Kapitola 1. Teorie užitku. 1.1 Vyjádření preferencí

Rozměr: px
Začít zobrazení ze stránky:

Download "Kapitola 1. Teorie užitku. 1.1 Vyjádření preferencí"

Transkript

1 Kapitola 1 Teorie užitku V této kapitole se budeme věnovat problémům rozhodování v situacích, kdy se rozhodujeme jen na základě jednoho kritéria. Obecně můžeme tyto problémy popsat následovně: rozhodovatel (jednotlivec, instituce) vybírá z určité množiny variant (to mohou být výrobní či investiční plány, projekty, strategie rozvoje, nákupu,... ), které se od sebe liší v jednom kritériu. Jednotlivé varianty musí rozhodovatel ohodnotit, označit, jakým jsou pro něho přínosem (zadá preference) a úkolem analytika je rozhodnout, jaká varianta je pro něho nejlepší. Nejprve se zamysleme nad následujícími otázkami: 1. Jaké vlastnosti musí mít zadávané preference, aby úloha měla smysl? 2. Jak reprezentovat preference číselně? (Jinak problém nedokážeme sepsat.) 1.1 Vyjádření preferencí Předpokládejme množinu objektů, mezi nimiž se rozhodujeme. Tuto množinu označme A. Jednotlivé prvky této množiny značme malými písmeny, tj. a, b, c A. A zaveďme následující vztah mezi objekty a, b A: a b, který bude vyjadřovat (ostře) preferuji variantu a před variantou b. Poněvadž se může stát, že rozhodovatel se nedokáže mezi dvěma objekty rozhodnout, který preferuje, jsou pro něho tyto objekty tzv. indiferentní. Musíme zavést značení i pro takovouto situaci. Jsou-li tedy dvě varianty pro rozhodovatele indiferentní, značíme: a b, tj. rozhodovatel nedává žádné z těchto variant přednost. Matematici takováto uspořádání (ostré preference, indiference) nazývají obecně relace. Relací na množině A rozumí každou množinu uspořádaných dvojic prvků této množiny. Uveďme si příklad, jak lze pomocí relace zapsat preference příloh k obědu slečny Hladové. Řešený příklad 1. Slečna Hladová mívá k obědu nejčastěji následující přílohy: rýži, brambory, těstoviny a knedlíky. Byla požádána, aby uvedla svou preferenční relaci k těmto přílohám. Slečna tedy uvedla následující relaci jako svou relaci preferuji. R P = {[rýže, brambory], [těstoviny, brambory], [brambory, knedlíky], [těstoviny, knedlíky], [rýže, knedlíky]}. Řešení. Nejprve poznamenejme, že množina A, množina objektů mezi nimiž se rozhoduje, je v našem případě následující A = {rýže, brambory, těstoviny, knedlíky}. Dále se vraťme k uvedené relaci. Z této relace lze vyčíst, že slečna preferuje rýži před brambory, těstoviny před brambory a brambory před knedlíky. Na základě takto zadané relace nelze rozhodnout, zda slečna preferuje rýži či těstoviny. 1

