SBORNÍK PŘÍKLADŮ Z FYZIKY

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "SBORNÍK PŘÍKLADŮ Z FYZIKY"

Transkript

1 SBORNÍK PŘÍKLADŮ Z FYZIKY 1

2 OBSAH MECHANIKA...4 Jednotky, převody a základní vztahy...4 Pohyb rovnoměrný a rovnoměrně zrychlený...7 Pády, vrhy... 1 Pohyb otáčivý Hybnost Energie, práce výkon... 0 Gravitační pole... 5 Elastické vlastnosti pevných látek... 6 HYDROMECHANIKA... 7 Hydrostatika... 7 Hydrodynamika... 9 TERMODYNAMIKA, MOLEKULOVÁ FYZIKA A STRUKTURA LÁTEK Teplota, teplo, 1. termodynamický zákon, kalorimetr, změny skupenství látek... 3 Tepelné děje v plynech Vlastnosti pevných látek a kapalin... 4 KMITÁNÍ, VLNĚNÍ A AKUSTIKA Příklady z kmitů a vlnění ELEKTRICKÉ POLE Elektrostatické pole... 49

3 Ohmův zákon, Kirchhoffovy zákony, práce a výkon v obvodu s konstantním proudem Střídavý proud MAGNETICKÉ POLE... 6 Stacionární magnetické pole... 6 OPTIKA ATOMISTIKA

4 MECHANIKA JEDNOTKY, PŘEVODY A ZÁKLADNÍ VZTAHY 1. Chodec se pohybuje rychlostí 1 m/s. Vyjádřete jeho rychlost v km/h.. Vyhledejte správný převodní vztah,7 g cm-3 = 3 a) 0,007 kg m b),7 c) 3 kg m,7 0 d) kg m 3 kg m e) kg m 3 3. Vyjádřete hodnotu 0,08 cm / g - - v 3 m / kg. 4. Převeďte N / mm na Pa. 5. Který z převodních vztahů platí? 9,81 Pa = a) 9,81 N 4

5 b) 9,81 kg m c) 98,1 N m d) 1 N m e) 0,1 N m s 1 6. Které z níže uvedených fyzikálních veličin přísluší 3 rozměr (dimenze) kg m s? a) Síla b) Hybnost c) Práce d) Výkon e) Moment síly 7. Určete rozměr (dimenzi) jednotky joule: a) kg m s b) kg m c) kg m s d) kg m s s 8. Jednotka tlaku v soustavě SI je: a) Newton b) Pascal c) Bar d) Joule e) Atmosféra 5

6 9. Obvodovou rychlost rovnoměrného pohybu po kružnici určíte dle vztahu (r poloměr, f frekvence, T perioda pohybu): a) v rf b) v rt c) v r / f d) v f e) v / T 10. Při rovnoměrném pohybu po kružnici o poloměru r opíše hmotný bod dráhu πr za dobu T. Pro velikost rychlosti platí: a) r v T b) r v T c) v rt d) 4 r v T e) T v r 11. Při rovnoměrně zrychleném přímočarém pohybu s nulovou počáteční rychlostí platí (v uvedených vztazích značí s - dráhu, v rychlost, a zrychlení, t čas): a) s vt 6

7 b) 1 v at c) v sa d) s at e) s vt 1. Při svislém vrhu vzhůru počáteční rychlostí v 0, dosáhne těleso maximální výšku vyjádřenou vztahem (v uvedených vztazích g značí tíhové zrychlení): a) v g h 0 b) h v g 0 c) v0 h g d) v0 h g e) v g h 0 POHYB ROVNOMĚRNÝ A ROVNOMĚRNĚ ZRYCHLENÝ 13. Kapky vody padají svisle rychlostí 8 m / s. Na oknech jedoucího vlaku svírají dráhy vodních 7

8 kapek s vodorovným rámem okna úhel 30. Vypočítejte, jakou rychlostí jede vlak. B a = 8 c C b A 14. Voda v řece proudí rychlostí 4 m / s. Kolmo na směr proudění se pohybuje pramice rychlostí 3 m / s. Jaká je velikost výsledné rychlosti pramice vzhledem ke břehu? 5 m/s 15. Z místa vzdáleného 70 km je hlášena vichřice o rychlosti 30 m / s, ženoucí se směrem na město. Kolik času zbývá na bezpečnostní opatření? 16. O kolik času dříve bude ve městě vzdáleném 7, km cyklista, který jede rychlostí 9 km/ h, než chodec, který jde rychlostí 1 m / s? (Oba vycházejí současně.) 8

9 17. Na silnici leží místa A a B vzdálená od sebe 1 km. Z místa B vyjde (směrem k A) v 7,30 h turista rychlostí 4 km/ h. V 9,00 hod. vyjede z místa A (směrem k B) cyklista rychlostí 1 km/ h. Jak daleko od místa A se setká cyklista s turistou? A B km/h 4km/h A 6 km B 1 4 4,5 km 4,5 km 1,5 km 18. Vlak projíždí 1,6 km dlouhým tunelem rychlostí 54 km h dvě minuty. Jaká je délka vlaku? 00 m 19. Auto dosáhne rychlosti 7 km/ h za minutu od startu. Jaké je jeho průměrné zrychlení? 9

10 0. Výtah se rozjíždí se stálým zrychlením 1,5 Jakou dráhu urazí za prvé dvě sekundy? 3 m m s. 1. Rychlík vyjížděl z nádraží se stálým zrychlením 0,4 m / s, než dosáhl rychlosti 90,7 km / h. Jakou dráhu ujel během rozjíždění?. Vlak jede rychlostí 7 km/ h. Pomocí brzd je možno vlak zastavit za 40 s. Za předpokladu, že je pohyb vlaku rovnoměrně zpožděný, vypočítejte vzdálenost místa od stanice, ve kterém je třeba začít brzdit. 3. Tramvaj jedoucí rychlostí 36 km/ h brzdí s konstantním zrychlením a 0,5m s po dobu 10 s. Jak dlouhou dráhu během brzdění ujedete? 4. Vozidlo dosáhne rychlosti 108 h km/ za 10,8 s. Určete jeho střední zrychlení. 10

11 5. Vlak vjížděl do stanice tak, že za minuty dosáhl rychlosti 7 km/ h. Předpokládáme-li, že šlo o pohyb rovnoměrně zrychlený, vypočítejte (počáteční rychlost je nulová): a) Jaké bylo jeho zrychlení? b) Jakou vzdálenost za tyto minuty ujel? m/ 6. Z jedné železniční stanice vyjely současně (ale vzájemně opačnými směry) dvě lokomotivy. První se rozjížděla se stálým zrychlením 0,18 m s, druhá se stálým zrychlením 0,3 m s. Vypočítejte: a) Za jak dlouho po odjezdu ze stanice bude jejich vzájemná vzdálenost činit 1600 m? b) Jakou rychlostí v tomto okamžiku pojede pomalejší z obou lokomotiv? m 0,3 m/ 11

12 7. Hmotný bod se pohybuje rovnoměrně zrychleně ve směru osy x se zrychlením a m s. V čase t 0 s byl v bodě o souřadnici x 0 5m a měl rychlost o velikosti v m s. 0 8 a) Napište rovnice závislosti rychlosti na čase a dráhy na čase. b) Určete čas, kdy bude mít rychlost hmotného bodu velikost 40 m / s. c) Určete čas, kdy bude hmotný bod v bodě o souřadnici x 110m. a.) s b.) c.) PÁDY, VRHY 8. Jakou rychlostí dopadne na zem těleso padající volným pádem z výšky 5 m? ( g 10m s, odpor vzduchu zanedbáváme) 9. Jaké je zrychlení tělesa, které padá ve vakuu volným pádem z výšky 16 m? 1

13 30. Těleso o hmotnosti 8 kg dopadlo na povrch Země rychlostí 0 m / s. Z jaké výšky padalo (předpokládáme-li, že jeho počáteční rychlost byla nulová a že tíhové zrychlení je 10 m / s )? 31. Volný pád na Měsíci z výšky 3, m trvá s. Jak velké tíhové zrychlení je na Měsíci? 3. Určete tíhové zrychlení na Měsíci, kde těleso z výšky 6,4 m dopadne rychlostí 4,5 m s. 33. Kolik sekund musí těleso padat volným pádem, aby urazilo stejnou dráhu jako při rovnoměrném pohybu s rychlostí 10 m / s? 34. Jak hluboká je propast, do které padá kámen 4 sekundy? 35. Jak dlouho padá těleso volným pádem do studny hluboké 40 m?,8 s 13

