Populační genetika II
|
|
- Pavla Doležalová
- před 9 lety
- Počet zobrazení:
Transkript
1 Populační genetika II
2 4. Mechanismy měnící frekvence alel v populaci Genetický draft (genetické svezení se)
3 Genetický draft = zvýšení frekvence alely díky genetické vazbě s výhodnou mutací. Selekční vymetení selective sweep = snížení genetické variability v okolí výhodné mutace.
4 Selekce na pozadí = snížení frekvence alel díky genetické vazbě s nevýhodnou mutací. Také vede ke snížení genetické variability v populaci, není však tak výrazné, jako u selekčního vymetení.
5 Vazebná nerovnováha Vyjadřuje skutečnost, že se určité kombinace alel ve dvou či více lokusech vyskytují v populaci častěji či méně často než by odpovídalo jejich náhodné kombinaci. A A a B b a A b A A B b a B B a A b a B b a b B A A a B a B A b A A b B a B B a A b a B b a b b AB. 25% ab. 25% ab. 25% Ab. 25% VAZEBNÁ ROVNOVÁHA AB. 40% ab. 40% ab. 10% Ab. 10% VAZEBNÁ NEROVNOVÁHA
6 Vazebná nerovnováha (D) D = pozorované očekávané frekvence kombinace alel Očekávané frekvence kombinace alel (tj. náhodné kombinace) jsou dané pouze frekvencí alel v populaci. AB ab Ab ab Očekávané frekvence p 1 q 1 p 2 q 2 p 1 q 2 p 2 q 1 p 1 frekvence alely A p 2 frekvence alely a q 1 frekvence alely B q 2 frekvence alely b D = 0 D > 0 či D < 0 vazebná rovnováha vazebná nerovnováha
7 Vazebná nerovnováha (D) Míra vazebné nerovnováhy závisí nepřímoúměrně na míře rekombinace (r) a efektivní velikosti poulace (N e ). Vazebná nerovnováha způsobená vzájemnou vazbou genů po čase v populaci vymizí. D = 1 4N e r Populační rekombinační rychlost
8 Odhaduje se jako počet cm na Mb. Míra rekombinace (r) U člověka v průměru 1cM ~ 1Mb. U myši 1cM ~ 2Mb. Liší se však výrazně v různých částech genomu. Většina rekombinačních událostí v určitých krátkých úsecích horká místa rekombinace. Pozice a síla horkých míst se v evoluci rychle mění. Jsou variabilní v i rámci druhu. Míra rekombinace se liší mezi pohlavími. Haldane-Huxley pravidlo: Pokud jedno pohlaví nerekombinuje vůbec, pak je to vždy pohlaví heterogametické Obecně větší míra rekombinace na malých chromosomech než na velkých. Obecně rekombinace néněčastá u centromery a častější u telomer.
9 Genetický draft zvyšuje míru vazebné nerovnováhy v populaci
10 Míra vazebná nerovnováhy je různá v různých částech genomu Haplotypová mapa lidského genomu Mapuje míru vazebné nerovnováhy podél genomu. Využívá se pro genetické mapování znaků v populaci (asociační mapování).
11 5. Neutrální teorie molekulární evoluce
12 Neutrální teorie molekulární evoluce Mottoo Kimura, konec 60. a začátek 70. let 20. stol. Její vytvoření stimulováno pozorováním, že v populacích existuje velké množství polymorfismu. Kimura navrhl, že by se mohlo jednat o neutrální polymorfismus. Ukazuje jak bude vypadat genetická variabilita v rámci populace a mezi druhy v případě, že mutace jsou neutrální. Poskytuje nulovou hypotézu. Většina testů selekce založena na tom, že se snaží vyvrátit neutralitu.
13 Neutrální teorie molekulární evoluce Neutrální teorie evoluce je matematický model. Předpoklady modelu: panmiktická populace, nepřekrývající se generace, konstantní velikost populace. Model je popsán několika volně nastavitelnými parametry (např. mutační rychlost, frekvence alel, velikost populace). Parametry lze odhadovat ze skutečných dat (odhady parametrů). Lze testovat, jestli naše data odpovídají neutrálnímu modelu či ne.
14 Míra vnitrodruhového polymorfismu za předpokladu neutrality Genetický polymorfismus θ = 4N e µ Míra polymorfismu v populaci závisí přímoúměrně na mutační rychlosti a velikosti populace. Druhy s velkými populacemi (drozofila) jsou polymorfnější než druhy s malými populacemi (člověk).
15 Empirické odhady genetického polymorfismu (θ) polymorfismus = existence více než jedné alely v populaci. AGTGAGTCGTCAGTACTGCTG ACTGAGTCGTCAGTACAGCTG AGTGTGTCGTCCGTACTGCTG ACTGAGTCGTCAGTACTGCTG ACTGAGTCGTCAGTACTGCTG AGTGTGTCGTCCGTACTGCTG ACTGAGTCGTCAGTACTGCTG ACTGTGTCGTCCGTACTGCTG AGTGAGTCGTCAGTACTGCTG AGTGAGTCGTTAGTACTGCTG ACTGAGTCGTCAGTACTGCTG θ = proporce polymorfních míst π = nukleodidová diverzita, průměrná heterozygozita
16 Rozložení frekvence alel za předpokladu neutrality V populaci je nejvíce vzácných alel a nejméněčastých alel.
17 Při neutrální distribuci frekvence alel, θ = π Pokud θǂπ a) Na sekvenci působí selekce. b) Jsou porušeny předpoklady modelu. Obvykle populace nemá konstantní velikost. θ >π π >θ nadbytek vzácných alel (pozitivní a negativní selekce či populační expanze). nadbytek středně četných alel (balancing selekce či bottle-neck) Tajima s D test - test na detekci selekce. - založen na porovnáníθa π. D = (π -θ)/var(d) Jak od sebe odlišit vliv selekce a demografických faktorů?
