PRVKY BETONOVÝCH KONSTRUKCÍ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "PRVKY BETONOVÝCH KONSTRUKCÍ"

Transkript

1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JOSEF PANÁČEK PRVKY BETONOVÝCH KONSTRUKCÍ MODUL CM2 DIMENZOVÁNÍ BETONOVÝCH PRVKŮ ČÁST 1 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

2 Prvky betonových konstrukcí Modul CM2 Josef Panáček, Brno (70) -

3 Obsah OBSAH 1 Úvod Cíle Požadované znalosti Doba potřebná ke studiu Klíčová slova Ohýbané železobetonové prvky Charakteristika ohýbaných prvků Chování a modelování ohýbaných prvků Autotest Prvky namáhané ohybovým momentem Napjatostní stádia ohýbaného prvku Předpoklady a principy výpočtu mezní únosnosti Základní předpoklady výpočtu mezní únosnosti Obecný postup při stanovování mezní únosnosti Hraniční případy porušení a jejich využití Možnosti zjednodušení výpočtu mezní únosnosti Stanovení mezní únosnosti pro vybrané typy průřezů Obdélníkový průřez Jednostranně vyztužený obdélníkový průřez Oboustranně vyztužený obdélníkový průřez Průřezy se spolupůsobící deskou Obecnější souměrné a nesouměrné průřezy Souměrné průřezy Nesouměrné průřezy Průřezy namáhané šikmým ohybem Autotest Prvky namáhané posouvající silou Chování prvků namáhaných posouvající silou Základní principy působení Rozbor rozhodujících stádií Výpočet mezní smykové únosnosti Základní principy a předpoklady výpočtu Prvky bez smykové výztuže Způsob porušení prvků bez smykové výztuže Smyková únosnost prvků bez smykové výztuže Prvky se smykovou výztuží Způsob porušení prvků se smykovou výztuží Smyková únosnost prvků se smykovou výztuží Návrh a posouzení prvků namáhaných na smyk Zásady návrhu a posouzení Rozhodující a další průřezy pro návrh a posouzení (70) -

4 Prvky betonových konstrukcí Modul CM Podrobnosti výpočtu únosnosti v některých oblastech Podélný smyk Autotest Prvky namáhané kroucením Chování a porušení kroucených prvků Stanovení únosnosti kroucených prvků Únosnost kroucených prvků bez trhlin Únosnost kroucených prvků s trhlinami Autotest Závěr Shrnutí Studijní prameny Seznam použité literatury Seznam doplňkové studijní literatury Odkazy na další studijní zdroje a prameny Klíč (70) -

5 Úvod 1 Úvod 1.1 Cíle V modulu CM 2 se seznámíme se základními principy dimenzování prvků betonových konstrukcí podle mezních stavů únosnosti. Bude se jednat o první část, která zahrnuje ohýbané železobetonové prvky a zabývá se dimenzováním železobetonových prvků namáhaných ohybovým momentem, posouvající silou a kroutícím momentem. Naučíme se jednak obecné principy pro jednotlivé případy namáhání a jednak aplikace pro běžné i speciální typy průřezů a pro jednoduché typy prvků. Naznačíme si také možná řešení pro vzájemnou interakci výše uvedených statických veličin. Součástí budou i konstrukční zásady pro vyztužování těchto prvků. Pro naplnění cílů tohoto modulu bylo potřeba jej nejen napsat, ale také jej vybavit obrázky. Proto na tomto místě je potřeba poděkovat za jejich pečlivé nakreslení Ing. Patriku Panáčkovi, Ing. Karlu Tesařovi, Ing. Jiřímu Strnadovi a především Ing. Radimu Nečasovi, který se na nich podílel nejvíce včetně jejich celkové koordinace a vložení do textu. 1.2 Požadované znalosti Látka probíraná v tomto modulu předpokládá znalosti z oblasti zatížení stavebních konstrukcí, mechanicko-fyzikálních vlastností materiálů, vytváření statických modelů jednoduchých prvků a konstrukcí a základních principů navrhování podle mezních stavů získaných studiem předcházejícího modulu CM 1. Dále je potřeba znát základní způsoby výpočtu statických veličin ze stavební mechaniky pro různé typy zatížení a stanovení napjatosti prvků při různých způsobech namáhání z pružnosti a plasticity. Z technické matematiky a fyziky (zde především z mechaniky) jsou zapotřebí běžné znalosti získané již na střední škole nebo v předcházejícím studiu na fakultě stavební. 1.3 Doba potřebná ke studiu Modul zahrnuje z celé problematiky navrhování betonových prvků přibližně 30 procent, což odpovídá čtyřem týdnům z celého semestru. Doba potřebná k nastudování jednotlivých kapitol a celého textu je především závislá na obtížnosti tématu, předchozích znalostech a schopnostech studenta. Z těchto důvodů se dá pouze odhadnout a může činit 15 až 20 hodin. 1.4 Klíčová slova Prvek, deska, nosník, trám, příruba, stojina, uložení, zatížení, břemeno, účinek zatížení, řez, průřez, síla, ohybový moment, posouvající síla, kroutící moment, ohyb, smyk, kroucení, beton, výztuž, železobeton, podélná výztuž, prut s ohybem, třmínek, spona, stupeň vyztužení, podmínka rovnováhy, napětí, poměrné přetvoření, únosnost, odolnost, neutrální osa, pevnost, porušení, trhlina, - 5 (70) -

6 Prvky betonových konstrukcí Modul CM2 ohyb, smyk, kroucení, tah, tlak, příhradovina, segment, diagonála, pás, pole, posun. - 6 (70) -

7 Ohýbané železobetonové prvky 2 Ohýbané železobetonové prvky Z mezních stavů únosnosti se budeme postupně zabývat analýzou jednotlivých způsobů porušení železobetonových prvků při různých druzích namáhání. V tomto modulu to budou prvky namáhané ohybem, tzn. prvky namáhané ohybovým momentem a posouvající silou a prvky namáhané kroutícím momentem. 2.1 Charakteristika ohýbaných prvků Mezi ohýbané prvky můžeme zařadit především vodorovné nebo šikmé nosné prvky jako jsou např. desky, trámy, překlady, průvlaky a příčle. Jedná se většinou o samostatné prvky nebo části stropních nebo vyložených konstrukcí, schodišť nebo podpěrných konstrukcí apod. Ohýbané prvky jsou od zatížení většinou namáhány kombinací ohybového momentu M a posouvající síly V. F 1 2 A F F 3 f A a) zatížení nosníku, vyšetřovaný řez F 1 M A F 2 F 3 f V V A b) působící síly - moment M a posouvající síla V z F 1 2 C A V T V A F F 3 f c) vzdorující síly Obr. 2.1 Působící a vzdorující síly u ohýbaného prvku - 7 (70) -