14 36. Automobilista najel při nehodě na překážku rychlostí 54 km h. Z jaké výšky by muselo těleso spadnout volným pádem, aby při dopadu na zem mělo stejnou rychlost? 37. Těleso je vrženo svisle vzhůru počáteční rychlostí 0 m s. a) Jaké maximální výšky těleso dosáhne? b) Jak dlouho trvá pohyb tělesa? (Počítejte dobu od počátku vrhu do návratu tělesa do místa vrhu, odpor prostředí zanedbejte, g 10m s.) 38. Svisle vzhůru je rychlostí 400 m / s vystřelen náboj. Za jak dlouho po výstřelu dožene zvuková vlna vystřelenou střelu? (Odpor zvuku zanedbejte, rychlost zvuku je 330 m / s, tíhové zrychlení g 10m s.) 39. Míč hozený svisle vzhůru dosáhl výšky h 15m. ( g 10m s ) a) Jak velkou rychlostí byl hozen? b) Jak dlouho byl ve vzduchu? 1 14

15 40. Jak velkou rychlostí byl vystřelen svisle vzhůru šíp, jestliže se vrátil za 7 s? Jaké výše dosáhl ( g 10m s )? 41. Jakou rychlostí se musí svisle vzhůru odrazit skokan na trampolíně, má-li jeho skok trvat 1,5 sekundy? (Tíhové zrychlení g 10m / s, odpor vzduchu zanedbejte.) 4. Těleso je vrženo vodorovně rychlostí 30 m / s z vrcholu věže 80 m vysoké. Vypočítejte, jak daleko od paty věže těleso dopadne. 43. Tenisový míček je odpálený vodorovným směrem ve výšce 10 cm nad zemí rychlostí 4 m s, ( g 9,81m s ). Vypočítejte: a) Dobu trvání letu míčku, než dopadne na zem. b) Vzdálenost dopadu míčku od hráče. 15

16 POHYB OTÁČIVÝ 44. Obvodovou rychlost rovnoměrného pohybu po kružnici určíte dle vztahu ( r - poloměr, f - frekvence, T - perioda): a) v rt b) v r / f c) v rf d) v f e) v / T 45. Lokomotiva s koly o poloměru r 60cm, jede rychlostí 7 km/ h. Určete úhlovou rychlost otáčení jejího kola. a) 33,3 rad s b) 33,3 m s c) 10 rad s d) 10 m s e) 1 rad s 46. Brusný kotouč má průměr 18 cm a koná 100 otáček za minutu. Vypočtěte: a) Jakou úhlovou rychlostí se kotouč otáčí? b) Jakou rychlostí se pohybují body na obvodu kotouče? a.) b.) 16

17 47. Určete úhlovou rychlost otáčení hřídele čtyřdobého motoru, který koná 1800 otáček za minutu. 48. Na vodorovné ploše se kutálí válec o poloměru 3 cm. Kolik otáček vykoná na dráze 9,4 m? 50 ot 49. Těleso o hmotnosti kg obíhá po kružnici o poloměru 1 m za 1 s. Jakou úhlovou rychlostí se pohybuje? 50. Lokomotiva s koly o poloměru r 0, 6m, jede rychlostí v 7km/ h. Určete frekvenci otáčení jejího kola. 51. Kolo o průměru R 1m se roztáčí z klidu rovnoměrně zrychleně tak, že za dobu t 0s dosáhne úhlová rychlost 00rad s. Určete úhlovou dráhu. 17

18 5. Rychlost rovnoměrného pohybu družice po kružnici kolem Země je 7,46 km s. Družice se pohybuje ve výšce 800 km nad povrchem Země (poloměr Země R 6400km). Určete dobu oběhu družice kolem Země. 53. Průměrná rychlost Země za předpokladu, že obíhá 4 kolem Slunce po kruhové dráze, je 30 m s. Vypočítejte vzdálenost Země od Slunce. 54. Umělá družice Země se třemi kosmonauty na palubě obletěla Zemi 1700krát. Vypočítejte celkovou délku dráhy, kterou družice urazila, bylali její obvodová rychlost vzhledem ke středu Země 7,8 km/ s a celková doba letu trvala 500 hodin. HYBNOST 55. Určete velikost hybnosti vozíčku o hmotnosti 0,3 kg, který se pohybuje rychlostí 0, m s. 18

19 56. U letícího elektronu byla změřena velikost hybnosti kg m s a velikost rychlosti 6,5 0 4 m s. Určete hmotnost elektronu. 57. Míč o hmotnosti 0,8 kg nabyl při výkopu rychlosti 10 m s. Jak velká síla na něj působila, jestliže náraz trval 0,01 s? 58. Z děla o hmotnosti 500 kg byl ve vodorovném směru vystřelen projektil o hmotnosti kg rychlostí 600 m / s. Vypočtěte rychlost děla při zpětném nárazu. 59. Jak velká síla působila na střelu o hmotnosti 0 g, která proletěla hlavní za 0,01 s a nabyla rychlosti 800 m / s. Jakou rychlost má puška při zpětném nárazu, má-li hmotnost 5 kg? 19

20 60. Hokejista udeřil do puku o hmotnosti 00 g ležícího v klidu na ledě silou 40 N ve vodorovném směru. Jakou rychlostí letěl puk, trval-li náraz hokejky 0,01 s? ENERGIE, PRÁCE VÝKON 61. Na těleso o hmotnosti 15 kg pohybující se stálou rychlostí 0,4 m s působí ve směru pohybu po dobu 1 sekund stálá síla 6 N. Vypočtěte kinetickou energii tělesa po skončení silového působení. 6. Rychlíková lokomotiva vyvíjí při stále rychlosti 90 km/ h tažnou sílu 50 kn. Jaký je její výkon? 63. Po silnici jedou dva stejné automobily. První rychlostí 60 km/ h, druhý rychlostí 90 km/ h. Kolikrát je vyšší kinetická energie druhého auta ve srovnání s prvním vozem?,5 x 0

21 64. Při zkouškách byl automobil svržen do propasti hluboké 47,6 m. Jakou rychlostí by muselo toto auto narazit na překážku na silnici, aby kinetická energie auta byla v obou případech (při dopadu do propasti i po nárazu na překážku) stejná? ( g 9,8m s ) a) 110 km h b) 7 km h c) 68 km h d) 50 km h e) 8 km h 65. Určete rychlost kuličky kyvadla o hmotnosti 0, kg v nejnižším bodě její trajektorie, je-li výška vychýlení nad rovnovážnou polohu 0, m a g 10m s. 66. Výtah má zvednout rovnoměrným pohybem náklad do výše 4 m za 1 s. Motor výtahu má při rovnoměrném pohonu výkon 0 kw. Jaká může být maximální hmotnost kabiny s nákladem? 1

22 67. Automobil jede po vodorovné silnici rychlostí 7 km/ h. Odporové třecí síly působící proti směru posunutí jsou 1 kn. Jak velký je výkon motoru? 68. Automobil o hmotnosti 930 kg jede konstantní rychlostí 70 km h do kopce po silnici se stoupáním 13. Vypočtěte: a) Hybnost a kinetickou energii automobilu. b) Jak velký je výkon automobilu. 69. Z jaké výše spadlo závaží o hmotnosti 100 g, když při dopadu vykonalo práci 1 J? 70. Těleso o hmotnosti 100 g je vrženo svisle vzhůru rychlostí 40 m / s z povrchu Země. Určete: a) Počáteční kinetickou energii tělesa. b) Potencionální energii tíhovou v nejvyšší poloze tělesa nad Zemí. c) Kinetickou, potenciální a celkovou mechanickou energii na konci 3. sekundy od

23 počátku pohybu. Porovnejte výsledky. Odpor vzduchu zanedbejte ( g 0m s ). a.) b.) 80 J, 10m/s c.) 5 J, 75 J 71. Těleso o hmotnosti 0,8 kg je vrženo svisle vzhůru. Při svém pohybu má ve výšce 10 metrů kinetickou energii 0 J, gravitační zrychlení g 0m s. a) Jakou má těleso v tomto bodě potenciální energii? b) Jaké maximální výšky toto těleso dosáhne? c) Jakou rychlostí bylo těleso vrženo? d) Jakou mělo těleso rychlost ve výšce 10 m? a.) b.) 1,5 m c.) 1,8 m/s d.) 7 m/s 7. Beranidlo o hmotnosti 400 kg se má zvedat čtyřikrát za minutu do výše 3 m. Kolik dělníků je k tomu zapotřebí, je-li výkon každého z nich 80W? 3

24 73. Rotor elektromotoru s hmotností 110 kg má moment setrvačnosti kg m a koná 0 otáček za sekundu. Jak velkou má kinetickou energii? 74. Brusný kotouč má hmotnost 8,61 kg a průměr 80 mm; vykoná 80 otáček za minutu. Určete jeho moment setrvačnosti a kinetickou energii. Předpokládejte, že tloušťka kotouče je velmi malá vzhledem k jeho poloměru. 75. Homogenní koule rotuje kolem osy procházející středem koule. Koule vykoná jednu otočku kolem osy procházející středem za 7 s. Moment setrvačnosti koule činí 3,15 kg m. Vypočítejte kinetickou energii rotující koule. a) 1,7 J b) 69,7 J c) 3046,7 J d) 8,88 J e) 1,41 J 4

