zadání 1. Určete infinitezimální generátor Lorentzovy transformace X = ξ x x, t) + ξt x, t) 1). Řešením systému obyčejných diferenciálních rovnic

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Rudý posuv v úloze z Fyzikální olympiády

Rudý posuv v úloze z Fyzikální olympiády Rudý posuv v úloze z Fyzikální olympiády JAN NOOTNÝ Pedagogiká fakulta Masarykovy univerzity, Brno Příspěvek se zabývá úvahami, k nimž inspiruje zadání úlohy z Fyzikální olympiády a které nás dovádějí

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Relativistická kinematika

Relativistická kinematika Relativistická kinematika 1 Formalismus čtyřhybnosti Pro řešení relativistických kinematických úloh lze často s výhodou použít formalismus čtyřhybnosti. Čtyřhybnost je čtyřvektor, který v sobě zahrnuje

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Nehomogenní vlnová rovnice

Nehomogenní vlnová rovnice Nehomogenní vlnová rovnie Viděli jsme, že ve vakuu lze s použitím Lorentzovy kalibrae soustavu 4 Maxwellovýh rovni převést na soustavu dvou vlnovýh rovni ( 2 ρ( r, t 2 t 2 Φ( r, t = ( ɛ 0 ( 2 A( r, 2 t

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

INTEGRACE KOMPLEXNÍ FUNKCE

INTEGRACE KOMPLEXNÍ FUNKCE INTEGRAE KOMPLEXNÍ FUNKE LEKE34-KIN auchyova obecná auchyova auchyův vzorec vičení KŘIVKOVÝ INTEGRÁL Na konci kapitoly o derivaci je uvedena souvislost existence derivace s potenciálním polem. Existuje

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

2. kapitola: Euklidovské prostory

2. kapitola: Euklidovské prostory 2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

ÚVOD DO TERMODYNAMIKY

ÚVOD DO TERMODYNAMIKY ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních

Více

Autor: Vladimír Švehla

Autor: Vladimír Švehla Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné. Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Základní vlastnosti funkcí

Základní vlastnosti funkcí teorie řešené úloh vičení tip k maturitě výsledk Základní vlastnosti funkí Víš, že Tomáš Garrigue Masark zastával funki prezidenta víe než 17 let? rodina plní řadu funkí reprodukční, soiálně ekonomikou,

Více

Derivace funkcí více proměnných

Derivace funkcí více proměnných Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Substituce ve vícenásobném integrálu verze 1.1

Substituce ve vícenásobném integrálu verze 1.1 Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

9. Vícerozměrná integrace

9. Vícerozměrná integrace 9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

1.4. VEKTOROVÝ SOUČIN

1.4. VEKTOROVÝ SOUČIN .4. VEKTOROVÝ SOUČIN V této kapitole se dozvíte: definici vektorového (také vnějšího) součinu, jeho vlastnosti a geometrický význam; co rozumíme pravotočivou ortonormální nebo ortogonální bází; definici

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =

Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx = . cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t Dilatae času 1 Na kosmiké lodi zdalujíí se od Země ryhlostí,1 probíhal určitý děj, který podle měření účastníků letu tral jednu hodinu Jak dlouho trá tento děj pro pozoroatele na Zemi? Je možné, aby děj

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

Dodatek A Einsteinova sumační konvence a její použití

Dodatek A Einsteinova sumační konvence a její použití Dodatky 330 Dodatky Dodatek A Einsteinova sumační konvence a její použití A1 Einsteinova sumační konvence Vyskytnou-li se ve výrazu dva stejné indexy, potom přes ně automaticky sčítáme. Sčítací indexy

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Konvergence kuncova/

Konvergence  kuncova/ Konvergence http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Příklady.. 3. 3 + d Konverguje - u je funkce spojitá, u srovnáme s /. e d Konverguje - na intervalu [, ] je funkce spojitá, na intervalu

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

1.13 Klasifikace kvadrik

1.13 Klasifikace kvadrik 5 KAPITOLA 1. KVADRIKY JAKO PLOCHY. STUPNĚ 1.13 Klasifikace kvadrik V této části provedeme klasifikaci kvadrik. Vyšetříme všechny případy, které mohou různou volbou koeficientů v rovnici kvadriky a 11

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy 2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

7. Lineární vektorové prostory

7. Lineární vektorové prostory 7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

12. Křivkové integrály

12. Křivkové integrály 12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

. Najdi parametrické vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadnic a najdi její další vyjádření.

. Najdi parametrické vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadnic a najdi její další vyjádření. 735 Obená rovnie přímky I Předpoklady: 070304 Pedagogiká poznámka: Úvodní příklad se nesmí příliš prodlužovat Nemá enu ztráet čas tím, že si většina žáků nepamatuje lineární funke Raději ryhle napíši řešení

Více

. Najdi parametrické vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadnic a najdi její další vyjádření.

. Najdi parametrické vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadnic a najdi její další vyjádření. 7.3.5 Obená rovnie přímky Předpoklady: 7303 Př. 1: Jsou dány body A[ 1; 1] a B [ 1;3]. Najdi parametriké vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadni a najdi její další vyjádření.

Více

OBECNÁ CHEMIE. Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO.

OBECNÁ CHEMIE. Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO. OBECNÁ CHEMIE Kurz chemie pro fyziky MFF-UK přednášející: Jaroslav Burda, KChFO burda@karlov.mff.cuni.cz HMOTA, JEJÍ VLASTNOSTI A FORMY Definice: Každý hmotný objekt je charakterizován dvěmi vlastnostmi

Více