8 Prvky betonových konstrukcí Modul CM2 Na obr. 2.1a je vykreslen příklad prostého nosníku zatíženého soustavou břemen o velikosti F i a rovnoměrným zatížením o intenzitě f. Od tohoto zatížení vznikají v řezu A-A vnitřní síly - ohybový moment M a posouvající síla V (viz obr. 2.1b). Stejnými hodnotami ve sledovaném řezu vzdoruje nosník s tím, že vzdorující ohybový moment můžeme nahradit dvojicí sil, v tlačené oblasti C a v tažené oblasti T, působících od sebe ve vzdálenosti z (rameno vnitřních sil) viz obr. 2.1c. Pak platí M = C.z = T.z. Pokud v daném místě bude současně působit ohybový moment M a posouvající síla V, bude se jednat o tzv. prostý ohyb. Čistý ohyb může nastat pouze tehdy, pokud prvek bude celý nebo v jeho některé části namáhán pouze ohybovým momentem (V = 0). Obecně v závislosti na zatížení a na statickém schématu mohou z hlediska velikosti M a V nastat různé případy jejich kombinací. Běžně ale při navrhování ohýbaných prvků postupujeme tak, že je dimenzujeme zvlášť pro jednotlivé možné způsoby porušení a rozhodující statické veličiny. V dalším textu budeme označovat účinky vnějšího zatížení M E a V E a odolnost prvku v daném průřezu M R a V R. Kontrolní otázky Vyjmenujte jednotlivé typy ohýbaných prvků. Působící a vzdorující statické veličiny u ohýbaných prvků. Charakterizujte rozdíl mezi prostým a čistým ohybem. 2.2 Chování a modelování ohýbaných prvků Při rozboru chování železobetonového prvku se většinou vychází jednak z rozboru chování běžného prutového prvku v jednotlivých průřezech a jednak z náhrady prvku pomocí tzv. náhradní příhradové soustavy. Železobetonový prvek se přitom srovnává s homogenním prvkem, tj. prvkem, u něhož lze uplatnit základní principy pružného chování. U homogenního prvku v důsledku působení ohybového momentu a posouvající síly vznikají normálová a smyková napětí (σ x a τ) a v kombinaci hlavní napětí v tahu σ 1 a v tlaku σ 2. Možný průběh trajektorií těchto napětí na prostém nosníku je zřejmý z obr. 2.2a v levé části. U železobetonového prvku v důsledku významně menší pevnosti betonu v tahu dochází v tažené oblasti nejdříve ke vzniku ohybových a později i smykových (šikmých) trhlin obecně přibližně kolmo na směr trajektorií hlavního napětí v tahu (viz obr. 2.2a pravá část). V tlačené oblasti mohou v důsledku namáhání hlavním napětím v tlaku vzniknout mikrotrhliny. Oba případy mohou rozhodnout o únosnosti. Vzhledem k tomu, že beton má výrazně menší schopnost přenášet tahová namáhání, je nutno vkládat ohybovou a smykovou výztuž do těch míst, kde by došlo k porušení betonu z hlediska jeho nedostatečné únosnosti v tahu. Používání výztuže v tlačené oblasti u ohýbaných prvků je méně časté. Dimenzováním u železobetonových prvků tedy rozumíme takový návrh výztuže, která spolu s tlačeným betonem zajistí jeho dostatečnou únosnost v obr. 2.2b je staticky nutná výztuž vykreslena plně a konstruktivní čárkovaně. - 8 (70) -

9 Ohýbané železobetonové prvky a) trajektorie hlavních napetí σ 2 σ 2 σ 1 σ 1 homogenní prvek b) vyztužení, místa porušení 1b železobetonový prvek a Obr. 2.2 Napjatost, vyztužení a místa porušení ohýbaného prvku V obr. 2.2b jsou také zobrazeny možné způsoby porušení: 1 porušení ohybem (1a porušení podélné výztuže v tažené oblasti, 1b porušení betonu v tlačené oblasti drcení betonu), 2 porušení smykem za ohybu, 3 porušení v oblasti kotvení výztuže. Na základě těchto způsobů porušení lze pak prokazovat únosnost v jednotlivých rozhodujících řezech. f d α R R c2 θ c1 V c F c F t Obr. 2.3 Působení železobetonového prvku jako příhradová soustava S ohledem na charakter porušení obýbaného železobetonového prvku (tvar a směr trhlin, síly v tlačené oblasti a ve výztuži) lze jej modelovat jako násobnou staticky neurčitou příhradovou soustavu se zakřiveným tlačeným betonovým horním pásem, šikmými tlačenými betonovými diagonálami mezi jednotlivými trhlinami a soustavou tažených prutů vytvářejících tažený pás příhradové - 9 (70) -

10 Prvky betonových konstrukcí Modul CM2 soustavy (podélná výztuž) a jednotlivými taženými svislicemi nebo šikmými diagonálami (svislé či šikmé třmínky, šikmé ohyby) viz obr Z tohoto obrázku je také zřejmé, že oba pásy se budou převážně podílet na přenosu ohybového momentu (vzniknou v nich síly F t a F c ) a tlačené či tažené diagonály a tažené svislice budou přenášek účinky od posouvající síly (v kapitole 4 bude odvozeno, že i posouvající síly ovlivňují síly v obou pásech). Kontrolní otázky Trajektorie hlavních napětí u prvku z homogenního materiálu a ze železobetonu. Zdůvodněte umístění výztuže do betonu. Možné způsoby porušení ohýbaného prvku. Modelování železobetonového prvku jako násobné příhradové soustavy. 2.3 Autotest viz kontrolní otázky - 10 (70) -

11 Prvky namáhané ohybovým momentem 3 Prvky namáhané ohybovým momentem Namáhání ohýbaných prvků ohybovým momentem patří mezi nejčastější způsoby namáhání. V této kapitole se postupně seznámíme s jejich napjatostí, s obecnými principy stanovování jejich únosnosti a s konkrétními postupy pro různé typy průřezů. 3.1 Napjatostní stádia ohýbaného prvku V místech, kde převládá namáhání ohybovým momentem, vznikají většinou normálová napětí. Jejich rozdělení po průřezu odpovídá velikosti namáhání a stupni porušení. Zkoušky železobetonových prvků prokázaly, že původně svislé průřezy zůstávají téměř rovinné (kolmé ke zdeformované střednici) až do okamžiku porušení a že se jen pootočí. Normálová napětí však nerostou úměrně, ale podle příslušných pracovních diagramů betonu a výztuže (viz modul CM1). Změny napjatosti v průřezu při postupném nárůstu intenzity zatížení lze v podstatě charakterizovat třemi stádii. Stádium I působí celý betonový průřez V tomto stádiu působí celý betonový průřez jak v tlačené tak i v tažené oblasti. Výztuž plně spolupůsobí s betonem, její poměrné přetvoření ε s je rovno poměrnému přetvoření betonu ve stejné úrovni ε cs. Mohou v podstatě nastat dvě situace. Při menších intenzitách zatížení je napětí jak v betonu tak i ve výztuži přímo úměrné poměrnému přetvoření (viz obr. 3.1a) a lze jej stanovit podle teorie pružnosti σ = E.ε. Výpočet napětí v tomto stádiu (i ve stádiu II) lze provádět na tzv. ideálním průřezu (parametry průřezu plocha, moment setrvačnosti atd. se pro výztuž uvažují α e násobně). Napětí ve výztuži je tedy α e násobně větší než napětí v přilehlém vlákně betonu, kde α e = E s /E c (poměr modulu pružnosti výztuže a betonu), nebo se dá určit z pracovního diagramu pro příslušné poměrné přetvoření ε s. Při větších intenzitách zatížení však dochází k nelineárnímu rozdělení napětí v betonu v tažené zóně a k posunu nulové osy poměrných přetvoření k tlačenému okraji. Při mezním poměrném přetvoření v krajních tažených vláknech betonu ε ctu a při napětí σ ct = f ct, kde f ct je pevnost betonu v tahu, se prvek dostane do stavu, který je označován jako mez vzniku trhlin (viz obr. 3.1b). I tento případ, v němž by se mělo přihlížet k pružně-plastickému chování taženého betonu, lze v praktických řešeních vystihnout za předpokladu pružného chování při uvážení fiktivní pevnosti betonu v tahu za ohybu γ.f ct, kde γ = 1,6- h[mm]/1000 1,0. Napětí ve výztuži se nadále určí podle zásad pružného chování. Tento stav se používá nejen u mezních stavů použitelnosti, ale i ke stanovení minimálního vyztužení průřezu, které by mělo zabezpečit, že nedojde k náhlému (křehkému) porušení po překročení této meze. Stádium II vyloučený beton v tažené oblasti bez využití plasticity betonu v tlačené oblasti - 11 (70) -