25 GRAVITAČNÍ POLE 76. Olověná koule o hmotnosti 10 kg je zavěšena na vahadle rovnoramenných vah a vyvážená závažím. Pod ní je umístěna koule o hmotnosti 000 kg tak, že vzdálenost středů obou koulí je 50 cm. Jak velký je přírůstek tíhy zavěšené koule? 77. Jak velkou gravitační silou působí Země na Měsíc, je-li jeho vzdálenost od Země km? 4 Hmotnost Země M Z 5,980 kg a hmotnost Měsíce m 7,380 kg. 78. Intenzita gravitačního pole při povrchu Země je přibližně 10 N kg. Určete velikost intenzity ve vzdálenosti h 4Rz ( R 6378km, M 4 Z 5,980 kg ). 79. Intenzita gravitačního pole Měsíce při jeho povrchu je 1,6 N kg. Jak velká gravitační síla působí při povrchu Měsíce na těleso o hmotnosti 70 kg? 5

26 ELASTICKÉ VLASTNOSTI PEVNÝCH LÁTEK 80. Vypočítejte normálové napětí v ocelovém drátě o obsahu příčného řezu 3,0 mm, který je deformován tahem silami o velikosti 0,5 kn. 81. Ocelové lano je tvořeno 0 dráty, z nichž každý má průměr,0 mm. Jakou silou se lano přetrhne, je-li 9 mez pevnosti tahu pro ocel 10 Pa? 8. Ocelový drát má délku 6,0 m, obsah příčného řezu je 3,0 mm, modul pružnosti v tahu je 0,0TPa ( Pa ). Určete sílu, která způsobí jeho prodloužení o 5,0 mm. 6

27 HYDROMECHANIKA HYDROSTATIKA 1. Jak velký je hydrostatický tlak v hloubce 30 m pod 3 hladinou vody? (Hustota vody je 1000 kg / m, g 10m / s.) 3. Průměrná hustota mořské vody je 1030 kg m. Vypočítejte hodnotu tlaku v tomto prostředí v hloubce 5 km. Považujte g 10m / s jako konstantu a zanedbejte atmosférický tlak. 3. Ve vodní nádrži tvaru kvádru sahá voda do výšky,4 metrů. a) Jak velkým tlakem působí voda na dno nádrže? b) Jak velkou silou působí voda na dno nádrže o ploše 8 m? 7

28 4. Do nádoby je nalita rtuť do výšky 3 cm, pak sloupec vody vysoký 15 cm a nakonec olej. Celková výška je 30 cm. Určete hydrostatický tlak u dna 3 nádoby, víte-li, že hustota oleje je 900 kg m 3 a hustota rtuti kg m. 5. Jakou silou působí vzduch na povrch lidského těla o ploše m 5? ( p at 10 N / m ) 6. Jak velkou silou je nadlehčován ve vodě železný 3 předmět o objemu 0 cm? (hustota 3 3 Fe 7,8 10 kg/ m 7. Jaká je hmotnost tělesa, které je ve vodě nadlehčování silou N a jehož hustota je kg/ m? ( g 10m / s, 10 kg/ m ). vody 8. Vzduchem naplněný míč má hmotnost 1,5 kg a objem 0,01 m 3. Jakou silou jej musíme přidržet pod 3 povrchem vody? ( g 10m s, 000kg m ) 8

29 9. Hmotný objekt tvaru pravidelného hranolu plave na vodě. Naložíme-li na něj náklad 500 kg, ponoří se o 1cm hlouběji. Jak velká je plocha jeho dna? HYDRODYNAMIKA 10. Jaký výkon by měl vodní motor, který by využíval 1metrového rozdílu hladin toku s průtokem litrů za minutu? ( g 10m/ s, 10 kg/ m ) vody 11. Vypočtěte: a) Jak velký výkon dává turbína v přehradě, je-li rozdíl výšek hladin h 5m a objemový průtok vody turbínou 50m 3 / s? b) Jak velký bude skutečný výkon, je-li účinnost 3 3 turbíny 80% (hustota vody je 10 kg m ) 1. Potrubím o plošném průřezu m protéká voda stálou rychlostí 3 m / s. Jaký objem vody proteče za dobu 6 minut? 9

30 13. Voda v nádobě vytéká z otvoru u dna průřezu 0 cm rychlostí 1 m / s. Jak vysoko je hladina vody v nádobě? 14. Potrubím o průřezu 6 m vyteklo rychlostí 3 m s 1800 m 3 vody. Jak dlouho voda vytékala? 15. Vodorovným potrubím proudí voda stálou rychlostí. V rovné trubici 1 vystoupí voda do výšky 60 mm a v zahnuté trubici do výšky 90 mm. Určete rychlost vody v potrubí. ( g 10m s ) 16. Nádrž je naplněna vodou a naftou (hustota nafty je 3 3 0,9 10 kg/ m ). Jakou počáteční rychlostí bude vytékat voda otvorem ve dně nádoby, je-li vrstva vody vysoká h1 1m a vrstva nafty h 4m? 3 3 ( g 10m / s, 10 kg/ ) H m O 10 m/s 17. Kapaliny v potrubí o plošném průřezu 50cm proudí rychlostí m s. Vypočítejte rychlost proudění kapaliny v potrubí o plošném průřezu 30 cm. 30

31 18. Jak velkou rychlostí proudí voda vodorovnou trubicí o průřezu 15 cm, jestliže v zúženém místě o průřezu 5 cm se sníží tlak o hodnotu 5000 Pa? Jakou rychlostí proudí voda v zúžené části trubice? 19. Voda přitéká potrubím o průměru d 4cm 1 rychlostí v 1 1, 5m s do trysky, z níž vystřikuje rychlostí 0 m / s. Určete průměr trysky d. 0. Voda tekoucí ve strouze o průřezu cm rychlostí 0,3 m / s vtéká otvorem o průřezu cm na vodní kolo. Jak velikou pohybovou energii má každý litr vytékající vody? TERMODYNAMIKA, MOLEKULOVÁ FYZIKA A STRUKTURA LÁTEK 31

32 TEPLOTA, TEPLO, 1. TERMODYNAMICKÝ ZÁKON, KALORIMETR, ZMĚNY SKUPENSTVÍ LÁTEK 1. Vyjádřete teploty 00 K, 855,5 K a 7,1 K ve C Vyjádřete zápis teplot T 55K a T 55K v teplotní Celsiově stupnici. - 8 C 3. Vyjadřují zápisy t 156, 8 C a T 159, 8K tutéž teplotu? Pokud ne, jaký je teplotní rozdíl mezi stavy popsanými těmito teplotami? NE 73,15 K 0 C=73,15 K 0 K= -73,15 C 4. Teplota vzduchu v posluchárně je 0 C. Kolik je to přibližně kelvinů? 3

33 5. Jednotka tepla v soustavě SI je: a) Joule b) Kilokalorie c) Kalorie d) Watt e) Kelvin 6. Tělesu o hmotnosti kg zhotovenému z látky o měrné tepelné kapacitě 500 J kg K 1 dodáme teplo 8 kj. O kolik se zvýší jeho teplota? 7. Kolik litrů vody o teplotě 80 C musíme smísit se 40 litry vody o teplotě 5 C, aby po promísení měla směs teplotu 0 C? 8. Jaká bude výsledná teplota vody, jestliže smícháme kg vody o teplotě 15 C a 3 kg vody o teplotě 10 C? 33

34 9. Vypočítejte, jaké teplo je potřeba k roztavení mosazi o hmotnosti 0,5 kg, která má počáteční teplotu 0 C. Teplota tání mosazi je 970 C, jeho 1 měrná tepelná kapacita c 394J kg K, měrné skupenské teplo tání mosazi je 3 l t J kg. 10. Do nádrže obsahující 35 kg oleje teploty 30 C jsme při kalení ponořili ocelový předmět ohřátý na teplotu 800 C. Vypočítejte, jaká je hmotnost tohoto předmětu, když se po jeho vložené teplota oleje ustálila na 58 C. Měrná tepelná kapacita oleje je J kg K, měrná tepelná kapacita oceli je J kg K. 11. Do tavící pece jsme vložili platinovou kouli o hmotnosti 100 g. Hned po vytáhnutí jsme kouli vložili do mosazného kalorimetru hmotnosti 00 g obsahující 1 kg vody o teplotě 10 C. Určete, jaká byla teplota pece, když po vložení koule do kalorimetru se teplota ustálila na 14 C. (Měrná 1 tepelná kapacita mosazi je 389J kg K, 1 platiny je 133J kg K a měrné teplo vody je J kg K.) 34

35 1. Jaké teplo odevzdá voda o hmotnosti 1 kg, ochladíli se z teploty 100 C na teplotu 0 C? (Měrná tepelná 3 1 kapacita vody je 4, 0 J kg K.) TEPELNÉ DĚJE V PLYNECH 13. Určete poměr středních kvadratických rychlostí molekul vodíku a kyslíku při stejných teplotách. (Molární hmotnost kyslíku a vodíku je kg mol a 0 kg mol.) Vypočítejte střední kinetickou energii jedné molekuly ideálního plynu vyplývající z jejího neuspořádaného posuvného pohybu při teplotě 0 C. (Boltzmannova konstanta 3 k,380 J K.) 15. Vypočítejte střední kvadratickou rychlost molekul kyslíku při teplotě 10 C. (Hmotnost molekuly 6 kyslíku m O 5,310 kg.) 35

