Substituce ve vícenásobném integrálu verze 1.1

Rozměr: px
Začít zobrazení ze stránky:

Download "Substituce ve vícenásobném integrálu verze 1.1"

Transkript

1 Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku. ohou se v něm vyskytovat některé chyby; autor ocení, když jej na chyby a nejasnosti upozorníte na u jiri.lipovskyzavináč uhk.cz. Teorie Věta.. Nechť je množina a nechť ψ je prosté regulární zobrazení otevřené množiny G R r do R r takové, že ψ(g. Pak platí f(y dy f(ψ(x det J dx, ψ ( má-li alespoň jedna strana smysl. Zde Dψ(x D(x je Jacobiho matice zobrazení ψ(x, tedy matice prvních parciálních derivací tohoto zobrazení. Při substituci musíme provést tři věci. Za prvé změnit meze integrálu, aby hranice integrované oblasti byly popsány v nových proměnných. Za druhé provést substituci v integrované funkci, přepsat ji do nových proměnných. Třetí (a možná nejdůležitější změnou je přidání faktoru, který odpovídá determinantu Jacobiho matice. Protože jednotkový čtvereček (např. dx dy má po substituci jinou velikost (např. du dv, je třeba do integrálu přidat faktor, který tuto změnu kompenzuje. Řešené příklady Příklad.. Určete obsah roviny omezené hyperbolami xy a, xy b, < a < b a parabolami y mx, y nx, < m < n. Řešení: Zvolíme si substituci u xy, v y /x. Tuto substituci volíme proto, aby nově zavedené proměnné měly jednodušší meze. Vidíme, že v nových proměnných u a v budeme integrovat přes obdélník: a < u < b, m < v < n. Nyní musíme vyjádřit staré proměnné pomocí nových x x(u, v, y y(u, v. Např. vyjádřením y z první rovnice y u/x, dosazením do druhé v u /x a úpravou dostáváme x u v u/ v /. Zpětným dosazením do rovnice pro y máme y u / v /. Vztahů pro x a y můžeme využít pro výpočet Jacobiho matice: ( x u / v / u/ v / u / v / u/ v /.

2 .5 xy b y n x.5 y m x.5.5 xy a Obrázek : Obrázek k příkladu..5 y x y x.5.5 xy.5 xy Obrázek : Obrázek k příkladu. det v. Nyní už můžeme využít věty o substituci a dosadit do vztahu výše. Protože počítáme obsah roviny, je integrovaná funkce jednička. dxdy ψ ( v dudv b ( n a m b a v dv du (ln n ln m du (b a ln( n m. Příklad.. Vypočtěte integrál x y dxdy přes množinu danou vztahy x y x a x y x. Řešení: Přepsáním výrazů ohraničujících množinu tak, aby na levé resp. pravé straně nerovnic byly konstanty, získáváme xy, y x. Tyto

3 .5 y x.5 y x.5 xy.5 xy Obrázek : Obrázek k příkladu. výrazy nás navádí na to, abychom využili substituce u xy, v y x. Nové proměnné se pohybují v mezích u, v. Opět např. vyjádříme y z první rovnice a dosadíme do druhé (případně můžeme taky levé a pravé strany rovnice vynásobit mezi sebou. Dostáváme Jacobiho matice pak je x u / v /, y u / v /. x ( u / v / u/ v / u / v / u/ v /. det v. Integrál tedy vypočítáme následovně: ( x y u [ u dxdy v dv du Příklad.. Pomocí substituce vypočtěte integrál je dána vztahy x y x, x y x. ] [ln v] ln. y x dxdy, kde množina Řešení: Vztahy ohraničující množinu si přepíšeme tak, aby na krajních stranách byly konstanty: xy, y x. Odsud vidíme, že nejlepší substituce je u xy, v y x, kde u a v. Dále nalezneme inverzní vztahy x u / v /, y u / v /. Jacobiho matice je ( x u / v / u/ v / u / v / u/ v /.