12 Prvky betonových konstrukcí Modul CM2 Při dalším navýšení intenzity zatížení se beton v tažené oblasti postupně začíná porušovat trhlinami. V místě každé trhliny je beton téměř vyloučen ze spolupůsobení, rozhodující část tahové síly přenáší výztuž a nulová osa poměrných přetvoření se opět mírně posouvá k tlačenému okraji (viz obr. 3.1c). Spolupůsobení betonu a tažené výztuže je zajištěno neporušeným betonem mezi trhlinami (odpovídá stádiu I). Napětí betonu v tlačené oblasti lze přibližně považovat za lineární (platí přibližně do σ c = 0,4.f c, kde f c je pevnost betonu v tlaku). Výpočet napětí lze provádět podobně jako ve stádiu I, jen průřezové charakteristiky je nutno uvažovat bez tažené oblasti betonu a napětí v taženém betonu lze považovat za fiktivní. Napětí ve výztuži lze i v tomto stavu stanovit podle zásad pružnosti. Tento stav se využívá u tzv. klasické teorie železobetonu a v teorii mezních stavů u mezního stavu použitelnosti a při výpočtech na únavu. Ι ΙΙ A s1 tlak a tah ε cu c ε c b ε c ε c f c σ c σ c σ c ε ctu γ. f ct f ct ε s < ε y ΙΙΙ ε c < ε cu σ c < f c ε cu < ε c < ε cu σ c f c σ s =. σ c s α e < fc f y ε ε c ε c c σ σ c σ c c d e f ε s > σ s = ε s = ε u σ s = f y ε s < σ s < f ε y f y ε y y Obr. 3.1 Napjatostní stádia železobetonového prvku Stádium III - vyloučený beton v tažené oblasti s využitím plasticity betonu v tlačené oblasti Při dalším navýšení intenzity zatížení napětí v tlačeném betonu již nebude lineární. Výztuž podle míry vyztužení může být v pružném nebo v plastickém stavu. K porušení průřezu dojde buď z důvodů nedostatečné únosnosti tažené výztuže nebo tlačeného betonu. U běžně vyztuženého prvku bude dosaženo poměrného přetvoření ve výztuži odpovídající mezi kluzu (ε s ε y ) dříve než v krajních tlačených vláknech betonu mezní hodnoty ε cu. Nulová osa poměrných přetvoření se opět posune směrem k tlačenému okraji. K porušení v průřezu dojde v důsledku postupného - 12 (70) -

13 Prvky namáhané ohybovým momentem plastického protahování výztuže dosažením mezního poměrného přetvoření ε cu v tlačeném betonu a jeho porušením (viz obr. 3.1d). Vzhledem k tomu, že prvotní příčinou porušení je plastické protažení výztuže, mluvíme o tzv. tahovém porušení. Tento způsob porušení zaručuje svými příznaky (růst šířky trhlin a zřejmá deformace prvku) varování, že prvek se dostává do mezního stavu únosnosti. V některých případech (např. při slabším vyztužení) může dojít k situaci, kdy poměrné přetvoření ve výztuži dosáhne mezní hodnoty ε u dříve než v tlačeném betonu bude dosaženo ε cu (viz obr. 3.1e). Příčinou porušení v tomto případě nebude beton, ale tažená výztuž. Zohlednění tohoto případu při praktickém dimenzování nemá téměř žádný význam, proto lze využívat pracovního digramu výztuže bez omezení velikosti poměrného přetvoření. U silně vyztuženého prvku je dosaženo mezního stlačení v krajních vláknech betonu ε cu dříve než v tažené výztuži je napětí odpovídající mezi kluzu (platí ε s <ε y ) viz obr. 3.1f. V tomto případě mluvíme o tzv. tlakovém porušení, protože prvotní příčinou mezního stavu je drcení tlačeného betonu. Vzhledem k tomu, že zde nedochází k určitému varování výraznějšími trhlinami či průhybem, je tento způsob porušení prvku z hlediska možných opatření nevýhodný. Jeho menší výhodnost je dána i nevyužitím tažené výztuže. Kontrolní otázky Charakterizujte předpoklady pro pružné chování železobetonových prvků. Charakterizujte situaci na mezi vzniku trhlin. Popište situaci při vyloučeném betonu v tažené oblasti bez využití jeho plastického chování v tlaku. Definujte a zhodnoťte mezní stav únosnosti prvku při tzv. tahovém porušení. Jaký je vliv a význam uvažování existence mezního poměrného protažení u výztuže. Definujte a zhodnoťte mezní stav únosnosti prvku při tzv. tlakovém porušení. 3.2 Předpoklady a principy výpočtu mezní únosnosti Při výpočtu mezního stavu únosnosti se obvykle vychází z napjatostního stádia III, kde místo skutečných hodnot sil, pevností a poměrných přetvoření se pracuje s hodnotami návrhovými. Jejich označení je v indexu doplněno písmenem d, např. M Ed, M Rd, f cd, ε yd atd. V dalším textu pro zjednodušení není toto označení, pokud to není nezbytně nutné, používáno Základní předpoklady výpočtu mezní únosnosti Při stanovení mezní únosnosti železobetonového průřezu při namáhání ohybovým momentem (platí i pro kombinaci s normálovou silou) se podle [3] vychází z těchto předpokladů: zachovává se rovinnost průřezu před a po přetvoření (velikost poměrného přetvoření ε je přímo úměrná vzdálenosti od nulové nebo-li neutrální osy), - 13 (70) -

14 Prvky betonových konstrukcí Modul CM2 spolupůsobení výztuže a betonu je zajištěno dokonalou soudržností (poměrná přetvoření výztuže ε s v tahu i tlaku a poměrná přetvoření v přilehlých vláknech betonu ε cs jsou stejná => ε s = ε cs ), beton v tažené oblasti průřezu v důsledku trhlin nepůsobí (veškerá tahová napětí přenáší výztuž), tlaková napětí betonu v tlačené oblasti průřezu se určují podle pracovních digramů pro stanovení meze únosnosti (parabolicko-rektangulárního, bilineárního) nebo lze uvažovat rovnoměrné rozdělením tohoto napětí viz dále, napětí ve výztuži se stanovují podle pracovních diagramů pro stanovení meze únosnosti (s vodorovnou nebo se stoupající plastickou větví), poměrná přetvoření jsou omezena pro tlačený beton hodnotou ε cu a pokud je to vhodné i pro výztuž hodnotou ε u => za mezní stav je považována situace, když alespoň v jednom z materiálů je dosaženo mezního poměrného přetvoření (pokud ε u není omezeno, rozhoduje vždy tlačený beton). V praktických řešeních se většinou uplatňuje pro tlačený beton rovnoměrné rozdělení napětí o hodnotě η.f c v oblasti o výšce x c = λ.x, kde η je součinitel účinné pevnosti betonu a λ součinitel účinné výšky tlačené oblasti. Podle [3] η=1,0 a λ=0,8 pro betony s charakteristickou pevností maximálně 50 MPa a η=1,0-(f ck -50)/200 a λ=0,8-(f ck -50)/400 pro betony s vyšší charakteristickou pevností; pokud se šířka tlačené oblasti zmenšuje směrem k nejvíce tlačeným vláknům, má se hodnota pevnosti η.f c snížit o 10 %. U výztuže se většinou uvažuje pracovní diagram s vodorovnou plastickou větví bez omezení poměrného přetvoření. Kontrolní otázky Vyjmenujte základní předpoklady pro stanovení mezní únosnosti. Jaké průběhy napětí se uvažují v praktických řešeních? Obecný postup při stanovování mezní únosnosti Obecný postup při určování mezní únosnosti prvku namáhaného ohybem si ukážeme pro jednoose symetrický průřez různého tvaru s rovinou ohybového momentu totožnou s rovinou procházející osou symetrie viz obr Nechť je tento průřez vyztužen po své celé výšce n-vrstvami výztuže o ploše jednotlivých vrstev A s (i), vzdálenosti h(i) od tlačeného okraje resp. z s (i) od těžiště celého betonového průřezu C g, kde i = 1, 2, 3,.i,..n. Dále předpokládejme, že v každé i-té vrstvě výztuže bude pro každé poměrné přetvoření ε s (i) známo napětí σ s (i). Nechť je známo pro tlačenou oblast funkční vyjádření jejího tvaru v závislosti na vzdálenosti neutrální osy x od tlačeného okraje a je definován průběh napětí σ c (z) po výšce této oblasti v závislosti na ε c (z). Potom můžeme pro prvek určit dva základní vztahy pro stanovení meze porušení N R = b( z). σ c( z). dz + A s( i). σ s( i), (3.1) x i M R = b( z ). σ c( z ). z. dz + A s( i). σ s( i). z s( i) (3.2) x a tím i podmínky rovnováhy (silovou a momentovou) i - 14 (70) -