36 16. Ideální plyn o hmotnosti 3,8 10 kg je uzavřen v nádobě o objemu 10l a má tlak 0,49 MPa. Určete střední kvadratickou rychlost jeho molekul. 17. Kolikrát vzroste tlak uzavřeného plynu, zvýšíme-li rychlost všech jeho molekul dvakrát? 18. Plyn s látkovým množstvím 160,5 molů má hmotnost 4,5 kg. Vypočítejte jeho molární hmotnost. 19. Ideální plyn uzavřený v nádobě o vnitřním objemu,5l má teplotu -13 C. Jaký je jeho tlak, je-li v plynu 4 10 molekul? 0. Tepelný děj, při kterém se nemění teplota, se nazývá: a) Adiabatický b) Termodynamický c) Izotermický d) Ideální e) Je to Kelvinův zákon 36

37 1. Při izotermickém ději se tlak plynu zmenšil na třetinu původní hodnoty. Vypočítejte změnu objemu plynu.. O jakou hodnotu vzroste objem vzduchu 3 V 100m, jestliže při konstantní teplotě klesne tlak z hodnoty 750 Pa na 500 Pa? 3. Co je grafem izotermického děje v ideálních plynech v souřadnicích p, V? a) Přímka b) Elipsa c) Parabola d) Hyperbola e) Kružnice 4. Mezi tlakem p a objemem V ideálního plynu pro izotermický děj platí vztah: a) p1 / p V1 / V b) p1 / p V1 / V c) n / V p n V d) p1 1 / p1v 1 p1v p1v 1 pv e) 37

38 5. Je-li poměr objemů ideálního plynu na začátku ( V 1 ) a na konci ( V ) izotermického děje V 1 : V : 3, vypočítejte, jaký bude poměr počátečního tlaku p 1 a konečného tlaku p. 6. Tepelný děj, při kterém zůstává objem ideálního plynu konstantní, se nazývá: a) Izotermický b) Adiabatický c) Izochorický d) Polytropický e) Izobarický 7. Jaký je vztah mezi stavovými veličinami při izochorickém ději v plynech? p1 V1 a) p V b) 1 p1 T p T c) p1v 1 pv d) p V p e) V p1 p V V 38

39 8. Při teplotě 15 C byl naměřen tlak ideálního plynu p 1. Vypočítejte, při které teplotě bude naměřen dvojnásobný tlak, je-li objem plynu konstantní. 9. Tlak v pneumatice je 0 kpa. U závodních aut se hustí pneumatiky na nižší tlak. S jakým zvýšením teploty se počítá, je-li při teplotě 0 C tlak v pneumatice jen 00 kpa? (Uvažujte izochorický děj.) V uzavřené nádobě při tlaku 10 Pa byl vzduch o teplotě 7 C. Jaký tlak měl tento vzduch, když se ohřál na teplotu 77 C? 31. Izobarický děj je charakterizován konstantním: a) Objemem b) Teplotou c) Tlakem 3. Jaký tvar má stavová rovnice pro izobarický děj v ideálních plynech? a) V / T konst. b) pv konst. c) pt konst. d) RV PT e) pv k konst. 39

40 33. Jak musíme změnit teplotu ideálního plynu, aby se jeho objem při stálém tlaku zvětšil na trojnásobek? mus se 3x zv t it 34. Teplota kyslíku dané hmotnosti se zvětšuje za stálého tlaku z počáteční teploty -0 C. Při které teplotě má kyslík 1,5x větší objem než při teplotě počáteční? 35. Jisté množství vodíku zaujímá za teploty 7 C a tlaku 0,09 MPa objem litry. Jaký bude jeho tlak, zmenšíme-li objem o 5% a teplota vzroste na 47 C? 36. Tepelný děj, při kterém je sledovaná soustava dokonale tepelně izolována od okolí, se nazývá: a) Termodynamický b) Izotermický c) Adiabatický d) Carnotův e) Ideální (dokonalý) 40

41 37. Poissonova konstanta pro vzduch je 1,40. Je-li měrná tepelná kapacita vzduchu při stálém tlaku 1 a teplotě 0 C, 1006J kg K, jaká je c p měrná tepelná kapacita vzduchu c v při stálém objemu a téže teplotě? 38. Jakou práci vykoná plyn, jestliže se jeho původní objem 0,1 m 3 5 při stálém tlaku 10 Pa ztrojnásobí? Vzduch má hmotnost 5,0 10 kg a teplotu 0 C. Jak se zvýší jeho teplota při izobarickém ději, jestliže vykoná práci 37,4 J? 3 ( M m vzduchu 9 0 kg mol.) 40. Plyn přijal od ohřívače během jednoho cyklu teplo 7 MJ a předal chladiči teplo 3 MJ. a) Jakou práci přitom vykonal? b) Jaká je účinnost tohoto cyklu? 41

42 VLASTNOSTI PEVNÝCH LÁTEK A KAPALIN 41. Jakým vztahem je vyjádřena závislost délky l t tyče na teplotě t, má-li tyč při teplotě 0 C délku l 0 a je-li součinitel délkové teplotní roztažnosti? počá eční él 4. Určete rozměr součinitele teplotní délkové roztažnosti. a) K b) K c) mk d) e) m mk 43. Měděný drát má při teplotě -5 C délku 1,55 m. Jakou délku má při teplotě -30 C? V daném teplotním intervalu považujeme za konstantu. 5 ( 1,6 0 K ) 4

43 44. Jaké je relativní prodloužení olověného drátu 5 (,9 0 K ) při zvýšení jeho teploty Pb z -5 C na 45 C? (Relativní prodloužení uveďte v procentech.) 45. Dvě tyče, železná ( ( Zn,9 0 5 K Fe 1, 0 5 K ) a zinková ), mají při teplotě 0 C stejnou délku. Zvýšíme-li jejich teplotu o 100 C, je rozdíl délek 1,0 cm. Jaké délky tyčí při teplotě 0 C vyhovují této podmínce? 46. Hliníková nádoba má při teplotě 0 C vnitřní objem 1l. Jak se změní tento objem při zvýšení teploty na 80 C, je-li v uvažovaném teplotním 5 intervalu,3 0 K? 47. Měřítko na ocelovém pásku je správné při teplotě 15 C. Byla jím měřena délka 50 m při teplotě -15 C. Jak je třeba opravit naměřenou hodnotu? 5 ( 1, 0 K ) Fe 43

44 48. Železná tyč byla zahřívána z teploty 0 C na 10 C. Kolik činilo její relativní délkové prodloužení? 5 ( 1, 0 K ) Fe 49. O kolik se prodlouží ocelová kolejnice, která má při 0 C délku 5 m, po změně teploty z -30 C na C? ( 1, 0 K ) Fe 44

45 KMITÁNÍ, VLNĚNÍ A AKUSTIKA PŘÍKLADY Z KMITŮ A VLNĚNÍ 1. Které z uvedených veličin přísluší jednotka hertz? a) Elektrické kapacitě b) Kruhové frekvenci c) Kmitočtu d) Vlnové délce e) Elektrické indukci. Fázová rychlost šíření vlnění se vypočítá z jeho vlnové délky a kmitočtu f podle následujícího vztahu: a) c / f b) c f c) c f d) c / f e) c f 3. Frekvence kmitů objektu je 10 Hz. Za jakou dobu vykoná objekt jeden kmit? 0,1 s 45

46 4. Vypočítejte, na jaké vlnové délce vysílá radiový vysílač pracující na frekvenci 600 khz? 5. Jaký je vztah mezi zrychlením a a okamžitou výchylkou u při harmonickém pohybu? 6. Pružina byla zatížena silou 5 N a prodloužila se o 5 10 m. Jaká bude celková energie kmitavého pohybu, jestliže bude těleso kmitat s amplitudou výchylky 10 m? 7. Těleso o hmotnosti kg je zavěšeno na svislé pružině, která se jeho tíhou prodlouží o 6 mm. Jaká je tuhost pružiny? 8. Délky dvou matematických kyvadel jsou v poměru 1 : 4. V jakém poměru jsou doby kyvu? 1 : 9. Jak se změní doba kmitu matematického kyvadla, jestliže jeho délku zkrátíme o 5%? 13,4 %. 46

47 10. Jaká je vlnová délka vlnění o kmitočtu 1 MHz šířícího se ve vodě rychlostí 1480 m / s? (Uvažujte rychlost elektromagnetického vlnění 8 c 30 m/ s.) 11. Určete frekvenci příčné postupné vlny šířící se rychlostí 300 m / s, je-li její vlnová délka 0, m? 1. Jakou rychlostí se šíří vlnění o kmitočtu,5 khz v prostředí, ve kterém má vlnovou délku 40 cm? 13. Za jakou dobu urazí posloupná sinusová vlna o frekvenci 500 Hz a vlnové délce 1 m dráhu 100 m? 14. Rychlost zvuku ve vzduchu je 340 m / s. Za jakou dobu překoná vzdálenost 60 m? 15. Napnutá struna o délce 0,6 m vydává základní tón o frekvenci 1 khz. Jaká je rychlost šíření vlnění ve struně? 47