4 .5 y x y x.5.5 x + y x + y Obrázek : Obrázek k příkladu. S využitím vztahu y x v u y x dxdy det v. integrál určíme jako: ( v u v dv du [ v ] [ln u] ln. Příklad.. Pomocí substituce určete integrál x + y dxdy, kde je dána vztahy x + y, x y x Řešení: Jak výraz v integrálu, tak části kružnic ohraničující množinu navádějí na polární souřadnice x r cos ϕ, y r sin ϕ. nožina je v nich ohraničena vztahy r, r cos ϕ r sin ϕ r cos ϕ, z čehož plyne tg ϕ, a tedy π ϕ π. Nyní vypočteme jakobián pro polární souřadnice, který se nám bude hodit i v dalších příkladech. ( x x ( r ϕ cos ϕ r sin ϕ. sin ϕ r cos ϕ r ϕ det r cos ϕ + r sin ϕ r. Ve výsledném integrálu se objeví jedno r za integrovanou funkci a jedno r z jakobiánu. π/ ( x + y dxdy π/ r dr dϕ [ r ] [ϕ] π/ π/ 7 π. Příklad.5. Pomocí substituce ve vícenásobném integrálu odvoďte vztah pro obsah kruhu o poloměru R.

5 Řešení: Zavedeme si polární souřadnice jako v minulém příkladu. Víme, že r R, ϕ π a det r. Potom je obsah kruhu roven integrálu: dxdy R ( π r dϕ dr R πr dr π r πr. Příklad.. Určete integrál xy dxdy, kde je část kruhu o poloměru a středu v prvním kvadrantu. Řešení: Protože integrujeme přes čtvrtkruh, zvolíme opět polární souřadnice x r cos ϕ, y r sin ϕ, meze budou r, ϕ π/, jakobián je jako v předchozích příkladech r. V integrálu se objeví r : jedno za x, druhé za y a třetí z jakobiánu. xy dxdy π/ ( r cos ϕ r sin ϕ r dr dϕ π/ [ r ] Využili jsme vztahu sin ϕ sin ϕ cos ϕ. sin ϕ dϕ [ ] π/ cos ϕ 8 Příklad.7. Pomocí substituce vypočtěte (x + y dxdy, kde je omezená křivkami x + y, x + y, x y, x y. Řešení: Zavedeme substituci u x + y a v x y, máme tedy u, v. Inverzní vztahy jsou x u+v, y u v. Jacobiho matice je: ( x. det. Jakobián je /, do integrálu ale dáváme absolutní hodnotu jakobiánu, tj. /. (x + y dxdy u dudv [ u ] [v]. Příklad.8. Určete integrál ( y x + xy dxdy, kde je množina v. kvadrantu ohraničená hyperbolami xy, xy 9 a přímkami y x a y x. Řešení: Ohraničení množiny a výraz v integrálu navádí na substituci u xy, v y x (možná je i jiná volba. Hranice v nových proměnných budou u, v. Vydělením a vynásobením definičních vztahů pro u a v dostáváme x u v, y uv. Jacobiho matice pak je: ( x u v, det u v u v. 5

6 7 5 y x xy 9 y x xy 5 Obrázek 5: Obrázek k příkladu.8 Pro integrál dostáváme ( y x + ( xy dxdy (u + v u v du dv [ ] u u ( 5 + v v dv v + 8 dv 5 [ln v] + 8( 5 5 ln + 8( ln + 8. Příklad.9. Určete integrál sin (x + y dxdy, kde je kruh o poloměru se středem v počátku. Řešení: Použijeme polární souřadnice x r cos ϕ, y r sin ϕ, det r. π ( sin (x + y dxdy r sin r dr dϕ π [ cos t] π( cos. V integrálu jsme použili substituci za t r. Příklad.. Určete obsah elipsy o poloosách a a b. Řešení: Rovnice elipsy je ( x ( a + y b a lze ji parametrizovat x ar cos ϕ, y br sin ϕ, kde r, ϕ π. Jacobiho matice je ( x x ( a cos ϕ ar sin ϕ r r ϕ ϕ b sin ϕ br cos ϕ, det abr(cos ϕ+sin ϕ abr. Protože počítáme obsah plochy, je integrovanou funkcí jednička. π [ ] r dxdy abr drdϕ abπ abπ.