18 Doba fixace mutace Průměrná doba fixace nové mutace (počítáno jen pro mutace, které se nakonec zafixují): neutrální mutace: t = 4N e generací (pro chrx: 3N e, pro chry, mt DNA: 1N e )
19 U druhů s velkou efektivní velikostí populace může přetrvávat neutrální polymorfismus několik milionů let. Vysvětluje proč je ve velkých populacích velké množství polymorfismu. Průměrná doba existence druhu je 4 milióny let. Dva příbuzné druhy mohou sdílet polymorfismus, který zdědily od společného předka (ancestrální polymorfismus).
20 Rychlost evoluce za předpokladu neutrality Evoluční/substituční/fixační rychlost = počet nových mutací x pravděpodobnost jejich fixace k = 2N e µ 1 = µ 2N e N e efektivní velikost populace µ mutační rychlost pravděpodobnost fixace nové mutace počet nových mutací v populaci Evoluční rychlost pro neutrální sekvence je ovlivněna pouze mutační rychlostí. Nezávisí na efektivní velikosti populace. Za předpokladu neměnné mutační rychlosti je evoluční rychlost v čase konstantní. Molekulární hodiny.
21 Míra divergence za předpokladu neutrality Genetická divergence = substituční rychlost x čas D = 2µt počet mutací, které vzniknou za určitý čas. t
22 Odhad genetické divergence ze skutečných dat AGTGAGTCGTCAGTACTGCTG ACTTAGCCGTGAGTACAGCTA 6 D = = 0,2857 (28,57%) 21 Proporce nukleotidových míst, které se liší mezi dvěma sekvencemi DNA.
23 Problém saturace Po určité době divergence přestane stoupat. Je to kvůli mnohočetným substitucím ve stejné pozici. Došlo k saturaci. Divergence spočítaná mezi sekvencemi s mnohočentými substitucemi ve stejné pozici je podhodnocená. skutečných počet substitucí pozorovaný počet substitucí
24 Jak odhadnout skutečnou divergenci? Nukleotidové substituční modely Umožňují korekci na mnohonásobné substituce a odhad skutečné divergence. Jukes & Cantor (1 parameter) model -Nejjednodušší jednoparametrový model model -Předpokládá, že všech možné substituce stejnou pravděpodobnost (α) a všechny nukleotidy mají stejnou frekvenci. Kimura (2 parameter) model -Pravděpodobnost tranzic větší než pravděpodobnost transverzí Felsenstein 81 (4 parameter) model -Umožňuje nastavit různé frekvence nukleotidů HKY-Hasegawa,Kishino,Yano (5 parameter) model -Zohledňuje odlišnou pravděpodobnost transic a transverzí i různé frekvence nukleotidů HKY + Γ -Gama parametr umožňuje modelovat odlišnou rychlost substitucí v různých nukleotidových pozicích Program ModelTest: vybere model, který nejlépe sedí na data
25 Molekulární hodiny a odhad doby divergence Umožňují odhadnout dobu divergence dvou taxonů pokud známe jejich genetickou divergenci a substituční rychlost sekvence. Substituční rychlost se dá odhadnout pomocí známé doby divergence některých taxonů určené např. na základě paleontologických dat (kalibrace molekulárních hodin). nejčastěji se používá sekvence cytochromu b (mt DNA), která má u savců a ptáků substituční rychlost cca 0,01. Tzn. 2% divergence ~ 1 mil let. D = 2µt
26 Pomocí molekulárních hodin odhadujeme dobu divergence sekvencí. Ta může být výrazně nadhodnocená pokud druhy stále sdílí ancestrální polymorfismus. Odhady divergence pomocí molekulárních hodin má smysl používat jen pro vzdálenější taxony. divergence sekvencí divergence druhů
27 Substituční rychlost je velmi variabilní u různých taxonů Substituční rychlosti pro cytochrom b u ptáků. Pravidlo 2% divergence ~ 1 mil let, neplatí!
28 Proč je substituční rychlost tak rozličná mezi druhy/taxony? Velkou část variability v substituční rychlosti vysvětlí variabilita ve velikosti těla.
29 Hypotéza generační doby Malé druhy mají obvykle kratší generační dobu. Druhy s krátkou generační dobou se častěji rozmnožují. Mají celkově více buněčných dělení v germinální linii v přepočtu na jeden rok. Pokud většina mutací vzniká při replikaci, je u nich zvýšená mutační rychlost a tím pádem i substituční rychlost. Nedokáže ale vysvětlit proč substituční rychlost obecně vyšší u teplokrevných organismů.
30 Metabolická hypotéza Mutační rychlost a tím pádem substituční rychlost daná především rychlostí metabolismu. Při vyšší rychlosti metabolismu, vyšší oxidativní stres. Druhy s malou velikostí mají rychlejší substituční rychlost. Vysvětlí proč teplokrevní mají vyšší substituční rychlost než studenokrevní.