48 16. V mědi se šíří ultrazvuk rychlostí 3600 m / s. Za jak dlouho se vrátí vlnění, které se odrazilo od dutiny v hloubce cm? 17. Zvuk odražený v mořské vodě od vraku lodi se vrátil do místa vyslání za 0,6 s. Jaká je hloubka vraku, je-li rychlost šíření zvuku ve vodě 1500 m / s? 18. Jak daleko je vzdálen pozorovatel od místa výbuchu na hladině jezera, jestliže k němu dorazí zvuk vzduchem o 5 s později než vodou? (Uvažujte rychlost zvuku ve vzduchu 330 m / s a ve vodě 1450 m / s.) 19. Rovnice y 0,1sin 5s t 0,3m x m popisuje postupné mechanické vlnění. Určete amplitudu výchylky vlnění a vlnovou délku. 48

49 ELEKTRICKÉ POLE ELEKTROSTATICKÉ POLE 1. Coulomb je jednotka: a) Proudu b) Elektrického náboje c) Elektrického potenciálu d) Intenzity elektrického pole. Proton a elektron se navzájem: a) Odpuzují b) Přitahují c) Nepůsobí na sebe d) Při malých vzdálenostech se odpuzují, při velkých se přitahují e) Přitahují nebo odpuzují v závislosti na prostředí mezi nimi 3. Dva elektrické náboje ve vzdálenosti 35cm na sebe působí ve vakuu silou 6 N. Jakou silou na sebe působí ve vzdálenosti 6 cm? ( 0 8,850 F m ) 49

50 4. Dva bodové elektrické náboje na sebe působí ve vakuu silou 30 mn. Jakou silou na sebe působí při stejné vzájemné vzdálenosti v prostředí s relativní permitivitou 3? r 5. Vypočítejte: a) Jak velkou elektrickou silou se přitahují proton a elektron v atomu vodíku, je-li jejich vzájemná 1 vzdálenost r 5,80 m? b) Jakou intenzitu elektrického pole vyvolává proton v této vzdálenosti? c) Jakou gravitační silou se přitahují proton a elektron? (Permitivita vakua je 8,850 F m, a.) b.) c.) 9 elementární náboj má hodnotu 1,6 10 C, m 30 e 10 7 kg, m p 0 kg, 1 6,67 0 N m kg ). 6. Na bodový náboj 1 C působí v daném bodě elektrického pole síla 10 N.Vypočítejte hodnotu intenzity elektrického pole v tomto bodě. 50

51 7. Jakou silou působí elektrostatické pole o velikosti intenzity 150V m na elektrický náboj 30 C? 8. Jaké elektrické napětí je mezi dvěma body v elektr. poli, které mají potenciál +15V a +3V? 9. V elektrickém poli se při přenesení náboje z bodu A do bodu B vykonala práce 36 J. Potenciální rozdíl bodu byl 4V. Vypočítejte přenesený elektrický náboj. 10. Vodičem prochází elektrický proud 800 ma. Za jakou dobu jím projde elektrický náboj 70C? 15 min 11. Kolik elektronů prošlo příčným průřezem vodiče za,5 min, prochází-li vodičem proud 0,48 A? Náboj 9 elektronu je 1,6 10 C. 1. Vodičem prochází proud 300 ma a za 8 min prošlo 0 průřezem vodiče 9 10 elektronů. Určete náboj elektronu. 51

52 13. Přímým vodičem o délce 60 cm s elektrickým odporem 1, k prochází proud 60 ma. Určete velikost intenzity elektrického pole ve vodiči. V/m 14. Jednotkou kapacity kondenzátoru v soustavě SI je: a) Watt b) Hertz c) Ampérhodina d) Farad e) Ampérsekunda 15. Jaká je výsledná kapacita soustavy dvou stejných paralelně (vedle sebe) zapojených kondenzátorů, z nichž každý má kapacitu 10 F? 16. Dva stejné kondenzátory o kapacitě 10 F zapojíme do série. Jaká je výsledná kapacita? 17. Dva kondenzátory se stejnou kapacitou zapojíme nejdříve do série a potom paralelně. Rozdíl v kapacitách obou zapojení činí 3 F. Jaká je kapacita kondenzátorů? 5

53 OHMŮV ZÁKON, KIRCHHOFFOVY ZÁKONY, PRÁCE A VÝKON V OBVODU S KONSTANTNÍM PROUDEM 18. Jaký výsledný odpor má sériové zapojení svou rezistorů R 10 a R 1? Jaký je výsledný odpor dvou stejných paralelně (vedle sebe) zapojených rezistorů? Poloviční 0. Tři paralelně zapojené vodiče s odpory 4, 6 a 1 se mohou nahradit jedním rezistorem. Jaká je jeho hodnota? 1. Jaký odpor naměříme mezi dvěma vrcholy trojúhelníka, který je vytvořen trojicí stejných rezistorů o hodnotě R?. Čtyři stejné rezistory o hodnotě R zapojíme do čtverce. Jaký odpor naměříme v úhlopříčce tohoto čtverce? 53

54 3. Dva stejné rezistory zapojíme nejdřív do série a potom paralelně. Rozdíl hodnot výsledných odporů byl 6. Jak velké rezistory byly použity? 4. Dva různé elektrické spotřebiče zapojené za sebou (do série) dávají výsledný odpor 500 ; pokud tytéž spotřebiče zapojíme vedle sebe (paralelně), dávají výsledný odpor 105. Jaké jsou rezistence těchto dvou spotřebičů? 5. Vodič stejného průřezu má odpor 100. Jak se změní jeho odpor, zvětšíme-li jeho délku na dvojnásobek a plochu průřezu zmenšíme na polovinu? zvě ší e 4x 8 6. Niklovým drátem ( 60 m ) o délce m Ni a plochou průřezu 0, mm prochází proud 0,3 A. Vypočítejte rozdíl napětí mezi počátkem a koncem drátu. 54

55 7. Ke zdroji konstantního napětí 6V jsou připojeny paralelně rezistory 0 a 30. Jaký je celkový proud procházející obvodem? 8. Na soustavě dvou sériově řazených vodičů o odporech 5 a 15 je celkové napětí 10V. Jaké je napětí na prvním odporu? 9. Dva rezistory o odporech 55 a 44 jsou spojeny do série. Prvým rezistorem prochází proud A. Jaký proud protéká druhým rezistorem? 30. Dva spotřebiče o odporech a 4 jsou připojeny v sérii (za sebou) ke zdroji 1V. Jaký bude protékat proud prvním spotřebičem? 31. Voltmetr s měřícím rozsahem 6V, s vnitřním odporem 60 k chceme upravit na voltmetr s měřícím rozsahem 60V. Jakou musí mít hodnotu předřadná rezistence, kterou k úpravě použijeme? 55

56 3. Jak se zapojí do obvodu ampérmetr při měření elektrického proudu? a) Paralelně b) Sériově c) Serio-paralelně d) Vždy s uzemněním e) Nesmí se zapojit 33. Ampérmetr má rozsah 1 ma a vnitřní odpor 100. Máme zvětšit rozsah na 10 ma. Jaký odpor musí mít použitý bočník? 34. Elektromotor na stejnosměrný proud odebírá proud I 10A a pracuje při napětí U 0V. Vypočítejte na jaké napětí je ho nutné připojit k začátku vedení, je-li celkový odpor vedení R? 30 V 35. Zdroj o elektromotorickém napětí 10V dodává do spotřebiče proud A. Jaký je vnitřní odpor tohoto zdroje, je-li odpor spotřebiče 4? 56

57 36. Vnější obvod o odporu 3,8 je připojen ke zdroji elektrického napětí U e 1V. Obvodem prochází proud 3 A. Určete: a) Svorkové napětí zdroje b) Vnitřní odpor zdroje c) Maximální proud při zkratu a. b. c. 37. Akumulátor s napětím 6V napájí v automobilu brzdová světla s odporem 1, klakson s odporem a reflektor s odporem 1. Jaký proud se bude z akumulátoru odebírat, jsou-li zapojeny všechny spotřebiče paralelně? 38. Jaký maximální proud může procházet rezistorem 00 / W? 39. Tři spotřebiče (10V, 30W ), (10V, 90W ) a (10V, 60W ) jsou paralelně spojeny. Určete jejich výsledný odpor. 57