2 KAPITOLA 1. TEORIE UŽITKU 2 Řešený příklad 2. Požádali jsme naši slečnu, aby ještě navíc uvažovala přílohy čočka a fazole a uvedla svou indiferenční relaci. Slečna uvedla následující relaci R I = {[čočka, fazole], [rýže, těstoviny]}. Řešení. A získali jsme dodatečnou informaci, že slečně je jedno, zda bude jako příloha čočka či fazole, a také se neumí rozhodnout, zda má raději těstoviny či rýži. Ovšem nevíme, zda má slečna raději čočku a fazole nebo rýži či brambory. My tedy budeme používat relaci lepší (nebo preferuji), kterou budeme značit a relaci nerozlišuji (jsou mi indiferentní), značíme. Máme-li tedy soubor prvků, můžeme někoho požádat (rozhodovatele), aby nám určil relaci preferuji tím, že nám zadá množinu uspořádaných dvojic, kde první prvek preferuje před druhým. Nebo aby nám zadal svou relaci indiference, to znamená uvedl nám množinu uspořádaných dvojic (ve skutečnosti v tomto případě nezávisí na uspořádání), kde budou ve dvojici prvky, které jsou mu indiferentní (mezi nimiž se nemůže rozhodnout). Vraťme se k otázce, kterou jsme již zmínili výše jaké vlastnosti musí mít zadávané preferenční uspořádání, aby úloha měla smysl? Aby preferenční uspořádání bylo racionální, měla by relace preference splňovat následující dvě vlastnosti. Úplnost relace Tato vlastnost relace požaduje, aby rozhodovatel byl schopen porovnat touto relací každé dva objekty. Budeme-li tedy uvažovat například relaci preferuji ( ), potom tato relace bude úplná, pokud pro libovolné dva objekty z množiny A, a, b A, bude platit buď a b a nebo b a. Tranzitivita relace Vlastnost tranzitivita požaduje, aby pro každé tři prvky množiny A, pro které platí, že a je v relaci s b a zároveň b je v relaci s c také platilo, že a je v relaci s c. Konkrétně pro relaci preferuji tedy požadujeme, aby pokud a b a zároveň b c, také platilo a c. Nebo-li, pokud rozhodovatel preferuje variantu a před variantou b a variantu b preferuje před variantou c, pak má také preferovat variantu a před variantou c. V podstatě to znamená, že rozhodovatel má ve svých preferencích jasno. Ačkoliv tento požadavek vypadá naprosto přirozeně, někdy přece jen bývá porušen, a to například v případě, že mezi porovnáváními je delší časový interval nebo rozhodovatel nemá preference příliš vyhraněné (varianty jsou pro rozhodovatele podobné, zaměnitelné) a nebo preference určuje více jedinců. Příkladem porušení tranzitivity mohou být společenské preference, založené na většinovém principu. Nejprve problém s požadavkem na tranzitivitu relace ukažme pro relaci. Řešený příklad 3. Organizace, která má 600 členů, se rozhoduje, který plán (A, B, C) přijmout. Všichni členové mají hlasovací právo a předběžný průzkum ukazuje následující stav: A B C B C A C A B 220 členů, 200 členů, 180 členů. Řešení. Pokud porovnáváme všechny dvojice, zjistíme následující: A B v poměru 400 : 200, B C v poměru 420 : 180, C A v poměru 380 : 220. Tranzitivita relace není splněna, neboť ať je přijat jakýkoliv plán, vždy se najde zhruba dvojnásobná většina, která bude preferovat jiný plán. Požadavek tranzitivnosti je kladen i na relaci indiference. Problém s tranzitivitou u této relace vyplývá z konečné rozlišovací schopnosti rozhodovatele.