31 Hypotéza dlouhověkosti Dlouhověké druhy si vyvinuly mechanismy, jak se bránit oxidativnímu stresu. Nezpůsobuje u nich tolik mutací, můžou se tak dožít vysokého věku. Substituční rychlost je tak u nich snížená. vysoký metabolismus dlouhověcí nízký metabolismus krátkověcí
32 Téměř neutrální teorie evoluce neutrální mutace působí na ně drift škodlivé / výhodné mutace působí na ně selekce mírně škodlivé / výhodné mutace působí na ně drift i selekce Pokud 2s = 1/2N e, selekce a drift na osud alely stejný vliv. Tomoko Ohta (Téměř) neutrální mutace: 2s < 1/2N e O jejich osudu rozhoduje více drift než selekce Mírně škodlivé/výhodné mutace se v malých populacích chovají jako neutrální, kdežto ve velkých jako škodlivé.
33 Téměř neutrální teorie evoluce předpovídá rychlejší evoluční rychlost v malých populacích Většina mutací škodlivých. V malých populacích se fixuje více škodlivých mutací než ve velkých. Druhy s malými populacemi mají rychlejší substituční rychlost (rychlejší molekulární hodiny) než druhy s velkými populacemi. > >
34 Téměř neutrální evoluce může vysvětlit rychlejší evoluci chromosomu X Chromosom X má menší efektivní velikost populace než autosomy. Můžou se na něm snadněji fixovat mírně škodlivé mutace. Rychlejší evoluce.
35 Molekulární hodiny V praxi moc nefungují ze dvou důvodů: 1. Mutační rychlost pro jednotlivé geny není konstantní napříč fylogenezí. Liší se u různých taxonů. 2. Evoluční rychlost není zcela nezávislá na velikosti populace. Ta se také velmi liší mezi různými druhy.
36 Existuje souvislost mezi substituční rychlostí a rychlostí fenotypické evoluce? Hatérie novozélandská pomalý metabolismus dlouhá generační doba pomalá fenotypická evoluce Ale rychlé molekulární hodiny! Substituční rychlost nemusí být daná pouze generační dobou a metabolickou rychlostí. Substituční rychlost nemusí souviset s rychlostí fenotypické evoluce.
37 6. Detekce selekce na molekulární úrovni
38 Výhody detekce selekce na molekulární úrovni Netřeba znát předem fenotyp. Lze detekovat i selekci, která působila v minulosti.
39 Typy selekce Pozitivní selekce: působí na výhodné mutace, vede k jejich fixaci v populaci snižuje genetickou variabilitu v populaci (selektivní vymetení) dlouhodobá pozitivní selekce zvyšuje míru divergence mezi druhy Negativní selekce: působí na nevýhodné mutace, vede k jejich odstranění z populace snižuje genetickou variabilitu v populaci (selekce na pozadí) dlouhodobá negativní selekce snižuje míru divergence mezi druhy Balancing selekce: Udržuje v populaci trvale polymorfismus selekce ve prospěch heterozygotů, frekvenčně závislá selekce
40 Detekce nedávné pozitivní selekce 1. Detekce založená na průvodních jevech selective sweep - snížení genetické variability (Hudson-Kreitman-Aguadé test) - zvýšení vazebné nerovnováhy (Extended haplotype test) - změna v distribuci frekvence alel (Tajima s D test) Selekce před max. ~ N e generacemi (u člověka ~ let). vznik výhodné mutace neúplný selective sweep úplný selective sweep
41 Detekce nedávné pozitivní selekce 2. Detekce založená na zvýšené míře genetické diferenciace subpopulací - Detekce genů odpovědných za lokální adaptace. Disruptivní selekce. - F ST outlier test Geny podmiňující lokální adaptace vykazují menší genový tok mezi subpopulacemi ve srovnání s neutrálními geny. Budou vykazovat odlišnější frekvence alel mezi subpopulacemi a tím pádem větší hodnoty F ST.
42 Mapa recentě pozitivně selektovaných lokusů v lidské populaci 9 studií na Perlegen či HapMap SNP datových souborech. Detekce selekce pomocí LD, distribuce frekvence alelči Fst. Identifikováno: 5110 různých lokusů (zahrnuje 23 % všech genů). 722 ve > 2 studiích 271 ve > 3 studiích 129 ve > 4 studiích
43 LCT gen kódující laktázu V lidské populaci vzniklo nezávisle několik mutací v LCT genu, které umožňují trávit mléko i v dospělostí. Souvisí s rozšířením pastevectví. Výskyt laktázové perzistence Evropská populace Asijská populace
44 G6PD gen kódující glukóza-6-fosfát dehydrogenázu Mutace v tomto genu způsobují rezistenci vůči malárii.
45 Další geny identifikované v testech pozitivní selekce Alcohol dehydrogenase (ADH) gene Geny odpovědné za pigmentaci kůže
46 Analýza funkce 2465 genů, které leží v 722 lokusech identifikovaných ve > 2 studiích Recentní pozitivní selekce se často týká genů s funkcí v metabolismu. Souvisí pravděpodobně s výraznou změnou ve stravování lidí v nedávné historii.
47 Mezi několika málo geny identifikovanými v 6 z 9 studiích gen PCDH15 Hraje roli ve vývoji vnitřního ucha a sítnice. Mutace v tomto genu způsobují hluchotu a slepotu (Uscherův syndrom) Mezi geny identifikovanými v několika studiích také MYO1B, MYO3A a MYO6, které také důležité ve funkci vnitřního ucha. Důležitá role smyslů v lidské evoluci.