58 40. Jaký bude výkon topné spirály o odporu R 800, prochází-li jí proud 0,5 A? 00 W 41. K akumulátoru o svorkovém napětí 1 voltů jsou připojeny za sebou (sériově) dva spotřebiče o odporech R 1 a R 3 ( R i zanedbejte): a) Jaký je výsledný odpor spotřebiče při zapojení za sebou? b) Jaký proud protéká obvodem? c) Jaké napětí vzniká na jednotlivých spotřebičích? d) Jaký je výkon dodávaný do jednotlivých spotřebičů? a.) 5 b.) c.) d.) 4. Elektrický vařič má dvě stejné topné spirály. Při paralelním spojená obou spirál je příkon vařiče 000W. Jaký bude příkon, spojíme-li spirály sériově? 8 kw 43. Elektrickým obvodem s odporem 15 prochází proud 0,6 A. Určete výkon zdroje s vnitřním odporem 0,5. 5,58 W 58

59 44. Jak velký elektrický příkon odebírá z baterie spotřebič o odporu 1 m který je připojen k baterii o napětí 1V. 1 W 45. K akumulátoru o napětí 1V připojíme odpor R a přijímač na 6V do série. Jaký výkon se rozptýlí ve formě tepla na odporu R, jestliže přijímač odebírá 5W při napětí U 6V? 5 W 46. Dva stejné ohmické spotřebiče můžeme zapojit k síti buď do série, nebo paralelně (za sebou nebo vedle sebe). Jaký bude v prvním případě celkový výkon dodávaný do spotřebičů vzhledem k druhému případu? 4x enší 47. Za jak dlouho se ohřeje 0, l vody z 10 C do varu ponorným rychlovařičem s příkonem 1,4 kw a účinností 90%? (Měrná tepelná kapacita vody je 1 400J kg K.) 59

60 STŘÍDAVÝ PROUD 48. Motor na střídavý proud má na štítku uvedeno 110 V, 8 A. Jaké jsou amplitudy napětí a proudu? 49. Amplituda proudu, tj. maximální hodnota proudu v oscilačním obvodě je 15 ma. Jaká je efektivní hodnota proudu? 50. Efektivní hodnota napětí činí 5V. Určete amplitudu napětí, tj. maximální hodnotu napětí. 51. Kapacitance kondenzátoru je 5 a frekvence proudu je 500 Hz, jakou kapacitu má kondenzátor? 5. Jak velký proud prochází kondenzátorem C 3 F po připojení střídavého napětí 0V, f 50Hz? 60

61 53. Střídavý proud má frekvenci 50 Hz. Jaká je impedance tlumivky o indukčnosti 5 mh, pokud její rezistenci zanedbáme? 54. Vypočtěte indukčnost cívky, kterou při napětí 110 V prochází proud 0,1 A o frekvenci 50 Hz. (Rezistanci cívky zanedbejte vzhledem k jejímu induktivnímu odporu.) 3,5 H 55. V obvodu střídavého proudu jsou zapojeny do série rezistor o odporu 600, cívka o indukčnosti 0,5 H a kondenzátor o kapacitě 0, F. Vypočítejte impedanci obvodu při frekvenci. a) f 400Hz 1 b) f 600Hz 948, Ke zdroji střídavého napětí 110V o frekvenci 50 Hz je do série připojen spotřebič o odporu 8 a cívka o indukčnosti 30 mh. Jaká je přibližná hodnota proudu odebíraného ze zdroje? 61

62 MAGNETICKÉ POLE STACIONÁRNÍ MAGNETICKÉ POLE 1. Jak velkou silou působí homogenní magnetické pole o magnetické indukci T na přímý vodič aktivní délky 8cm, kterým prochází proud 6 A? Vodič svírá s vektorem magnetické indukce úhel o velikosti 30. 0,48 N. Přímý vodič o aktivní délce 00 mm je vložen do homogenního magnetického pole o indukci T (tesla) kolmo k magnetickým indukčním čárám. Vodič má odpor a je připojen ke zdroji o elektromotorickém napětí 1V a vnitřním odporu 0,4 : a) Nakreslete schéma obvodu. b) Jaký proud protéká vodičem? c) Jaká síla působí na aktivní část vodiče v magnetickém poli? 3. Vzdálenost vodičů v kabelu, kterým prochází proud 5 A je 5 mm. Jak velkou silou je namáhána izolace mezi vodiči na každém desetimilimetrovém úseku? ( 1) r 6

63 4. Dva rovnoběžné vodiče, kterými protéká stejný elektrický proud, na sebe působí silou 100 N. Zvětšíme proud v každém vodiči na dvojnásobek a vzdálenost mezi vodiči zmenšíme na polovinu. Jakou silou budou na sebe vodiče působit? 5. Jakou rychlostí se pohyboval proton v magnetickém poli, jestliže jeho trajektorie byla kružnice o poloměru 0,60 mm a magnetická indukce měla velikost 1T? S jakou frekvencí proton obíhal po své trajektorii? Hz 6. Přímý vodič délky 0,1 m svírá s indukčními čárami homogenního magnetického pole stále úhel o velikosti 45. Určete velikost indukovaného elektromotorického napětí ve vodiči, pohybuje-li se stálou rychlostí o velikosti 5m s ve směru kolmém na vodič i na indukční čáry. Magnetická indukce má velikost 1T. 7. Proud v cívce se rovnoměrně zmenšil o 1,8 A za dobu 0, s. Jaká byla indukčnost cívky, jestliže se přitom v ní indukovalo elektromotorické napětí 45 mv? 63

64 8. Na cívce o indukčnosti 0,1 H bylo po dobu t 0, 6s stálé elektromotorické napětí 0,3V. Určete velikost změny proudu, která nastala v cívce za uvedenou dobu. 9. Jaká byla rychlost časové změny proudu v cívce o indukčnosti,3 H, když na ní bylo velmi krátkou dobu konstantní indukované elektromotorické napětí 50V? 10. Cívkou o indukčnosti mh prochází proud 0,5 A. Určete energii magnetického pole této cívky. 11. Na jaké napětí je třeba nabít kondenzátor o kapacitě 10 F, aby se jeho elektrická energie rovnala energii magnetického pole cívky o indukčnosti 1 mh, kterou prochází proud A? 64

65 OPTIKA 1. Má-li duté zrcadlo poloměr křivosti R, pak jeho ohnisko leží ve vzdálenosti: a) 0,5 R b) 0,5 R c) R. 3 cm před vypuklým zrcadlem o poloměru křivosti 3 cm se nachází předmět o velikosti 5 mm. Jaký je jeho obraz? ne u ečný pří ý z enšený 3. Předmět je 15 cm před vypuklým zrcadlem a jeho obraz je -10cm od jeho vrcholu. Jaký je poloměr křivosti zrcadla? - 4. Určete optickou mohutnost tenké dvojvypuklé čočky s poloměrem křivosti 5 cm a 10 cm, je-li zhotovena ze skla o indexu lomu 1,5. D 65

66 5. Předmět výšky 1cm je 10 cm před rozptylkou, která má ohniskovou dálku -0,3cm. Jaká je poloha a charakteristika obrazu? - 6. Kde se vytvoří obraz předmětu o velikosti 1 cm, jež se nachází 8 cm před spojkou o ohniskové vzdálenosti 4cm? Jaký bude? 8 cm za spojkou u ečný přev ácený ejně vel ý ATOMISTIKA Nuklid 94 Pu se rozpadl tak, že se uvolnila jedna částice a vznikl nový nuklid. Kolik částic má v jádru? 34. Radium (6 Ra) se přeměňuje samovolně v radon ( Rn) dle rovnice: 6 A Ra X Rn. 88 Z 86 Jaký typ záření tento rozpad doprovází? A=4 Z= X=He záření α 66

67 3. Určete složení jádra izotopu prvku, který vznikne 38 z uranu 9 U po čtyřech rozpadech alfa a dvou beta rozpadech. A = Z = 86 Rn 4. Konečným produktem radioaktivního rozpadu Th je izotop olova 8 Pb. Kolik částic alfa a beta se přitom vyzářilo? 67

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Předmět: Seminář z fyziky

Předmět: Seminář z fyziky Pracovní list č. 1: Kinematika hmotného bodu a) Definujte základní kinematické veličiny, charakterizujte tečné a normálové zrychlení. b) Proveďte rozbor charakteristik jednotlivých konkrétních neperiodických

Více

Fyzikální veličiny. Převádění jednotek

Fyzikální veličiny. Převádění jednotek Fyzikální veličiny Vlastnosti těles, které můžeme měřit nebo porovnávat nazýváme fyzikální veličiny. Značka fyzikální veličiny je písmeno, kterým se název fyzikální veličiny nahradí pro zjednodušení zápisu.