15 Prvky namáhané ohybovým momentem N R = N E = 0, (3.3) M R M E. (3.4) Ze silové podmínky vyplývá, že u prvku namáhaného pouze ohybem je normálová síla od zatížení nutně nulová, a že vlastní rovnováha musí být zajištěna podmínkou rovnosti všech vnitřních sil, tj. sil v tlačeném betonu a ve výztuži. Momentová podmínka rovnováhy v návaznosti na splnění silové podmínky v napsaném spolehlivostním tvaru zaručuje, že prvek má dostatečnou únosnost. Po zavedení výsledné síly v tlačeném betonu F cc, vzdálenosti z cc jejího působiště C cc od těžiště průřezu C g a sil v jednotlivých vrstvách výztuže F s (i), platí h = i F cc Fs i) M h(i) R (, (3.5) = F ) cc. zcc + Fs( i). zs( i ME. (3.6) y 2 i b (z) C g A cc x(c) A s(i) x ε cu ε c(z) ε s(i) C cc C g σ c(z) F z s(n) F cc zcc F s(i) s(i) 1 z ε c1 + σ s F s(1) σs(i) +ε s ε y ε ε u ε y s(i) f y ε u ε s f y σ Obr. 3.2 Předpoklady výpočtu mezní únosnosti Z průběhu poměrných přetvoření vyplývá, že při stanovování mezní únosnosti bude nutné uplatnit i jejich vazbu na geometrii průřezu. Proto zavádíme do řešení další tzv. geometricko-přetvárnou podmínku (všechny veličiny jsou v prosté hodnotě) ve tvaru ( i) = h( i) x εs εc. (3.7) x V této podmínce jsou obecně všechny veličiny mimo h(i) neznámé, proto pro stanovení meze únosnosti bude nutno některé z nich zvolit (70) -

16 Prvky betonových konstrukcí Modul CM2 Ve vlastním výpočtu meze porušení je dobré postupovat tak, že postupně budeme volit polohu neutrální osy hodnotou x tak dlouho až bude splněna silová podmínka rovnováhy a následně prokážeme dostatečnou míru spolehlivosti z momentové podmínky rovnováhy. Současně s volbou x musíme zvolit i předpoklad o způsobu porušení. Většinou se u běžného vyztužení bude jednat o dosažení mezního stlačení v krajních tlačených vláknech betonu ε cu. Na základě zvoleného průběhu přetvoření můžeme v úrovni jednotlivých vrstev výztuže stanovit jejich poměrné přetvoření úpravou rovnice (3.7) na h( i) x ε s( i) = εcu. (3.8) x a následně pomocí pracovního digramu výztuže stanovit napětí σ s (i) viz obr. 3.2 a např. vztah (3.10) a síly F s (i) = A s (i).σ s (i). (3.9) Pro výpočet napětí ve výztuži je nutno vědět, v které jeho větvi se nacházíme hraničním případem je hodnota ε y. Pokud bude používán pracovní diagram výztuže s vodorovnou plastickou větví stačí použít vztah σ s (i) = ε s (i).e s, (3.10) s omezením σ s (i) f y. Na základě funkčního vyjádření tvaru tlačené oblasti betonu a použitého pracovního diagramu je možné stanovit výslednou sílu v tlačeném betonu F cc. Je zřejmé, že v praktických řešeních bude možné tuto sílu určit jednoduše nebo využít rozdělení tlačené oblasti na vhodné díly se stanovením dílčích sil F ci =>F cc = F ci. Po stanovení všech sil v betonu a výztuži můžeme provést ověření, zda je splněna silová podmínka (3.5). Pokud není, volí se nová poloha neutrální osy pomocí hodnoty x tak dlouho, až je silová podmínka rovnováhy splněna s vyhovující přesností. Následně je nutno stanovit polohu působiště C cc síly v tlačeném betonu, její vzdálenost (rameno) např. k těžišti celého průřezu z cc a s použitím ramen jednotlivých sil ve výztuži z s (i) určit výsledný moment na mezi únosnosti a ověřit spolehlivost podle vztahu (3.6). Opět je možné využít rozdělení tlačené oblasti a s pomocí dílčích sil F ci, jejich působišť C ci a ramen z ci získat i jejich příspěvek k velikosti M R nahrazením F cc.z cc v (3.6) (F ci.z ci ). Poznámka Součástí výpočtu by měla být i kontrola předpokládaného způsobu porušení. To bude aktuální pouze v případech, kdy omezení poměrného přetvoření ve výztuži je žádoucí a při slabším vyztužení viz kap. 3.1, stádium III. Při zjištění, že ε s (1)>ε u je nutno změnit předpoklad rozhodujícího porušení na porušení v důsledku dosažení mezního poměrného protažení v krajní vrstvě tažené výztuže => ε s (1)=ε u. S pomocí této hodnoty lze opět stanovit ostatní poměrná přetvoření (při ε c ε cu ) a výše uvedeným postupem prokázat spolehlivostní podmínku (3.6). Kontrolní otázky Charakterizujte základní podmínky rovnováhy. Charakterizujte geometricko-přetvárnou podmínku (70) -

17 Prvky namáhané ohybovým momentem Popište obecný postup při stanovování mezní únosnosti Hraniční případy porušení a jejich využití Z předcházejících kapitol je zřejmé, že při namáhaní ohýbaného železobetonového prvku mohou teoreticky vzniknout hraniční situace vyplývající především z hraničních přetvoření pro výztuž danými jejími pracovními diagramy. Bude se jednat o dosažení hodnot ε y a pokud to bude vhodné i ε u. Tyto hranice budou rozhodovat o způsobu porušení tlakové nebo tahové, který materiál o něm rozhodne a o velikosti napětí ve výztuži a tím i o možnostech zjednodušení výpočtu meze únosnosti. Je možné je vyjadřovat nejen pomocí hodnot poměrných přetvoření, ale i pomocí polohy neutrální osy od tlačeného okraje popř. i jinak. Pro vyjádření těchto hranic použijeme průřez obdélníkového tvaru vyztužený dvěma vrstvami výztuže v jeho tažené a dvěma vrstvami výztuže v jeho tlačené oblasti viz obr h h(1) h(u) h(d) b lim x porušení výztuže A tahové porušení porušení ε betonu y ε u ε cu ε y B xbal,2 xbal,1 tlakové porušení Obr. 3.3 Hraniční případy průběhu poměrných přetvoření Pokud bude současně dosaženo v krajních tlačených vláknech betonu mezního stlačení ε cu a v libovolné vrstvě tažené výztuže ve vzdálenosti h(i) od tlačeného okraje (platí h(i)>x) protažení ε y, lze z geometricko-přetvárné podmínky (3.7) po zavedení ε cu a ε y vyjádřit hraniční vzdálenost neutrální osy od tlačeného okraje betonu ve tvaru x εcu = ξbal,1. h( i) =. h( ). (3.11) εcu + εy bal, 1 i Pokud bude platit, že x x bal,1, bude napětí v dané vrstvě a všech bližších k taženému okraji mít velikost odpovídající plastické větvi pracovního diagramu (při vodorovné větvi dosáhne vždy meze kluzu f y ). Pro ostatní taženou výztuž bude pro stanovení napětí určující pružná větev viz vztah (3.10). Hodnota x bal,1 stanovená pro nejbližší výztuž k neutrální ose (h(i)=h(u)) tedy zaručí, že ve veškeré tažené výztuži bude při vodorovné plastické větvi napětí σ s =f y. Při soustředěné výztuži u taženého okraje je možno již předem u běžného vyztužení předpokládat tuto podmínku za splněnou, což značně zjednoduší výpočet, protože ze silové podmínky rovnováhy (3.5) lze přímo určit sílu v tlačeném betonu. V tomto případě lze také jednoznačně rozhodnout o způsobu porušení: tahové (x x bal,1 ) nebo tlakové (x>x bal,1 ). Z obr. 3.3 je zřejmé, že konkrétní prů (70) -