48 Mezi pozitivně selektovanými geny jsou i geny podmiňující různé lidské chroroby CFTR gen - mutace v tomto genu způsobují cystickou fybrózu ALMS1 gen - spojený s Alstromovým syndromem (pacienti vykazují obezitu, cukrovku, slepotu) GBA gen - štěpení glukosacharidů, - mutace v tomto genu způsobují Gaucherovu chorobu
49 Jak může frekvenci mutací způsobujících lidské choroby ovlivňovat pozitivní selekce? 1. Mutace způsobující chorobu jsou recesivní a v heterozygotním stavu přinášejí nějakou výhodu (balancing selekce). G6PD gen způsobuje resistenci vůči malárii v heterozygotním stavu, ale v homozygotním stavu, může způsobit hemolytickou anémii. CFTR gen způsobuje v homozygotním stavu cystickou fibrózu, ale v heterozygotním stavu poskytuje ochranu proti astma. 2. V historii došlo ke změně ve směru působení selekce Dříve spíše nedostatek potravy, selekce maximalizovala účinnost metabolismu. Dnešní nadbytek potravy způsobuje metabolické choroby. Alely, které byly výhodné dříve jsou dnes nevýhodné.
50 Detekce dlouhodobě působící selekce Využívá se srovnání sekvencí z různých, často vzdálených, druhů Negativní selekce snižuje míru divergence mezi druhy, častější synonymní substituce Pozitivní selekce zvyšuje míru divergence mezi druhy, častější nesynonymní mutace
51 Test neutrality založený na relativním počtu nesynonymních (K A ) synonymních (K S ) substitucí mezi druhy Synonymní substituce: nevedou k záměně aminokyseliny Nesynonymní substituce: vedou k záměně aminokyseliny K A /K S = 1 K A /K S > 1 K A /K S < 1 neutrální evoluce pozitivní selekce negativní selekce
52 K A /K S test Většina genů má K A /K S zhruba 0,1 0,2. Tzn. na většinu genů působí negativní selekce. člověk vs myš
53 K A /K S test V rámci jednoho genu může na některé kodóny působit pozitivní selekce, na jiné negativní a jiné se mohou vyvíjet neutrálně. Nové metody umožňují počítat K A /K S pro jednotlivé kodóny či pro jednotlivé evoluční linie. Užitečná je analýza sliding window umožnující počítat K A /K S pro různé oblasti genu.
54 Geny s vysokým poměrem K A /K S Často důležitou roli v reprodukci. U savců dále v imunitní odpovědi a čichu (např. MHC geny, OBP geny).
Teorie neutrální evoluce a molekulární hodiny
Teorie neutrální evoluce a molekulární hodiny Teorie neutrální evoluce Konec 60. a začátek 70. let 20. stol. Ukazuje jak bude vypadat genetická variabilita v populaci a jaká bude rychlost evoluce v případě,
Teorie neutrální evoluce a molekulární hodiny
Teorie neutrální evoluce a molekulární hodiny Teorie neutrální evoluce Konec 60. a začátek 70. let 20. stol. Ukazuje jak bude vypadat genetická variabilita v populaci a jaká bude rychlost divergence druhů
Genetický polymorfismus
Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci
Drift nejen v malých populacích (nebo při bottlenecku resp. efektu zakladatele)
Drift nejen v malých populacích (nebo při bottlenecku resp. efektu zakladatele) Nově vzniklé mutace: nová mutace většinou v 1 kopii u 1 jedince mutace modelovány Poissonovým procesem Jaká je pravděpodobnost,
Populační genetika Radka Reifová
Populační genetika Radka Reifová Prezentace ke stažení: http://web.natur.cuni.cz/~radkas v záložce Courses Literatura An Introduction to Population Genetics. Rasmus Nielsen and Montgomery Slatkin. 2013.
Detekce selekce na molekulární úrovni a genetická podstata adaptací
Detekce selekce na molekulární úrovni a genetická podstata adaptací Typy selekce Pozitivní selekce snižuje genetickou variabilitu v populaci ( selective sweep ) zvyšuje míru divergence mezi druhy Negativní
Populační genetika Radka Reifová
Populační genetika Radka Reifová Prezentace ke stažení: http://web.natur.cuni.cz/~radkas v záložce Courses Literatura An Introduction to Population Genetics. Rasmus Nielsen and Montgomery Slatkin. 2013.
Molekulární podstata adaptací a detekce selekce na molekulární úrovni
Molekulární podstata adaptací a detekce selekce na molekulární úrovni Adaptace Metody detekce selekce na molekulární úrovni Netřeba znát předem fenotyp. Lze detekovat i selekci, která působila v minulosti.