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Ústav aplikované fyziky a matematiky ZÁKLADY FYZIKY II Sbírka příkladů pro ekonomické obory kombinovaného studia Dopravní fakulty Jana Pernera (PZF2K)

Více

Obecné základy. a) farad b) ohm.m c) ohm. m d) henry

Obecné základy. a) farad b) ohm.m c) ohm. m d) henry Masarykova univerzita v Brně, Fakulta lékařská Fyzika Vzory přijímacích testů z fyziky vycházejí z otázek použitých v letech 1997-000. Z jejich tematického zaměření a pojetí vyplývá, že kladou důraz více

Více

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií

Více

SBÍRKA ÚLOH Z FYSIKY. Gymnázium F. X. Šaldy. pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři

SBÍRKA ÚLOH Z FYSIKY. Gymnázium F. X. Šaldy. pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři Gymnázium F. X. Šaldy PŘEDMĚTOVÁ KOMISE FYSIKY SBÍRKA ÚLOH Z FYSIKY pro přípravu k maturitní zkoušce, k přijímacím zkouškám do vysokých škol a k práci ve fysikálním semináři Sazba: Honsoft, 2006 2007.

Více

4. Žádná odpověď není správná -0

4. Žádná odpověď není správná -0 1. Auto rychlé zdravotnické pomoci jelo první polovinu dráhy rychlostí v1 = 90 km.h -1, druhou polovinu dráhy rychlostí v2 = 72 km.h -1. Určete průměrnou rychlost. 1. 81,5 km.h -1-0 2. 80 km.h -1 +0 3.

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

TÉMATA K MATURITNÍ ZKOUŠCE Z FYZIKY:

TÉMATA K MATURITNÍ ZKOUŠCE Z FYZIKY: TÉMATA K MATURITNÍ ZKOUŠCE Z FYZIKY: školní rok : 2007 / 2008 třída : 4.A zkoušející : Mgr. Zbyněk Bábíček 1. Kinematika hmotného bodu 2. Dynamika hmotného bodu 3. Mechanická práce a energie 4. Gravitační

Více

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI?

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? FYZIKA na LF MU cvičná 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? A. kandela, sekunda, kilogram, joule B. metr, joule, kalorie, newton C. sekunda,

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO BSP PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO BSP PRO AKADEMICKÝ ROK TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST2007F1 1. Mechanická vlna se v materiálu šíří rychlostí 2 mm/µs. Jaká je to rychlost v m/s? a) 2000 m/s b) 2 m/s c) 0,0002 m/s d) 2 10 6 m/s e) 2 10-6 m/s

Více

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy, Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6

Více

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2.

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2. VII Mechanika kapalin a plynů Příklady označené symbolem( ) jsou obtížnější Příklad 1 Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ Stručné řešení:

Více

Soubor příkladů z fyziky pro bakalářskou fyziku VŠB TUO prof. ing. Libor Hlaváč, Ph.D.

Soubor příkladů z fyziky pro bakalářskou fyziku VŠB TUO prof. ing. Libor Hlaváč, Ph.D. Soubor příkladů z fyziky pro bakalářskou fyziku VŠB TUO prof. ing. Libor Hlaváč, Ph.D. 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 50 m a skloněného

Více

5.8 Jak se změní velikost elektrické síly mezi dvěma bodovými náboji v případě, že jejich vzdálenost a) zdvojnásobíme, b) ztrojnásobíme?

5.8 Jak se změní velikost elektrické síly mezi dvěma bodovými náboji v případě, že jejich vzdálenost a) zdvojnásobíme, b) ztrojnásobíme? 5.1 Elektrické pole V úlohách této kapitoly dosazujte e = 1,602 10 19 C, k = 9 10 9 N m 2 C 2, ε 0 = 8,85 10 12 C 2 N 1 m 2. 5.6 Kolik elementárních nábojů odpovídá náboji 1 µc? 5.7 Novodurová tyč získala

Více

laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa

laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa Vyučovací předmět Fyzika Týdenní hodinová dotace 2 hodiny Ročník 1. Roční hodinová dotace 72 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy používá s porozuměním učivem zavedené fyzikální

Více

Maturitní okruhy Fyzika 2015-2016

Maturitní okruhy Fyzika 2015-2016 Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2

Více

Variace. Mechanika kapalin

Variace. Mechanika kapalin Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti

Více

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA U.. vnitřní energie tělesa ( termodynamické soustavy) je celková kinetická energie neuspořádaně se pohybujících částic tělesa ( molekul, atomů, iontů) a celková potenciální energie vzájemné polohy těchto

Více

3. TEKUTINY A TERMIKA 3.1 TEKUTINY

3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3.1.1 TEKUTINY, TLAK, HYDROSTATICKÝ A ATMOSFÉRICKÝ TLAK, VZTLAKOVÁ SÍLA Tekutiny: kapaliny a plyny Statika kapalin a plynů = Hydrostatika a Aerostatika Tlak v tekutině

Více

R 2 R 4 R 1 R

R 2 R 4 R 1 R TEST:Bc-1314-FYZ Varianta:0 Tisknuto:18/06/2013 1. Jak daleko od Země je Měsíc, jestliže světlo urazí tuto vzdálenost za 1,28 sekundy? Rychlost světla je 300 000 km/s. 1) 384 000 km 2) 425 000 km 4) 256

Více

Dynamika hmotného bodu

Dynamika hmotného bodu Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,

Více

F - Dynamika pro studijní obory

F - Dynamika pro studijní obory F - Dynamika pro studijní obory Určeno jako učební text pro studenty dálkového studia a jako shrnující a doplňkový text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

Příklady 2 - Kinematika - 27.9.2007

Příklady 2 - Kinematika - 27.9.2007 Příklady 2 - Kinematika - 27.9.2007 1. Počáteční poloha míčku je dána polohovým vektorem r 1 = ( 3, 2, 5), koncová poloha je určena vektorem r 2 = (9, 2, 8). Určete vektor posunutí míčku. Určete velikost

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

5.6. Člověk a jeho svět

5.6. Člověk a jeho svět 5.6. Člověk a jeho svět 5.6.1. Fyzika ŠVP ZŠ Luštěnice, okres Mladá Boleslav verze 2012/2013 Charakteristika vyučujícího předmětu FYZIKA I. Obsahové vymezení Vyučovací předmět Fyzika vychází z obsahu vzdělávacího

Více

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný

Více

FAKULTA STAVEBNÍ VUT V BRNĚ

FAKULTA STAVEBNÍ VUT V BRNĚ 1. Vyjádřete v základních jednotkách soustavy SI jednotku Pa (Pascal). 2 + kg m 1 s 2 - kg m 2 s - kg m s 1 3 - kg m 2 s 2. Vyhledejte správný převodní vztah pro 5 mm μs 1. + 5000 m s 1-5 km h 1,005 m

Více

Látka a těleso skupenství látek atomy, molekuly a jejich vlastnosti. Fyzikální veličiny a jejich měření fyzikální veličiny a jejich jednotky

Látka a těleso skupenství látek atomy, molekuly a jejich vlastnosti. Fyzikální veličiny a jejich měření fyzikální veličiny a jejich jednotky Vyučovací předmět Fyzika Týdenní hodinová dotace 1 hodina Ročník Prima Roční hodinová dotace 36 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy prakticky rozeznává vlastnosti látek a těles

Více

Příklady: 7., 8. Práce a energie

Příklady: 7., 8. Práce a energie Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209

Více

PŘIJÍMACÍ ŘÍZENÍ NA FAKULTU STAVEBNÍ VUT V BRNĚ

PŘIJÍMACÍ ŘÍZENÍ NA FAKULTU STAVEBNÍ VUT V BRNĚ 1. Vyjádřete v základních jednotkách soustavy SI jednotku Pa (Pascal). + kg m 1 s 2 - kg m 2 s 2 - kg m s 1 - kg m 2 s 3 2. Vyhledejte správný převodní vztah pro 5 mm μs 1. + 5000 m s 1-5 km h 1,005 m

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

Kinematika hmotného bodu pohyb přímočarý, pohyb po kružnici Sada 1 - Kinematika 26/79 Rychlík jedoucí rychlostí 120 km.h -1 brzdí se záporným zrychlením a = -0,3 m.s -2. V jaké vzdálenosti před stanicí

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

Fyzika 1A-2008 S 2 S 1. v p. v 1 p

Fyzika 1A-2008 S 2 S 1. v p. v 1 p Fyzika A-008 Otázky za body. Která z následujících fyzikálních veličin je vektorová? a) potenciál b) energie c) magnetická indukce d) tlak. Miliampérmetr je nastaven na rozsah ma. Jeho stupnice je rozdělena

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Úlohy pro 52. ročník fyzikální olympiády, kategorie EF

Úlohy pro 52. ročník fyzikální olympiády, kategorie EF FO52EF1: Dva cyklisté Dva cyklisté se pohybují po uzavřené závodní trase o délce 1 200 m tak, že Lenka ujede jedno kolo za dobu 120 s, Petr za 100 s. Při tréninku mohou vyjet buď stejným směrem, nebo směry

Více

Výstupy Učivo Průřezová témata

Výstupy Učivo Průřezová témata 5.2.8.2 Vzdělávací obsah vyučovacího předmětu VZDĚLÁVACÍ OBLAST: Člověk a příroda PŘEDMĚT: Fyzika ROČNÍK: 6. Výstupy Učivo Průřezová témata -rozlišuje látku a těleso, dovede uvést příklady látek a těles