18 Prvky betonových konstrukcí Modul CM2 běh poměrných přetvoření odpovídající po výšce průřezu se dá získat otáčením přímky (roviny) přetvoření kolen bodu (osy) B. Podobným způsobem můžeme postupovat i pro tlačenou výztuž. Opět, ale pro h(i)<x, lze z geometricko-přetvárné podmínky (3.7) po zavedení ε cu a ε y vyjádřit hraniční polohu neutrální osy vztahem x εcu = ξbal,2. h( i) =. h( ). (3.12) εcu εy bal, 2 i Pokud bude platit, že x x bal,2, bude napětí v dané vrstvě a všech bližších k tlačenému okraji mít velikost odpovídající plastické větvi pracovního diagramu (při vodorovné větvi dosáhne vždy meze kluzu f y ). Pro ostatní tlačenou výztuž bude pro stanovení napětí určující pružná větev viz vztah (3.10). Hodnota x bal,2 stanovená pro nejbližší výztuž k neutrální ose (h(i)=h(d)) tedy zaručí, že ve veškeré tlačené výztuži bude při vodorovné plastické větvi napětí σ s =f y. U tlačené výztuže může dojít i k nevyužití výztuže nejbližší k tlačenému okraji. V tomto případě je nutno stanovit napětí pomocí vztahů (3.10) a (3.8) pro i=n: h( n) x σ s( n) = εcu. Es.. (3.13) x Méně typickým případem bude situace, kdy přetvoření tažené výztuže bude omezeno hodnotou ε u. Vzhledem k tomu, že prakticky bude rozhodovat vrstva výztuže nejbližší k taženému okraji, lze po dosazení do rovnice (3.7) získat další vymezující polohu neutrální osy ve tvaru x lim εcu = ξ lim. h(1) =. h(1). (3.14) εcu + εu Pokud bude platit, že x x lim, bude se jednat o případ tahového porušení při běžném vyztužení. V opačném případě, tj. když x<x lim, bude o porušení rozhodovat tažená výztuž (v krajních tlačených vláknech nebude dosaženo mezního stlačení ε cu ). Z obr. 3.3 je zřejmé, že tento případ získáme otáčením průběhu poměrných přetvoření kolem bodu A od výchozího stavu daného spojnicí bodů A a B. Kontrolní otázky Vyjmenujte hraniční polohy neutrální osy a charakterizujte jejich význam. Která hraniční poloha rozhoduje o tahovém či tlakovém porušení? Která hraniční poloha rozhoduje o velikosti napětí v tlačené výztuži? Která hraniční poloha může rozhodnout zda o porušení průřezu rozhodne tlačený beton nebo tažená výztuž? Možnosti zjednodušení výpočtu mezní únosnosti U většiny praktických řešeních můžeme vystačit s různými předpoklady, které vyplývají z umístění výztuže. Jedná se o (viz obr. 3.4): výztuž je soustředěna v blízkosti taženého a tlačeného okraje průřezu, - 18 (70) -

19 Prvky namáhané ohybovým momentem případné zanedbání méně využité výztuže v blízkosti neutrální osy příliš neovlivní výsledek (je na straně bezpečné), u vícevrstvé výztuže lze případně uvažovat její soustředění do jejího těžiště, návrh výztuže většinou odpovídá tzv. běžnému vyztužení, u výztuže se uvažuje pracovní diagram s vodorovnou plastickou větví bez omezení poměrného přetvoření => σ s f y, v tažené výztuži je téměř vždy napětí rovnající se mezi kluzu => F s1 =A s1.σ s1 = A s1.f y, v tlačené výztuži (pokud je navržena) může být napětí menší než mez kluzu jeho hodnotu lze stanovit např. pomocí vztahů (3.7) a (3.10) => F s2 = A s2.σ s2, kde σ s2 f y, v tlačené oblasti betonu se uvažuje rovnoměrné rozdělení napětí o velikosti η.f c s výškou tlačeného betonu x c =λ.x viz kap => F cc = A cc.η.f c. h d 1 d d 2 C g A cc A s2 A s1 x x c C s2 C cc C g C s1 η. f c zcc zs1 zs2 F s2 F cc F s1 zc zs Obr. 3.4 K předpokladům zjednodušené metody Obě základní podmínky rovnováhy lze z rovnic (3.5) a (3.6) upravit na F cc + F s2 = F s1 (3.15) M R = F cc.z cc + F s1.z s1 + F s2.z s2 = F cc.z c + F s2.z s M E. (3.16) S ohledem na skutečnost, že h(i)=d pro taženou výztuž a h(i)=d 2 pro tlačenou výztuž, je možné z geometricko-přetvárné podmínky po dosazení do vztahu (3.8) určit odpovídající poměrná přetvoření ve výztuži d x d 2 x ε s1 = εcu., ε s2 = εcu. (3.17) x x a pomocí vztahu (3.10) určit napětí ve výztuži σ s1 nebo σ s2 omezené hodnotou f y. Vztahy (3.17) lze také použít při porovnání s poměrným přetvořením ε y pro rozhodnutí o započitatelnosti příslušné výztuže a o rozhodnutí o jaké porušení se jedná. Toto lze provést i pomocí hodnoty vzdálenosti neutrální osy x od tlačeného okraje porovnáním s x bal,1 a x bal,2. Pro tyto hraniční hodnoty lze úpravou z (3.11) a (3.12) získat tyto vztahy x εcu εcu = ξbal,1. d = d, xbal, 2 = ξbal,2. d 2 =. d 2 ; (3.18) εcu + εy εcu εy bal,1. pro hodnoty ε cu = - 0,0035 a E s = MPa (pro běžné betony) je - 19 (70) -