Evoluční (populační) genetika Radka Reifová
Evoluční (populační) genetika Radka Reifová Prezentace ke stažení: http://web.natur.cuni.cz/~radkas v záložce Courses Evoluční genetika Obor zabývající se genetickou variabilitou v populacích a procesy,
Populační genetika II. Radka Reifová
Populační genetika II Radka Reifová Opakování z minula Za předpokladu neutrality Genetická diverzita v rámci druhu θ = 4N e μ Genetická divergence mezi druhy D = 2μt Proč se substituční rychlost liší u
Populační genetika Radka Reifová
Populační genetika Radka Reifová Prezentace ke stažení: http://web.natur.cuni.cz/~radkas v záložce Courses Populační genetika Obor zabývající se genetickou variabilitou v populacích a procesy, které ji
Detekce selekce na molekulární úrovni a genetická podstata adaptací
Detekce selekce na molekulární úrovni a genetická podstata adaptací Typy selekce Pozitivní selekce snižuje genetickou variabilitu v populaci ( selective sweep ) zvyšuje míru divergence mezi druhy Negativní
Genetické mapování. v přírodních populacích i v laboratoři
Genetické mapování v přírodních populacích i v laboratoři Funkční genetika Cílem je propojit konkrétní mutace/geny s fenotypem Vzniklý v laboratoři pomocí mutageneze či vyskytující se v přírodě. Forward
Velikost genomu a mutační rychlost
Velikost genomu a mutační rychlost Lynch et al. 2010 Detekce selekce na molekulární úrovni a genetická podstata adaptací Adaptace Typy selekce Pozitivní selekce vede k fixaci výhodných alel v populaci
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Coalesce spojit se, splynout, sloučit se. Didaktická simulace Coalescence = splynutí linií
Koalescence 1 2 Coalesce spojit se, splynout, sloučit se Didaktická simulace http://www.coalescent.dk/ Coalescence = splynutí linií 3 Koalescence Matematický model, který popisuje průběh genealogií. Postupujeme
Populační genetika II. Radka Reifová
Populační genetika II Radka Reifová Literatura An Introduction to Population Genetics. Rasmus Nielsen and Montgomery Slatkin. 2013. (v knihovně) Elements of Evolutionary Genetics (2010) Brian Charlesworth
Evoluční genetika II. Radka Reifová
Evoluční genetika II Radka Reifová Literatura An Introduction to Population Genetics. Rasmus Nielsen and Montgomery Slatkin. 2013. (v knihovně) Elements of Evolutionary Genetics (2010) Brian Charlesworth
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
ZÁKLADY BIOLOGIE a GENETIKY ČLOVĚKA
učební texty Univerzity Karlovy v Praze ZÁKLADY BIOLOGIE a GENETIKY ČLOVĚKA Berta Otová Romana Mihalová KAROLINUM Základy biologie a genetiky člověka doc. RNDr. Berta Otová, CSc. MUDr. Romana Mihalová
Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav morfologie, fyziologie a genetiky zvířat
Mendelova zemědělská a lesnická univerzita v Brně Agronomická fakulta Ústav morfologie, fyziologie a genetiky zvířat Genetické markery ve studiu genetické diverzity v populacích hospodářských zvířat Bakalářská
Tok GI v buňce. Genetický polymorfizmus popis struktury populací. Organizace genetického materiálu. Definice polymorfismu
Genetický olymorfizmus ois struktury oulací Tok GI v buňce Dr. Ing. Urban Tomáš ÚSTAV GEETIKY MZLU Brno urban@mendelu.cz htt://www.mendelu.cz/af/genetika/ Seminář doktorského grantu 53/03/H076 : Molekulárn
Dědičnost a pohlaví. KBI/GENE Mgr. Zbyněk Houdek
Dědičnost a pohlaví KBI/GENE Mgr. Zbyněk Houdek Dědičnost pohlavně vázaná Gonozomy se v evoluci vytvořily z autozomů, proto obsahují nejen geny řídící vznik pohlavních rozdílů i další jiné geny. V těchto
Dědičnost pohlaví Genetické principy základních způsobů rozmnožování
Dědičnost pohlaví Vznik pohlaví (pohlavnost), tj. komplexu znaků, vlastností a funkcí, které vymezují exteriérové i funkční diference mezi příslušníky téhož druhu, je výsledkem velmi komplikované série
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika populací Studium dědičnosti a proměnlivosti skupin jedinců (populací)
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK
ové technologie v analýze D A, R A a proteinů Stanislav Kmoch Centrum aplikované genomiky, Ústav dědičných metabolických poruch, 1.LFUK Motto : "The optimal health results from ensuring that the right
1. 21.2.2012 Klinická genetika genetické poradenství MUDr. Renata Gaillyová, Ph.D.
Plán výuky jarní semestr 2011/2012 LF ošetřovatelství, porodní asistentka presenční forma Velká posluchárna, Komenského náměstí 2 Úterý 10:20-12:00 sudé týdny (první týden je sudý) 1. 21.2.2012 Klinická
Genetické markery. pro masnou produkci. Mgr. Jan Říha. Výzkumný ústav pro chov skotu, s.r.o.