7 Příklad.. Přechodem k polárním souřadnicím určete plošný obsah části roviny, určené následujícími nerovnostmi, respektive hraničními křivkami: (x + y a (x y, x + y a, a. Řešení: Použijeme polární souřadnice x r cos ϕ, y r sin ϕ, det r. V nich hraniční křivky vypadají r a r (cos ϕ sin ϕ, tj. r a cos ϕ a r a. Rovnosti v prvním vztahu se pro r a dosahuje pro cos ϕ, tj. ϕ π/. eze v polárních souřadnicích tedy jsou a r a cos ϕ, ϕ π. Pro integrál dostáváme dxdy π a ( a cos ϕ r dr dϕ a π cos ϕ dϕ a 8 π π a ( cos ϕ dϕ cos u du a 8 [sin u] π a V integrálu jsme provedli substituci u ϕ a použili vztah cos t cos t sin t cos t. Příklad.. Kruhový válec o poloměru podstavy R výšce h s osou ve směru osy z je naplněn plynem, jehož hustota se řídí barometrickou formulí ρ ρ e ρ gz p. Určete hmotnost plynu ve válci. Řešení: Použijeme válcové souřadnice x r cos ϕ, y r sin ϕ, z z. Obdobně jako u polárních souřadnic je jakobián det r. Hmotnost plynu vypočteme jako integrál z hustoty přes celý objem válce. m V ρ dxdydz ψ (V ρr drdϕdz π R ρ h π R r h e ρ g p z dz πr p g ρ e ρ g p z dzdrdϕ ( e ρ gh p. Příklad.. Vypočítejte obsah množiny, která je ohraničena lemniskátou (x + y x y. Řešení: Křivka je středově symetrická podle počátku, budeme počítat obsah části v prvním kvadrantu a vynásobíme jej pak. Použijeme polární souřadnice, v nich dostáváme r r (cos ϕ sin ϕ r cos ϕ, tj. r cos ϕ. Použili jsme vztah cos ϕ cos ϕ sin ϕ. Aby tato nerovnost mohla být splněna, musí být cos ϕ kladný. Dostáváme tedy ϕ [ π, π ] [ π, 5π ]. Průnik s prvním kvadrantem dává ϕ [, π ]. 7

8 Obsah množiny tedy je S dxdy ψ ( π r drdϕ cos ϕ π r drdϕ cos ϕ dϕ Použitá a doporučená literatura π cos u du.. Kopáček Jiří, Příklady z matematiky pro fyziky III., atfyzpress, Praha,, kapitola. Šibrava Zdeněk, Příklady k atematice vícenásobné integrály, dostupné z www: int.pdf

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2 PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se

Více

ˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE

ˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE PŘEDNÁŠKA 9 DALŠÍ METODY INTEGRACE 1 9.1. Věta o substituci Věta 1 (O substituci) Necht je ϕ(x) prosté regulární zobrazení otevřené množiny X R n na množinu Y R n. Necht je M X, f(y) funkce definovaná

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

10. cvičení z Matematické analýzy 2

10. cvičení z Matematické analýzy 2 . cvičení z Matematické analýzy 3. - 7. prosince 8. (dvojný integrál - Fubiniho věta Vhodným způsobem integrace spočítejte daný integrál a načrtněte oblast integrace (a (b (c y ds, kde : y & y 4. e ma{,y

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

y ds, z T = 1 z ds, kde S = S

y ds, z T = 1 z ds, kde S = S Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných

Více

1 Úvod. 2 Teorie. verze 1.0

1 Úvod. 2 Teorie. verze 1.0 Vícenásobný integrál verze. Úvod Následující tet se zabývá dvojným a trojným integrálem. ěl b sloužit především studentům předmětu ATEAT na Univerzitě Hradec Králové k přípravě na zkoušku. ohou se v něm