20 Prvky betonových konstrukcí Modul CM2 x = ξ bal,1. d = d, xbal, 2 = ξ bal,2. d 2 =. d 2. (3.19) fy 700 fy bal,1. Opět, pokud platí x x bal,1, je možné uvažovat napětí v tažené výztuži hodnotou f y - jedná se o tahové porušení. V opačném případě výztuž není využita - jedná se o tlakové porušení. U tlačené výztuže nemusí být relativně často podmínka x x bal,2 splněna. Proto je nutno stanovit napětí podle vztahu (3.13), z něhož po dosazení za h(n)=d 2 dostaneme d 2 x σ s2 = εcu. Es.. (3.20) x Neznámou polohu neutrální osy můžeme získat iteračním postupem a nebo přímo, pokud vztah (3.20) dosadíme přímo do silové podmínky rovnováhy (3.15), v němž vyjádříme plochu tlačeného betonu A cc pomocí x. Také v případě slabého vyztužení a při omezení poměrného přetvoření v tažené výztuži hodnotou ε u, lze vyjádřit hraniční případ, který rozhodne mezi porušením tažené výztuže a tlačeného betonu, ze vztahu (3.14) dosazením za h(1)=d takto x lim εcu = ξ lim. d =. d. (3.21) εcu + εu Opět bude platit, že při x x lim bude rozhodovat o porušení beton a naopak. Poznámka Hraničním případem může být také omezení výšky tlačené oblasti betonu v průřezech v místech plastických kloubů z důvodů provedení redistribuce vnějších sil v důsledku využívání plastického chování výztuže po dosažení meze kluzu. V ověření je však nutno uvažovat výšku tlačené oblasti při působení redistribuovaného momentu (označí se x u ). Podmínkou využití alespoň omezené redistribuce ohybových momentů při lineárně pružné analýze prvku je, že x u x max, kde x max je 0,45.d pro betony s pevností fck 50 MPa, resp. 0,35.d pro fck>50 MPa (při plastické analýze 0,25.d, resp. 0,15.d pro stejná vymezení pevností betonu). Podrobnosti a další podmínky pro použití redistribuce jsou uvedeny v modulu CM5. Kontrolní otázky Charakterizujte možná zjednodušení pro stanovení mezní únosnosti. Jak se projeví zjednodušující předpoklady v podmínkách rovnováhy a v geometricko-přetvárné podmínce? Jak se projeví zjednodušující předpoklady v hraničních podmínkách polohy neutrální osy? Jak lze stanovit napětí ve výztuži v tlačené oblasti? Jak se může projevit vliv redistribuce ohybových momentů na poloze neutrální osy? - 20 (70) -

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků

Více

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

NEXIS 32 rel. 3.70 Betonové konstrukce referenční příručka

NEXIS 32 rel. 3.70 Betonové konstrukce referenční příručka SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

A. 1 Skladba a použití nosníků

A. 1 Skladba a použití nosníků GESTO Products s.r.o. Navrhování nosníků I Stabil na účinky zatížení výchozí normy ČSN EN 1990 Zásady navrhování konstrukcí ČSN EN 1995-1-1 ČSN 731702 modifikace DIN 1052:2004 navrhování dřevěných stavebních

Více

GlobalFloor. Cofraplus 60 Statické tabulky

GlobalFloor. Cofraplus 60 Statické tabulky GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu

Více

Schöck Isokorb typ W. Schöck Isokorb typ W. Schöck Isokorb typ W

Schöck Isokorb typ W. Schöck Isokorb typ W. Schöck Isokorb typ W Schöck Isokorb typ Schöck Isokorb typ Používá se u volně vyložených stěn. Přenáší záporné ohybové momenty a kladné posouvající síly. Navíc přenáší i vodorovné síly působící střídavě opačnými směry. 115

Více

GlobalFloor. Cofrastra 40 Statické tabulky

GlobalFloor. Cofrastra 40 Statické tabulky GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Statický výpočet střešního nosníku (oprava špatného návrhu)

Statický výpočet střešního nosníku (oprava špatného návrhu) Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku

Více

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Lukáš Vráblík, Vladimír Křístek 1. Úvod Jedním z nejzávažnějších faktorů ovlivňujících hlediska udržitelné výstavby mostů

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Schöck Isokorb typ D. Schöck Isokorb typ D. Schöck Isokorb typ D

Schöck Isokorb typ D. Schöck Isokorb typ D. Schöck Isokorb typ D Schöck Isokorb typ Schöck Isokorb typ Schöck Isokorb typ Používá se u ových desek pronikajících do stropních polí. Prvek přenáší kladné i záporné ohybové momenty a posouvající síly. 105 Schöck Isokorb

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

Platnost zásad normy:

Platnost zásad normy: musí zajistit Kotvení výztuže -spolehlivé přenesení sil mezi výztuží a betonem musí zabránit -odštěpování betonu -vzniku podélných trhlin Platnost zásad normy: betonářská prutová výztuž výztužné sítě předpínací

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling Objednavatel: M.T.A., spol. s r.o., Pod Pekárnami 7, 190 00 Praha 9 Zpracoval: Ing. Bohumil Koželouh, CSc. znalec v oboru

Více

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving. ČSN EN ISO 9001 NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.cz PROLAMOVANÉ NOSNÍKY SMĚRNICE 11 č. S

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING.

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING. 2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ SŠS Jihlava ING. SVOBODOVÁ JANA OBSAH 1. ZATÍŽENÍ 3 ŽELEZOBETON PRŮHYBEM / OHYBEM / NAMÁHANÉ PRVKY

Více

Metodika návrhu dle EC 2 - termicky

Metodika návrhu dle EC 2 - termicky Metodika návrhu dle EC 2 - termicky termická analýza - teplotní účinky - teploty žhavých plynů - normový požár přirozený požár (PP) NTK teplota [ C] T teplota výztuže (NTK) teplota výztuže (PP) doba trvání

Více

IDEA StatiCa novinky

IDEA StatiCa novinky strana 1/22 IDEA StatiCa novinky IDEA StatiCa novinky verze 5 strana 2/22 IDEA StatiCa novinky IDEA StatiCa... 3 Natočení podpor... 3 Pružné podpory... 3 Únava a mimořádné návrhové situace... 4 Změny a

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady:

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady: Předložený statický výpočet řeší založení objektu SO 206 most na přeložce silnice I/57 v km 13,806 přes trať ČD v km 236,880. Obsahem tohoto výpočtu jsou pilotové základy krajních opěr O1 a O6 a středních

Více

Příklady pro uspořádání prvků a řezy 34. Půdorysy 35. Popis výrobků 36. Typové varianty/zvláštní konstrukční detaily 37. Dimenzační tabulky 38-41

Příklady pro uspořádání prvků a řezy 34. Půdorysy 35. Popis výrobků 36. Typové varianty/zvláštní konstrukční detaily 37. Dimenzační tabulky 38-41 Schöck Isokorb typ Obsah Strana Příklady pro uspořádání prvků a řezy 34 Půdorysy 35 Popis výrobků 36 Typové varianty/zvláštní konstrukční detaily 37 Dimenzační tabulky 38-41 Příklad dimenzování/upozornění

Více

Projekt 3. Zastřešení sportovní haly založené na konceptu Leonardova mostu: statická analýza

Projekt 3. Zastřešení sportovní haly založené na konceptu Leonardova mostu: statická analýza Projekt 3 Zastřešení sportovní haly založené na konceptu Leonardova mostu: statická analýza Vypracovala: Bc. Karolína Mašková Vedoucí projektu: Doc. Ing. Jan Zeman, Ph.D. Konzultace: Ing. Ladislav Svoboda,

Více

NEXIS 32 rel. 3.60 Samostatný betonový průřez

NEXIS 32 rel. 3.60 Samostatný betonový průřez SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

KONSTRUKCE STROPŮ A STŘECH SYSTÉMU YTONG

KONSTRUKCE STROPŮ A STŘECH SYSTÉMU YTONG KONSTRUKCE STROPŮ A STŘECH SYSTÉMU YTONG Ytong Ekonom Ytong Komfort Ytong Klasik Ytong Komfort Ytong Ekonom Ytong Klasik Doporučená použití stropních a střešních konstrukcí Ytong ve stavbách typ konstrukce

Více

Výstavba nového objektu ZPS na LKKV. Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS)