Genetické markery ve šlechtění skotu pro masnou produkci Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Genetické markery Polymorfní místa v DNA, které vykazují asociaci na sledované znaky Příčinné
Metody studia historie populací. Metody studia historie populací
1) Metody studia genetické rozmanitosti komplexní fenotypové znaky, molekulární znaky. 2) Mechanizmy evoluce mutace, přírodní výběr, genový posun a genový tok 3) Anageneze x kladogeneze - co je vlastně
Populační genetika III. Radka Reifová
Populační genetika III Radka Reifová Genealogie, speciace a fylogeneze Genové genealogie Rodokmeny jednotlivých kopií určitého genu v populaci. Popisují vztahy mezi kopiemi určitého genu v populaci napříč
Vypracované otázky z genetiky
Vypracované otázky z genetiky 2015/2016 Dana Hatoňová 1. Základní zákony genetiky 2. Dihybridismus 3. Aditivní model polygenní dědičnosti 4. Interakce nealelních genů 5. Genová vazba 6. Genotyp a jeho
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Mikroevoluce = vznik a osud genetické variability na druhové a nižší úrovni děje a mechanismy v populacích
Mikroevoluce = vznik a osud genetické variability na druhové a nižší úrovni děje a mechanismy v populacích Evoluce = genetická změna populací v čase a prostoru Evoluce = změna frekvence alel v populacích
Využití molekulárních markerů v systematice a populační biologii rostlin. 12. Shrnutí,
Využití molekulárních markerů v systematice a populační biologii rostlin 12. Shrnutí, Přehled molekulárních markerů 1. proteiny isozymy 2. DNA markery RFLP (Restriction Fragment Length Polymorphism) založené
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
Fisher M. & al. (2000): RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae).
Populační studie Fisher M. & al. (2000): RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). American Journal of Botany 87(8): 1128
Genetika vzácných druhů zuzmun
Genetika vzácných druhů Publikace Frankham et al. (2003) Introduction to conservation genetics Časopis Conservation genetics, založeno 2000 (máme online) Objekt studia Genetická diversita Rozložení genetické
World of Plants Sources for Botanical Courses
Speciace a extinkce Speciace Pojetí speciace dominuje proces, při němž vznikají nové druhy organismů z jednoho předka = kladogeneze, štěpná speciace jsou možné i další procesy hybridizace (rekuticulate
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
BIO: Genetika. Mgr. Zbyněk Houdek
BIO: Genetika Mgr. Zbyněk Houdek Nukleové kyseliny Nukleové kyseliny = DNA, RNA - nositelky dědičné informace. Přenos dědičných znaků na potomstvo. Kódují bílkoviny. Nukleotidy - základní stavební jednotky.
Konzervační genetika INBREEDING. Dana Šafářová Katedra buněčné biologie a genetiky Univerzita Palackého, Olomouc OPVK (CZ.1.07/2.2.00/28.
Konzervační genetika INBREEDING Dana Šafářová Katedra buněčné biologie a genetiky Univerzita Palackého, Olomouc OPVK (CZ.1.07/2.2.00/28.0032) Hardy-Weinbergova rovnováha Hardy-Weinbergův zákon praví, že
Základy biologické antropologie 6. Doc. Václav Vančata katedra biologie a ekologické Ped F UK
Základy biologické antropologie 6 Doc. Václav Vančata katedra biologie a ekologické Ped F UK časová Variabilita populační i časová populační Jak chápat variabilitu? Hlavní faktory a etapy hominizačního
Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů
Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců
Základní škola a Mateřská škola G.A.Lindnera Rožďalovice. Za vše mohou geny
Základní škola a Mateřská škola G.A.Lindnera Rožďalovice Za vše mohou geny Jméno a příjmení: Sandra Diblíčková Třída: 9.A Školní rok: 2009/2010 Garant / konzultant: Mgr. Kamila Sklenářová Datum 31.05.2010
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
v oboru KLINICKÁ GENETIKA PRO ODBORNÉ PRACOVNÍKY V LABORATORNÍCH METODÁCH
RÁMCOVÝ VZDĚLÁVACÍ PROGRAM PRO ZÍSKÁNÍ SPECIALIZOVANÉ ZPŮSOBILOSTI v oboru KLINICKÁ GENETIKA PRO ODBORNÉ PRACOVNÍKY V LABORATORNÍCH METODÁCH 1. Cíl specializačního vzdělávání Cílem specializačního vzdělávání
GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost
GENETIKA vědecké studium dědičnosti a jejich variant studium kontinuity života ve vztahu ke konečné délce života individuálních organismů Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální
3) Analýza mtdna mitochondriální Eva, kdy a kde žila. 8) Haploskupiny mtdna a chromozomu Y v ČR
p 1) Jak to, že máme společného předka 2) Metodika výzkumu mtdna 3) Analýza mtdna mitochondriální Eva, kdy a kde žila 4) Problémy a názory proti 5) Analýza chromozomu Y 6) Jak jsme osídlili svět podle
FYLOGEOGRAFIE A KOALESCENCE
FYLOGEOGRAFIE A KOALESCENCE A T T T T G G G C C A C T G Koalescence Osud jednotlivých kopií genů v populaci genové stromy Species trees vs. gene trees: gen A Species trees vs. gene trees: gen B Fylogenetické
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
Úvod do obecné genetiky
Úvod do obecné genetiky GENETIKA studuje zákonitosti dědičnosti a proměnlivosti živých organismů GENETIKA dědičnost - schopnost uchovávat soubor dědičných informací a předávat je nezměněný potomkům GENETIKA
= oplození mezi biologicky příbuznými jedinci
= oplození mezi biologicky příbuznými jedinci Jestliže každý z nás má 2 rodiče, pak má 4 prarodiče, 8 praprarodičů... obecně 2 n předků tj. po 10 generacích 2 10 = 1024, po 30 generacích = 1 073 741 824
Vytvořilo Oddělení lékařské genetiky FN Brno
GONOSOMY GONOSOMY CHROMOSOMY X, Y Obr. 1 (Nussbaum, 2004) autosomy v chromosomovém páru homologní po celé délce chromosomů crossingover MEIÓZA Obr. 2 (Nussbaum, 2004) GONOSOMY CHROMOSOMY X, Y ODLIŠNOSTI
Tomimatsu H. &OharaM. (2003): Genetic diversity and local population structure of fragmented populations of Trillium camschatcense (Trilliaceae).