Více

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový 1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

Diferenciální rovnice separace proměnných verze 1.1

Diferenciální rovnice separace proměnných verze 1.1 Úvod Diferenciální rovnice separace proměnných verze. Následující tet popisuje řešení diferenciálních rovnic, konkrétně metodu separace proměnných. Měl by sloužit především studentům předmětu MATEMAT na

Více

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1,

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1, Určete Křivkový integrál příklad 4 x ds, kde {x, y ; y ln x, x 3}. Řešení: Nejprve musíme napsat parametrické rovnice křivky. Asi nejjednodušší parametrizace je Tedy daný integrál je x ds x t, y ln t,

Více

PŘÍKLADY K MATEMATICE 3

PŘÍKLADY K MATEMATICE 3 PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Křivkové integrály.. Křivkový integrál prvního druhu. Příklad.. Vypočítejme křivkový integrál A =, ), B = 4, ). Řešení: Úsečka AB je hladká křivka. Funkce ψt) = 4t,

Více

12 Trojný integrál - Transformace integrálů

12 Trojný integrál - Transformace integrálů Trojný integrál transformace integrálů) - řešené příklady 8 Trojný integrál - Transformace integrálů. Příklad Spočtěte x + y dxdydz, kde : z, x + y. Řešení Integrační obor určený vztahy z, x + y je válec.

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1 ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami

Více

Kapitola 8: Dvojný integrál 1/26

Kapitola 8: Dvojný integrál 1/26 Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet

Více

Pedagogická fakulta. Aplikovaná matematika - sbírka řešených

Pedagogická fakulta. Aplikovaná matematika - sbírka řešených Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Diplomová práce Aplikovaná matematika - sbírka řešených příkladů Autor diplomové práce: Eva Kutová Vedoucí diplomové práce: RNDr. Libuše

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Integrace funkcí více proměnných, numerické metody

Integrace funkcí více proměnných, numerické metody Matematika III 6. přednáška Integrace funkcí více proměnných, numerické metody Michal Bulant Masarykova univerzita Fakulta informatiky 27. 10. 2010 Obsah přednášky 1 Literatura 2 Integrální počet více

Více

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL . VOJROZMĚRNÝ (VOJNÝ) INTEGRÁL Úvodem připomenutí základních integračních vzorců, bez nichž se neobejdete: [.] d = C [.] d = + C n+ n [.] d = + C n + [4.] d = ln + C [5.] sin d = cos + C [6.] cos d = sin

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

verze 1.3 x j (a) g k 2. Platí-li vztahy v předchozím bodu a mají-li f, g 1,..., g s v a diferenciál K = f + j=1

verze 1.3 x j (a) g k 2. Platí-li vztahy v předchozím bodu a mají-li f, g 1,..., g s v a diferenciál K = f + j=1 1 Úvod Vázané extrémy funkcí více proměnných verze 1. Následující text popisuje hledání vázaných extrémů funkcí více proměnných. Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

= 0,1 1,3. je oblast ohraničená přímkami =, =, =0 :0 1, : =2, =, =1

= 0,1 1,3. je oblast ohraničená přímkami =, =, =0 :0 1, : =2, =, =1 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad 1 Vypočtěte integrály a) b) c) d) e) f) g) h) i) j),, = 0,1 1,3 je oblast ohraničená přímkami =,=,=0 1+, :=0,=1,=1,= +3, :=0,=,=0,=1 sin+, 3,,,, :=0,=,= : + 4 : =4+,+3=0

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

7. Integrál přes n-rozměrný interval

7. Integrál přes n-rozměrný interval 7. Integrál přes n-rozměrný interval Studijní text 7. Integrál přes n-rozměrný interval Definice 7.1. Buď A = a 1, b 1 a n, b n R n n-rozměrný uzavřený interval a f : R n R funkce ohraničená na A Df. Definujme