Více

9 FYZIKA. 9.1 Charakteristika vyučovacího předmětu. 9.2 Vzdělávací obsah

9 FYZIKA. 9.1 Charakteristika vyučovacího předmětu. 9.2 Vzdělávací obsah 9 FYZIKA 9.1 Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělávací obsah vyučovacího předmětu je vytvořen na základě rozpracování oboru Fyzika ze vzdělávací oblasti Člověk a příroda. Vzdělávání

Více

6. Měření veličin v mechanice tuhých a poddajných látek

6. Měření veličin v mechanice tuhých a poddajných látek 6. Měření veličin v mechanice tuhých a poddajných látek Pro účely měření mechanických veličin (síla, tlak, mechanický moment, změna polohy, rychlost změny polohy, amplituda, frekvence a zrychlení mechanických

Více

3.2. Elektrický proud v kovových vodičích

3.2. Elektrický proud v kovových vodičích 3.. Elektrický proud v kovových vodičích Kapitola 3.. byla bez výhrad věnována popisu elektrických nábojů v klidu, nyní se budeme zabývat pohybujícími se nabitými částicemi. 3... Základní pojmy Elektrický

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

OSMILETÉ GYMNÁZIUM BUĎÁNKA, o.p.s. TEMATICKÉ PLÁNY TEMATICKÝ PLÁN (ŠR 2010/11)

OSMILETÉ GYMNÁZIUM BUĎÁNKA, o.p.s. TEMATICKÉ PLÁNY TEMATICKÝ PLÁN (ŠR 2010/11) TEMATICKÝ PLÁN (ŠR 20/11) (UČEBNÍ MATERIÁLY Prima Macháček M., Rojko M. a kol. kolem nás 1, Scientia Motivace ke studiu fyziky Motivace ke studiu fyziky 4 Vlastnosti látek Rozlišení kapalin a plynů, odlišnosti

Více

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje

Více

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

FYZIKA Charakteristika vyučovacího předmětu 2. stupeň

FYZIKA Charakteristika vyučovacího předmětu 2. stupeň FYZIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Fyzika se vyučuje jako samostatný předmět v 6. ročníku 1 hodinu týdně a v 7. až 9. ročníku 2 hodiny

Více

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ

POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ POHYBY TĚLESA V ODPORUJÍCÍM PROSTŘEDÍ Studijní text pro řešitele FO, kat. B Ivo Volf, Přemysl Šedivý Úvod Základní zákon klasické mechaniky, zákon síly, který obvykle zapisujeme vetvaru F= m a, (1) umožňuje

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

R w I ź G w ==> E. Přij.

R w I ź G w ==> E. Přij. 1. Na baterii se napojily 2 stejné ohřívače s odporem =10 Ω každý. Jaký je vnitřní odpor w baterie, jestliže výkon vznikající na obou ohřívačích nezávisí na způsobu jejich napojení (sériově nebo paralelně)?

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Dynamika I - příklady do cvičení

Dynamika I - příklady do cvičení Dynaika I - příklady do cvičení Poocí jednotek ověřte, zda platí vztah: ( sinβ + tgα cosβ) 2 2 2 v cos α L = L [] v [ s -1 ] g [ s -2 ] 2 g cos β π t = 4k v t [s] v [ s -1 ] [kg] k [kg -1 ] ln 2 L = 2k

Více

FYZIKA DIDAKTICKÝ TEST

FYZIKA DIDAKTICKÝ TEST NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 2008 FY2VCZMZ08DT FYZIKA DIDAKTICKÝ TEST Testový sešit obsahuje 20 úloh. Na řešení úloh máte 90 minut. Odpovědi pište do záznamového archu. Poznámky si můžete dělat

Více

Typové příklady ke zkoušce z Fyziky 1

Typové příklady ke zkoušce z Fyziky 1 Mechanika hmotného bodu Typové příklady ke zkoušce z Fyziky 1 1. Těleso padá volným pádem. V bodě A své trajektorie má rychlost v 4 m s -1, v bodě B má rychlost 16 m s -1. Určete: a) vzdálenost bodů A,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas! MECHANICKÉ VLNĚNÍ I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í uveďte rozdíly mezi mechanickým a elektromagnetickým vlněním zdroj mechanického vlnění musí. a to musí být přenášeno vhodným prostředím,

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Příklady - rovnice kontinuity a Bernouliho rovnice

Příklady - rovnice kontinuity a Bernouliho rovnice DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho

Více

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5 Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

b=1.8m, c=2.1m. rychlostí dopadne?

b=1.8m, c=2.1m. rychlostí dopadne? MECHANIKA - PŘÍKLADY 1 Příklad 1 Vypočítejte síly v prutech prutové soustavy, je-li zatěžující síla F. Rozměry prutů jsou h = 1.2m, b=1.8m, c=2.1m. Příklad 2 Vypočítejte zrychlení tělesa o hmotnosti m

Více

Sada pracovních listů fyzika. Fyzika 7. ročník CZ.1.07/1.1.16/02.0079

Sada pracovních listů fyzika. Fyzika 7. ročník CZ.1.07/1.1.16/02.0079 Sada pracovních listů fyzika Fyzika 7. ročník CZ.1.07/1.1.16/02.0079 Sada pracovních listů je zaměřena na opakování, upevnění a procvičování učiva 7. ročníku. Světelné jevy, mechanické vlastnosti látek.

Více

1. Elektrická práce a výkon. 2. Zdroj a šíření zvuku. 3. Odraz světla

1. Elektrická práce a výkon. 2. Zdroj a šíření zvuku. 3. Odraz světla 1. Elektrická práce a výkon ANOTACE: Materiál slouží k výkladu pojmů elektrická práce a výkon. V prezentaci je jsou vysvětleny oba pojmy a uvedeny vztahy pro výpočet práce i výkonu. Na přehledném schématu

Více

ZÁKLADY ELEKTROTECHNIKY

ZÁKLADY ELEKTROTECHNIKY ZÁKLADY ELEKTROTECHNIKY 1 Název a adresa školy: Střední odborné učiliště stavební Pardubice s. r. o., Černá za Bory 110, 533 01 Pardubice Autoři: Jan Svatoň, Lenka Štěrbová AJ, Jan Bartoš NJ Název projektu:

Více

Použitím elektrické energie pro pohon kol vozidel vzniká druh dopravy nazvaný elektrická vozba.

Použitím elektrické energie pro pohon kol vozidel vzniká druh dopravy nazvaný elektrická vozba. Elektrická trakce Použitím elektrické energie pro pohon kol vozidel vzniká druh dopravy nazvaný elektrická vozba. Způsob pohonu hnacích kol elektromotorem má odborný název elektrická trakce a elektromotor

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

Mechanická práce, výkon a energie pro učební obory

Mechanická práce, výkon a energie pro učební obory Variace 1 Mechanická práce, výkon a energie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1.

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ELEKTRICKÝ NÁBOJ A COULOMBŮV ZÁKON 1) Dvě malé kuličky, z nichž

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 8. ročník M.Macháček : Fyzika pro ZŠ a VG 7/1 (Prometheus), M.Macháček : Fyzika pro ZŠ a VG 7/2 (Prometheus) M.Macháček : Fyzika 8/1

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Teoretické úlohy celostátního kola 53. ročníku FO

Teoretické úlohy celostátního kola 53. ročníku FO rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž

Více

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn!

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn! FYZIKA DIDAKTICKÝ TEST FYM0D11C0T01 Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického

Více

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ ĆLOVĚK A PŘÍRODA FYZIKA Mgr. Zdeněk Kettner

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ ĆLOVĚK A PŘÍRODA FYZIKA Mgr. Zdeněk Kettner CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ ĆLOVĚK A PŘÍRODA FYZIKA Mgr. Zdeněk Kettner Vyučovací předmět fyzika je zařazen samostatně v 6. 9. ročníku v těchto hodinových dotacích: 6.

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin

Více

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník GRAVITAČNÍ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Gravitace Vzájemné silové působení mezi každými dvěma hmotnými body. Liší se od jiných působení. Působí vždy přitažlivě. Působí

Více

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles. 5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami

Více

Úlohy 1. kola 54. ročníku Fyzikální olympiády Databáze pro kategorie E a F

Úlohy 1. kola 54. ročníku Fyzikální olympiády Databáze pro kategorie E a F Úlohy 1. kola 54. ročníku Fyzikální olympiády Databáze pro kategorie E a F 1. Sjezdové lyžování Závodní dráha pro sjezdové lyžování má délku 1 800 m a výškový rozdíl mezi startem a cílem je 600 m. Nahradíme

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-07 Téma: Mechanika a kinematika Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TESTY Testy Část 1 1. Čím se zabývá kinematika? 2. Které těleso

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

Témata semestrálních prací:

Témata semestrálních prací: Témata semestrálních prací: 1. Balistická raketa v gravitačním poli Země zadal Jiří Novák Popište pohyb balistické rakety vystřelené ze zemského povrchu v gravitačním poli Země. Sestavte model této situace

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více