Výstavba nového objektu ZPS na LKKV. Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS) Výstavba nového objektu ZPS na LKKV Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS) D.1.2 - STAVEBNĚ KONSTRUČKNÍ ŘEŠENÍ Statický posudek a technická zpráva

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M04 SPŘAŽENÉ OCELOBETONOVÉ MOSTY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M04 SPŘAŽENÉ OCELOBETONOVÉ MOSTY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M04 SPŘAŽENÉ OCELOBETONOVÉ MOSTY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

Stropní nosníky základní technické údaje PNG 72 3762-4. část

Stropní nosníky základní technické údaje PNG 72 3762-4. část KERAMICKÉ STROPY HELUZ MIAKO Stropní nosníky základní technické údaje PNG 72 3762-4. část základní technické údaje a použití Keramické stropy HELUZ MIAKO jsou tvořené cihelnými vložkami HELUZ MIAKO a keramobetonovými

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pohybové šrouby Ing. Magdalena

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

http://www.tobrys.cz STATICKÝ VÝPOČET

http://www.tobrys.cz STATICKÝ VÝPOČET http://www.tobrys.cz STATICKÝ VÝPOČET REVITALIZACE CENTRA MČ PRAHA - SLIVENEC DA 2.2. PŘÍSTŘEŠEK MHD 08/2009 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY:

Více

PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení

PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení PREFABRIKOVANÉ STROPNÍ A STŘEŠNÍ SYSTÉMY Inteligentní řešení STROPNÍ KERAMICKÉ PANELY POD - Stropní panely určené pro stropní a střešní ploché konstrukce, uložené na zdivo, průvlaky nebo do přírub ocelových

Více

14. JEŘÁBY 14. CRANES

14. JEŘÁBY 14. CRANES 14. JEŘÁBY 14. CRANES slouží k svislé a vodorovné přepravě břemen a jejich držení v požadované výšce Hlavní parametry jeřábů: 1. jmenovitá nosnost největší hmotnost dovoleného břemene (zkušební břemeno

Více

Dřevěné a kovové konstrukce

Dřevěné a kovové konstrukce Učební osnova předmětu Dřevěné a kovové konstrukce Studijní obor: Stavebnictví Zaměření: Pozemní stavitelství Forma vzdělávání: denní Celkový počet vyučovacích hodin za studium: 64 4. ročník: 32 týdnů

Více

RIBTEC zadání průběhů vnitřních sil z globálního modelu do výpočtu BEST Newsletter

RIBTEC zadání průběhů vnitřních sil z globálního modelu do výpočtu BEST Newsletter RIBtec BEST výpočet a zadání zatížení sloupu korespondující s průběhem jeho vnitřních sil v globálním výpočetním modelu (FEM) nosné konstrukce Běžným pracovním postupem, zejména u prefabrikovaných betonových

Více

I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod

I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod Úvod I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod Zatímco stavební praxe vystačí pro betonové, dřevěné a ocelobetonové konstrukce se třemi evropskými normami, pro ocelové konstrukce je k

Více

Pristavba hasicske zbrojnice Dobruska PP.doc SEZNAM PŘÍLOH: STANICE DOBRUŠKA - PŘÍSTAVBA GARÁŽE

Pristavba hasicske zbrojnice Dobruska PP.doc SEZNAM PŘÍLOH: STANICE DOBRUŠKA - PŘÍSTAVBA GARÁŽE Pristavba hasicske zbrojnice Dobruska PP.doc SEZNAM PŘÍLOH: ST.1 - SEZNAM PŘÍLOH, TECHNICKÁ ZPRÁVA STATIKY ST.2 - STATICKÝ VÝPOČET ST.3 - VÝKRES TVARU A SKLADBY STROPNÍCH DÍLCŮ ST.4 - PRŮVLAK P1 VÝZTUŽ

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

VY_32_INOVACE_C 07 03

VY_32_INOVACE_C 07 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

YTONG STROPNÍ KONSTRUKCE

YTONG STROPNÍ KONSTRUKCE YTONG STROPNÍ KONSTRUKCE OBSAH 1. Navrhování vložkové stropní konstrukce YTONG 3 1.1 Všeobecné podmínky a předpoklady výpočtu 3 1.2 Uvažované charakteristiky materiálů 4 1.3 Mezní stav únosnosti prostý

Více

http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka

http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY: 3 2.2.1. Použité

Více

NEXIS 32 rel. 3.50. Železobetonový nosník

NEXIS 32 rel. 3.50. Železobetonový nosník SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

Advance Design 2014 / SP1

Advance Design 2014 / SP1 Advance Design 2014 / SP1 První Service Pack pro ADVANCE Design 2014 přináší několik zásadních funkcí a více než 240 oprav a vylepšení. OBECNÉ [Réf.15251] Nová funkce: Možnost zahrnout zatížení do generování

Více

Novinky ve Scia Engineer 15

Novinky ve Scia Engineer 15 Betonové nosníky a sloupy Otevřená platforma Engineering Report Různá vylepšení Alberti Ingenieurs SA - Rosey Concert Hall (CH) Rychlý a přehledný návrh betonových prvků Revoluční řešení pro návrh a posudky

Více

3 Plošné základy. 3.1 Druhy plošných základů. Plošné základy

3 Plošné základy. 3.1 Druhy plošných základů. Plošné základy Plošné základy 3 Plošné základy Plošné základy, jež jsou nejspodnější částí konstrukce stavby, přenášejí veškeré zatížení ze stavby do základové půdy pomocí plochy základové spáry. Ta se volí obvykle vodorovná

Více

Tabulka 3 Nosníky R 80 R 80 10 1) R 120 220 70 1) 30 1) 55 1) 15 1) 40 1) R 120 260 65 1) 35 1) 20 1) 50 1) 410 60 1) 25 1) R 120 R 100 R 120

Tabulka 3 Nosníky R 80 R 80 10 1) R 120 220 70 1) 30 1) 55 1) 15 1) 40 1) R 120 260 65 1) 35 1) 20 1) 50 1) 410 60 1) 25 1) R 120 R 100 R 120 Tabulka 3 Nosníky Požární odolnost v minutách 15 30 45 60 90 1 1 Nosníky železobetonové,,3) (s ustálenou vlhkostí), bez omítky, druh DP1 1.1 1.2 1.3 1.4 1.5 Nosníky monoliticky spojené se stropní deskou,

Více

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet Stupeň dokumentace: DPS S-KON s.r.o. statika stavebních konstrukcí Ing.Vladimír ČERNOHORSKÝ Podnádražní 12/910 190 00 Praha 9 - Vysočany tel. 236 160 959 akázkové číslo: 12084-01 Datum revize: prosinec

Více

STANOVENÍ ZATÍŽITELNOSTI MOSTŮ PK navržených podle norem a předpisů platných před účinností EN

STANOVENÍ ZATÍŽITELNOSTI MOSTŮ PK navržených podle norem a předpisů platných před účinností EN Ministerstvo dopravy TP 200 ODBOR INFRASTRUKTURY STANOVENÍ ZATÍŽITELNOSTI MOSTŮ PK navržených podle norem a předpisů platných před účinností EN Technické podmínky Schváleno MD-OI čj. 1075/08-910-IPK/1

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA

NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA BAKALÁŘSKÝ PROJEKT Ubytovací zařízení u jezera v Mostě Vypracoval: Ateliér: Konzultace: Paralelka: Vedoucí cvičení: Jan Harciník Bočan, Herman, Janota, Mackovič,

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

NOVÉ MOŽNOSTI V NAVRHOVÁNÍ VELKOROZPONOVÝCH DŘEVĚNÝCH KONSTRUKCÍ PODLE PLATNÝCH EVROPSKÝCH NOREM

NOVÉ MOŽNOSTI V NAVRHOVÁNÍ VELKOROZPONOVÝCH DŘEVĚNÝCH KONSTRUKCÍ PODLE PLATNÝCH EVROPSKÝCH NOREM ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ NOVÉ MOŽNOSTI V NAVRHOVÁNÍ VELKOROZPONOVÝCH DŘEVĚNÝCH KONSTRUKCÍ PODLE PLATNÝCH EVROPSKÝCH NOREM PETR KUKLÍK VELKOROZPONOVÉ DŘEVĚNÉ stropy 12 m KONSTRUKCE!!!