Více

PŘÍKLADY K MATEMATICE 3

PŘÍKLADY K MATEMATICE 3 PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Funkce více proměnných.. Základní pojmy funkce více proměných. Příklad.. Určeme definiční obor funkce tří proměnných f(x, y, z) = x y + x z. Řešení: Definičním oborem

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

(3) vnitřek čtyřúhelníka tvořeného body [0, 0], [2, 4], [4, 0] a [3, 3]. (2) těleso ohraničené rovinami x = 1, y = 0 z = x a z = y

(3) vnitřek čtyřúhelníka tvořeného body [0, 0], [2, 4], [4, 0] a [3, 3]. (2) těleso ohraničené rovinami x = 1, y = 0 z = x a z = y 3. Násobné integrály 3.. Oblasti v R. Načrtněte množinu R a najděte meze integrálů f(x, y)dxdy, kde je dána: () = {(x, y) : x, y 3} () vnitřek trojúhelníka tvořeného body [, ], [, ] a [, ]. (3) vnitřek

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2 4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch

Více

Derivace funkcí více proměnných

Derivace funkcí více proměnných Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

III. Dvojný a trojný integrál

III. Dvojný a trojný integrál E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II 6 III. vojný a trojný integrál III.. Eistence Necht je měřitelná v Jordanově smslu množina v E resp. E a funkce f je omezená na. Necht

Více

Matematika pro chemické inženýry

Matematika pro chemické inženýry Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní

Více

Veronika Chrastinová, Oto Přibyl

Veronika Chrastinová, Oto Přibyl Integrální počet II. Příklady s nápovědou. Veronika Chrastinová, Oto Přibyl 16. září 2003 Ústav matematiky a deskriptivní geometrie FAST VUT Brno Obsah 1 Dvojný integrál 3 2 Trojný integrál 7 3 Křivkový

Více

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27, Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()

Více

Posloupnosti. n2 3n. lim. n4 + 2n. lim. n 1. n + n n. n! (n + 1)! n! lim. n ( 1)n! [1] lim. ln 2 n. lim. n n n sin n2 [0] lim. 2 n.

Posloupnosti. n2 3n. lim. n4 + 2n. lim. n 1. n + n n. n! (n + 1)! n! lim. n ( 1)n! [1] lim. ln 2 n. lim. n n n sin n2 [0] lim. 2 n. SBÍRKA PŘÍKLAŮ Z MATEMATICKÉ ANALÝZY III J. ANĚČEK, M. ZAHRANÍKOVÁ Symbolem jsou označeny obtížnější příklady. Posloupnosti Určete limitu posloupnosti n n + lim n n + 5n + lim n n n n4 + n lim n lim n

Více

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g. . Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n.

2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n. Písemka matematika 3 s řešením 1. Vypočtěte lim n( 1 + n 2 n), n lim n (( 1 + 1 n e ) n ) n. 1/2, 1/ e 2. Určte hromadné body, limitu superior a limitu inferior posloupností: a n = sin nπ ( 2, b n = n

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA ATEATICKÉ ANALÝZY A APLIKACÍ ATEATIKY BAKALÁŘSKÁ PRÁCE Dvojný integrál princip řešení a sbírka příkladů Vedoucí bakalářské práce: gr. Iveta

Více

VKM/IM /2015. Zintegrujte. f (x, y) dx dy = f (x, y) = (y x) 2, Ω : x 2 + y 2 4, x 0.

VKM/IM /2015. Zintegrujte. f (x, y) dx dy = f (x, y) = (y x) 2, Ω : x 2 + y 2 4, x 0. VKM/IM - 4/5 Zintegrujte f, y) d dy pro f, y) y ), : + y 4,. Řešení: S využitím postupů a výsledků použitých při řešení příkladů z předchozí části věnované dvojnému integrálu, se můžeme bez obav pustit

Více

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální

Více

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra Zadání: Vypočtěte polohu těžiště, momenty setrvačnosti a deviační moment k centrálním osám a dále určete hlavní centrální momenty setrvačnosti, poloměry setrvačnosti a natočení hlavních centrálních os