Populační studie Tomimatsu H. &OharaM. (2003): Genetic diversity and local population structure of fragmented populations of Trillium camschatcense (Trilliaceae). Biological Conservation 109: 249 258.
Atestace z lékařské genetiky inovované otázky pro rok A) Molekulární genetika
Atestace z lékařské genetiky inovované otázky pro rok 2017 A) Molekulární genetika 1. Struktura lidského genu, nomenklatura genů, databáze týkající se klinického dopadu variace v jednotlivých genech. 2.
Typy fylogenetických analýz
Typy fylogenetických analýz Distanční metody: Neighbor-Joining Minimum Evolultion UPGMA,... Maximum Likelihood Bayesian Inference Maximum Parsimony Genetické distance, substituční modely pro výpočet fylogenetických
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) B I O L O G I E 1. Definice a obory biologie. Obecné vlastnosti organismů. Základní klasifikace organismů.
Genetika - maturitní otázka z biologie (2)
Genetika - maturitní otázka z biologie (2) by jx.mail@centrum.cz - Ned?le, B?ezen 01, 2015 http://biologie-chemie.cz/genetika-maturitni-otazka-z-biologie-2/ Otázka: Genetika I P?edm?t: Biologie P?idal(a):
Základy genetiky populací
Základy genetiky populací Jedním z významných odvětví genetiky je genetika populací, která se zabývá studiem dědičnosti a proměnlivosti u velkých skupin jedinců v celých populacích. Populace je v genetickém
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika populací Studium dědičnosti a proměnlivosti skupin jedinců (populací)
Osud jednotlivých kopií genů v populaci genové stromy
FYLOGEOGRAFIE A KOALESCENCE A T T T T G G G C C A C T G Koalescence Osud jednotlivých kopií genů v populaci genové stromy Species trees vs. gene trees: gen A Species trees vs. gene trees: gen B Fylogenetické
Nondisjunkce v II. meiotickém dělení zygota
2. semestr, 1. výukový týden OPAKOVÁNÍ str. 1 OPAKOVÁNÍ VYBRANÉ PŘÍKLADY letního semestru: 1. u Downova a Klinefelterova syndromu, 2. Hodnocení karyotypu s aberací, 3. Mono- a dihybridismus, 4. Vazba genů
Molekulární biotechnologie č.8. Produkce heterologního proteinu v eukaryontních buňkách
Molekulární biotechnologie č.8 Produkce heterologního proteinu v eukaryontních buňkách Eukaryontní buňky se využívají v případě, když Eukaryontní proteiny syntetizované v baktériích postrádají biologickou
Genetika kvantitativních znaků. - principy, vlastnosti a aplikace statistiky
Genetika kvantitativních znaků Genetika kvantitativních znaků - principy, vlastnosti a aplikace statistiky doc. Ing. Tomáš Urban, Ph.D. urban@mendelu.cz Genetika kvantitativních vlastností Mendelistická
ONKOGENETIKA. Spojuje: - lékařskou genetiku. - buněčnou biologii. - molekulární biologii. - cytogenetiku. - virologii
ONKOGENETIKA Spojuje: - lékařskou genetiku - buněčnou biologii - molekulární biologii - cytogenetiku - virologii Důležitost spolupráce různých specialistů při detekci hereditárních forem nádorů - (onkologů,internistů,chirurgů,kožních
Vazba genů I. I. ročník, 2. semestr, 11. týden Aleš Panczak, ÚBLG 1. LF a VFN
Vazba genů I. I. ročník, 2. semestr, 11. týden 2008 Aleš Panczak, ÚBLG 1. LF a VFN Terminologie, definice Pojem rekombinační zlomek (frakce), Θ (řecké písmeno theta) se používá pro vyjádření síly (intezity)
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
Variabilita v pigmentaci
Variabilita v pigmentaci Proč zkoumat pigmentaci Spojitost s rakovinou kůže reakcí na UV záření výživou geografickým původem metabolismem vitamínu D. Oči Pigmentace Pokožka Vlasy Měření pigmentace Neinvazivní
Crossing-over. over. synaptonemální komplex
Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Odborná biologie, část biologie Společná pro
BRACHYCEFALICKÝ SYNDROM
BRACHYCEFALICKÝ SYNDROM...patologie povýšená na plemenný znak MVDr. Jana Langerová Animal Clinic Praha FAKTA: v současnosti je oblíbenost brachycefalických plemen na vzestupu současný šlechtitelský trend
MENDELOVSKÁ DĚDIČNOST
MENDELOVSKÁ DĚDIČNOST Gen Část molekuly DNA nesoucí genetickou informaci pro syntézu specifického proteinu (strukturní gen) nebo pro syntézu RNA Různě dlouhá sekvence nukleotidů Jednotka funkce Genotyp
Lze HCM vyléčit? Jak dlouho žije kočka s HCM? Je možné předejít hypertrofické kardiomyopatii?
Nemoci srdce jsou, stejně jako u člověka, vrozené nebo získané v průběhu života. Ze získaných chorob srdce tvoří velkou část kardiomyopatie, což je onemocnění srdečního svalu spojené s jeho dysfunkcí,
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Co Vám tedy balíček "Genetická analýza DNA pro ženy" může přinést?