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Nosníky

Více

IDEA Corbel 5. Uživatelská příručka

IDEA Corbel 5. Uživatelská příručka Uživatelská příručka IDEA Corbel IDEA Corbel 5 Uživatelská příručka Uživatelská příručka IDEA Corbel Obsah 1.1 Požadavky programu... 3 1.2 Pokyny k instalaci programu... 3 2 Základní pojmy... 4 3 Ovládání...

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ KOVOVÉ KONSTRUKCE I MODUL BO04-M01 USPOŘÁDÁNÍ A KONSTRUKČNÍ ŘEŠENÍ PRŮMYSLOVÝCH BUDOV

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ KOVOVÉ KONSTRUKCE I MODUL BO04-M01 USPOŘÁDÁNÍ A KONSTRUKČNÍ ŘEŠENÍ PRŮMYSLOVÝCH BUDOV VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ KOVOVÉ KONSTRUKCE I MODUL BO04-M01 USPOŘÁDÁNÍ A KONSTRUKČNÍ ŘEŠENÍ PRŮMYSLOVÝCH BUDOV STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Kovové

Více

FERT a.s. PROSTOROVÁ PŘÍHRADOVÁ VÝZTUŽ DO BETONU TYPU E Označení: FK 005

FERT a.s. PROSTOROVÁ PŘÍHRADOVÁ VÝZTUŽ DO BETONU TYPU E Označení: FK 005 Strana: 1/8 1. VŠEOBECNĚ 1.1 Rozsah platnosti (1) Tato podniková norma platí pro výrobu, kontrolu, dopravu, skladování a objednávání svařované prostorové příhradové výztuže výrobce FERT a.s. Soběslav.

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU OBSAH 1. ÚVOD... 3 1.1. Předmět a účel... 3 1.2. Platnost a závaznost použití... 3 2. SOUVISEJÍCÍ NORMY A PŘEDPISY... 3 3. ZÁKLADNÍ

Více

Tepelně izolační styčník s čelní deskou. Zdeněk Sokol České vysoké učení technické v Praze

Tepelně izolační styčník s čelní deskou. Zdeněk Sokol České vysoké učení technické v Praze Tepelně styčník s čelní deskou Zdeněk Sokol České vysoké učení technické v Praze Praktické využití tepelně ho spoje Vnější části objektu (přístřešky, nevytápěné části objektu) Střešní nástavby Balkony,

Více

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02)

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) Požadavky pro písemné vypracování domácích cvičení cvičící: Vladimír Šána, B380 semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) 1 Docházka na cvičení Docházka na cvičení je dobrovolná a nebude

Více

Fyzikálně a geometricky nelineární výpočty rámových konstrukcí

Fyzikálně a geometricky nelineární výpočty rámových konstrukcí Fyzikálně a geometricky nelineární výpočty rámových konstrukcí Fyzikálně a geometricky Nelineární výpočty rámových konstrukcí Doc. Ing. Jaroslav Navrátil, CSc. Ing. Petr Foltyn 2006 FYZIKÁLNĚ A GEOMETRICKY

Více

KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU

KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU Modelování součástí z plechu Autodesk Inventor poskytuje uživatelům vedle obecných nástrojů pro parametrické a adaptivní

Více

7. Haly. Dispozice, střešní konstrukce.

7. Haly. Dispozice, střešní konstrukce. 7. Haly. Dispozice, střešní konstrukce. Halové stavby: terminologie, dispoziční řešení (příčný a podélný směr, střešní rovina). Střešní konstrukce: střešní plášť, vaznice (prosté, spojité, kloubové, příhradové,

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Tvorba technická dokumentace

Tvorba technická dokumentace Tvorba technická dokumentace Základy zobrazování na technických výkresech Zobrazování na technických výkresech se provádí dle normy ČSN 01 3121. Promítací metoda - je soubor pravidel, pro dvourozměrné

Více

Tvorba technické dokumentace

Tvorba technické dokumentace Tvorba technické dokumentace Požadavky na ozubená kola Rovnoměrný přenos otáček, požadavek stálosti převodového poměru. Minimalizace ztrát. Volba profilu boku zubu. Materiály ozubených kol Šedá a tvárná

Více

Zakládání ve Scia Engineer

Zakládání ve Scia Engineer Apollo Bridge Apollo Bridge Architect: Ing. Architect: Miroslav Ing. Maťaščík Miroslav Maťaščík - Alfa 04 a.s., - Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

36-47-M/01-2013/2014 STAVEBNÍ KONSTRUKCE

36-47-M/01-2013/2014 STAVEBNÍ KONSTRUKCE Maturitní témata - obor 36-47-M/01 Stavebnictví Zaměření: Pozemní stavitelství 2013/2014 STAVEBNÍ KONSTRUKCE profilová část maturitní zkoušky ústní zkouška před zkušební komisí 1. Staticky určité konstrukce

Více

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa Strojírenské výpočty http://michal.kolesa.zde.cz michal.kolesa@seznam.cz Předmluva Publikace je určena jako pomocná kniha při konstrukčních cvičeních, ale v žádném případě nemá nahrazovat publikace typu

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

POŠKOZENÍ DLAŽBY VÍCEÚČELOVÉHO KULTURNÍHO ZAŘÍZENÍ

POŠKOZENÍ DLAŽBY VÍCEÚČELOVÉHO KULTURNÍHO ZAŘÍZENÍ POŠKOZENÍ DLAŽBY VÍCEÚČELOVÉHO KULTURNÍHO ZAŘÍZENÍ Jan Pěnčík 1, Miloš Lavický 2 Abstrakt Z četných případů poruch betonových podlah vyplývá, že se podceňuje správný návrh a provedení betonové vrstvy plovoucí

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU

PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU : Ing.Bohuslav Tikal CSc, ZČU v Plzni, tikal@civ.zcu.cz Ing.František Valeš CSc, ÚT AVČR, v.v.i., vales@cdm.cas.cz Anotace Výpočtová simulace slouží k

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

ÚNOSNOST VOZOVEK. Ilja Březina. 26. Listopadu 2012; RHK Brno, Výstaviště 1

ÚNOSNOST VOZOVEK. Ilja Březina. 26. Listopadu 2012; RHK Brno, Výstaviště 1 ÚNOSNOST VOZOVEK Ilja Březina 26. Listopadu 2012; RHK Brno, Výstaviště 1 1 ÚNOSNOST VOZOVEK Únosnost vozovky je schopnost konstrukce vozovky a podloží přenášet dopravní zatížení, které se vyjadřuje zatížením

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Ocelové konstrukce požární návrh

Ocelové konstrukce požární návrh Ocelové konstrukce požární návrh Zdeněk Sokol František Wald, 17.2.2005 1 2 Obsah prezentace Úvod Přestup tepla do konstrukce Požárně nechráněné prvky Požárně chráněné prvky Mechanické vlastnosti oceli

Více

Transformátor trojfázový

Transformátor trojfázový Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Montované technologie. Technologie staveb Jan Kotšmíd,3.S

Montované technologie. Technologie staveb Jan Kotšmíd,3.S Montované technologie Technologie staveb Jan Kotšmíd,3.S Montované železobetonové stavby U montovaného skeletu je rozdělena nosná část sloupy, průvlaky a stropní panely) a výplňová část (stěny): Podle

Více