Více

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + je omezena + =1, + + =3, =0

je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + je omezena + =1, + + =3, =0 Příklad 1 Vypočtěte trojné integrály transformací do cylindrických souřadnic a) b) c) d), + + +,,, je omezena + =1,++=3,=0 je omezena + =,,0 1 je omezena,0 2,0 2,0 je horní polovina koule + + Řešení 1a,

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

4 Integrální počet funkcí více reálných proměnných

4 Integrální počet funkcí více reálných proměnných Dvojné integrály - 61-4 ntegrální počet funkcí více reálných proměnných 4.1 Dvojné a dvojnásobné integrály Dvojné a dvojnásobné integrály na intervalech z Pod uzavřeným intervalem z rozumíme kartézský

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

Matematika III 5. přednáška Lineární programování, integrace funkcí více proměnných

Matematika III 5. přednáška Lineární programování, integrace funkcí více proměnných Matematika III 5. přednáška Lineární programování, integrace funkcí více proměnných Michal Bulant Masarykova univerzita Fakulta informatiky 16. 10. 2007 Obsah přednášky 1 Lineární programování 2 Integrály

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) = Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Plošný integrál Studijní text, 16. května Plošný integrál

Plošný integrál Studijní text, 16. května Plošný integrál Plošný integrál tudijní text, 16. května 2011 Plošný integrál Jednoduchý integrál jsme rozšířili zavedením křivkového integrálu. Rozlišovali jsme dva druhy integrálu, přičemž křivkový integrál 2. druhu

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a

1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a . Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Globální extrémy (na kompaktní množině)

Globální extrémy (na kompaktní množině) Globální extrémy (na kompaktní množině) Budeme hledat globální extrémy funkce f na uzavřené a ohraničené (tedy kompaktní) množině M. Funkce f může svého globálního extrému na M nabývat bud v nějaké bodě

Více

Cvičení z AM-DI. Petr Hasil, Ph.D. Verze: 1. března 2017

Cvičení z AM-DI. Petr Hasil, Ph.D. Verze: 1. března 2017 z AM-DI Petr Hasil, Ph.D. hasil@mendelu.cz Verze: 1. března 017 Poznámka. Příklady označené na cvičení dělat nebudeme, protože jsou moc dlouhé, popř. složité (jako takové, nebo pro psaní na tabuli). V

Více

Matematická analýza III.

Matematická analýza III. 3. Implicitní funkce Miroslav Hušek, Lucie Loukotová UJEP 2010 V této kapitole se seznámíme s dalším možným zadáním funkce jejím implicitním vyjádřením. Doplní tak nám již známé explicitní a parametrické

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2.

Křivkové integrály prvního druhu Vypočítejte dané křivkové integrály prvního druhu v R 2. Křivové integrál prvního druhu Vpočítejte dané řivové integrál prvního druhu v R. Přílad. ds x, de je úseča AB, A[, ], B[4, ]. Řešení: Pro řivový integrál prvního druhu platí: fx, ) ds β α fϕt), ψt)) ϕ

Více

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

PŘÍKLADY K MATEMATICE 2

PŘÍKLADY K MATEMATICE 2 PŘÍKLADY K MATEMATICE ZDENĚK ŠIBRAVA. Funkce více proměnných.. Základní pojmy funkce více proměnných. Příklad.. Určeme definiční obor funkce tří proměnných f(x, y, z) = x y + x z. Řešení: Definičním oborem

Více

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z Diferenciální počet příklad Napište rovnici tečné roviny ke grafu funkce fx, y) = xy, která je kolmá na přímku x + = y + = 1 z Řešení: Směrový vektor dané přímky je n p =, 1, 1). Na ploše dané rovnicí

Více

KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE

KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE KŘIVKOVÝ INTEGRÁL V SYSTÉMU MAPLE Jiří Novotný Ústav matematiky a deskriptivní geometrie, Fakulta stavební, Vysoké učení technické v Brně Abstrakt: V rámci řešení projektu Inovace bakalářského studia Počítačová

Více