Genetická analýza DNA pro ženy V naší ordinaci nyní nabízíme Na konci novou této službu stránky celkové pak, která najdete, analýzy je možné DNA. celkový u nás V rámci seznam provést této a genetických
Genetický screening predispozice k celiakii
VETERINÁRN RNÍ A FARMACEUTICKÁ UNIVERZITA BRNO Farmaceutická fakulta Ústav humánn nní farmakologie a toxikologie Genetický screening predispozice k celiakii RNDr. Ladislava Bartošov ová,ph.d. 1, PharmDr.
Genetická diverzita masného skotu v ČR
Genetická diverzita masného skotu v ČR Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Ing. Irena Vrtková 26. listopadu 2009 Genetická diverzita skotu pojem diverzity Genom skotu 30 chromozomu, genetická
Genetika populací. KBI / GENE Mgr. Zbyněk Houdek
Genetika populací KBI / GENE Mgr. Zbyněk Houdek Genetika populací Populace je soubor genotypově různých, ale geneticky vzájemně příbuzných jedinců téhož druhu. Genový fond je společný fond gamet a zygot
1. Úvod do genetických algoritmů (GA)
Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor
Genetika pohlaví genetická determinace pohlaví
Genetika pohlaví Genetická determinace pohlaví Způsoby rozmnožování U nižších organizmů může docházet i k ovlivnění pohlaví jedince podmínkami prostředí (např. teplotní závislost pohlavní determinace u
Jak měříme genetickou vzdálenost a co nám říká F ST
Jak měříme genetickou vzdálenost a co nám říká F ST 1) Genetická vzdálenost a její stanovení Pomocí genetické rozmanitosti, kterou se populace liší, můžeme určit do jaké míry jsou si příbuznější jaká je
Důsledky selekce v populaci - cvičení
Genetika a šlechtění lesních dřevin Důsledky selekce v populaci - cvičení Doc. Ing. RNDr. Eva Palátová, PhD. Ing. R. Longauer, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Genomika (KBB/GENOM) Poziční klonování Ing. Hana Šimková, CSc. Cíl přednášky - seznámení s metodou pozičního klonování genů
GENETIKA V MYSLIVOSTI
GENETIKA V MYSLIVOSTI Historie genetiky V r. 1865 publikoval Johann Gregor Mendel výsledky svých pokusů s hrachem v časopisu Brněnského přírodovědeckého spolku, kde formuloval principy přenosu vlastností
Polymorfimus DNA, kdy se jedinci nebo druhy liší v jedné nukleotidové záměně
MOLEKULÁRNÍ TAXONOMIE - 5 (2015) Single nucleotide polymophism - SNP Polymorfimus DNA, kdy se jedinci nebo druhy liší v jedné nukleotidové záměně AAGCCTA AAGCTTA V tomto případě mluvíme o alelách C a T.
polymorfní = vícetvarý, mnohotvárný
Genetický polymorfismus s Řeckyy morphos = tvar polymorfní = vícetvarý, mnohotvárný Genetický polymorfismus je tedy označení pro výskyt téhož znaku ve více tvarech, formách, přičemž tato mnohotvárnost
Základní škola Náchod Plhov: ŠVP Klíče k životu
VZDĚLÁVACÍ OBLAST: VZDĚLÁVACÍ OBOR: PŘEDMĚT: ČLOVĚK A PŘÍRODA PŘÍRODOPIS PŘÍRODOPIS 8.ROČNÍK Téma, učivo Rozvíjené kompetence, očekávané výstupy Mezipředmětové vztahy Poznámky Úvod, opakování učiva ue
Typologická koncepce druhu
Speciace Co je to druh? Nebudu zde ani probírat různé definice pojmu druh. Žádná z nich až dosud neuspokojila všechny přírodovědce, ale každý přírodovědec zhruba ví, co míní tím, když mluví o druhu. (Charles
Inovace studia molekulární a buněčné biologie
Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské. doc. RNDr. Ivan Mazura, CSc.
Genetický polymorfismus jako nástroj identifikace osob v kriminalistické a soudnělékařské praxi doc. RNDr. Ivan Mazura, CSc. Historie forenzní genetiky 1985-1986 Alec Jeffreys a satelitní DNA 1980 Ray
Genotypy absolutní frekvence relativní frekvence
Genetika populací vychází z: Genetická data populace mohou být vyjádřena jako rekvence (četnosti) alel a genotypů. Každý gen má nejméně dvě alely (diploidní organizmy). Součet všech rekvencí alel v populaci
Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis.
Populační studie Kameyama Y. et al. (2001): Patterns and levels of gene flow in Rhododendron metternichii var. hondoense revealed by microsatellite analysis. Molecular Ecology 10:205 216 Proč to studovali?
Vztah genotyp fenotyp
Evoluce fenotypu II Vztah genotyp fenotyp plán? počítačový program? knihovna? genotypová astrologie (Jablonka a Lamb) Modely RNA - různé vážení: A-U, G-C, G-U interakcí, penalizace za neodpovídající si
UNIVERZITA PALACKÉHO V OLOMOUCI P Ř Í R O D O V Ě D E C K Á F A K U L T A KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE
UNIVERZITA PALACKÉHO V OLOMOUCI P Ř Í R O D O V Ě D E C K Á F A K U L T A KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Tutoriál statistických metod pro populační asociační studie