3 KAPITOLA 1. TEORIE UŽITKU 3 Příklad 1. Dostáváte-li k obědu polévku, je vám lhostejné (indiferentní), zda má 50, 000 C nebo 50, 001 C. Budeme-li ovšem takto pokračovat dále, potom dostáváme: 50, 000 C 50, 001 C, 50, 001 C 50, 002 C, C 100, 000 C. A pokud předpokládáme tranzitivitu relace indiference, získáme s čímž už jen tak někdo souhlasit nebude. 50, 000 C 100, 000 C, Proto je mnohdy zapotřebí si upravit zadání, v posledním uvedeném příkladu postačí, budeme-li vědět, že rozhodovatel nejvíce preferuje polévku o 50 C, předpokládat, že má nekonečnou rozlišovací schopnost, a tedy, čím blíže je teplota 50 C, tím větší preference jí přiřadit. Vraťme se zpět k uvažovaným relacím preference a indiference. Poněvadž tyto dvě relace nebývají úplné (často se v množině objektů najdou dva, které jsou rozhodovateli indiferentní, a tedy rozhodovatel nedokáže určit, který z nich preferuje), je vhodné nahradit dvě právě zavedené relace relaci ostré preference a relaci indiference jedinou relací, a to relací tzv. neostré preference. Tuto relaci značíme a b, která vyjadřuje, že buď ostře preferuji objekt a před objektem b nebo jsou mi objekty a a b indiferentní. Pokud byly dvě původní relace tranzitivní, potom také nová relace bude tranzitivní. 1.2 Užitková funkce za jistoty Cílem užitkové funkce je číselně vyjádřit preference. Ty můžeme vyjádřit dvojím způsobem ordinálním nebo kardinálním. Pokud nás zajímá pouze pořadí objektů (z hlediska preferencí), potom sestrojujeme ordinální užitkovou funkci. Druhý typ užitkové funkce kardinální užitková funkce nám dává mnohem více informací, udává nám nejen pořadí objektů vzhledem k preferencím, ale také jak moc preferuji jednu variantu před druhou. Někteří ekonomové zastávají názor, že kardinální užitková funkce neexistuje. Jsou přesvědčeni, že užitek nelze nijak explicitně měřit, že lze pouze rozlišovat, co přináší větší a co menší užitek. Jsou tedy zastánci pouze ordinální užitkové funkce a kardinální užitkovou funkci neuznávají Ordinální užitková funkce Definice 1. Zobrazení u : A R nazveme ordinální užitkovou funkcí, jestliže pro libovolné a, b A platí: u(a) u(b) a b. Máme-li tedy nějakou množinu objektů A, pro kterou chceme sestrojit ordinální užitkovou funkci, potom každému objektu přiřadíme nějaké číslo tak, aby čím bude číslo větší, tím více bude objekt preferován. Nebo-li seřadíme jednotlivé varianty dle preferencí, a poté jim přiřadíme jakákoliv čísla od nejmenšího k největšímu.

4 KAPITOLA 1. TEORIE UŽITKU 4 Řešený příklad 4. Vzpomeňme si na slečnu Hladovou a její relaci preferuji: R P = {[rýže, brambory], [těstoviny, brambory], [brambory, knedlíky], [těstoviny, knedlíky], [rýže, knedlíky]}. A uvažujme následující čtyři funkce. u 1 (rýže) = 12, u 1 (těstoviny) = 80, u 1 (brambory) = 6, u 1 (knedlíky) = 5, u 2 (rýže) = 8, u 2 (těstoviny) = 7, u 2 (brambory) = 6, u 2 (knedlíky) = 5, 9, u 3 (rýže) = 30, u 3 (těstoviny) = 30, u 3 (brambory) = 2, u 3 (knedlíky) = 1, u 4 (rýže) = 4, u 4 (těstoviny) = 3, u 4 (brambory) = 3, 5, u 4 (knedlíky) = 1. Otázkou je, které z těchto čtyř funkcí mohou být a které nemohou být ordinálními užitkovými funkcemi slečny Hladové. Řešení. Jak už jsme zmínili, na základě takto zadané relace nelze rozhodnout, zda slečna preferuje rýži či těstoviny, ale ostatní preference jsou známy, a tedy musí být v ordinální užitkové funkci dodrženy. Z hodnot funkce u 1 můžeme vyčíst, že slečna má nejraději těstoviny, poté následuje rýže, pak brambory a nakonec knedlíky. V tomto případě je dodržena zadaná relace, a tedy tato funkce je ordinální užitkovou funkcí slečny Hladové. Podobné je to u funkce u 2 (s tím rozdílem, že v ní slečna preferuje rýži a až poté těstoviny) a u funkce u 3 (v níž jsou slečně těstoviny a rýže indiferentní). Také obě tyto funkce jsou ordinálními užitkovými funkcemi slečny Hladové. Jinak je tomu u funkce u 4, kde je porušena preference těstovin před brambory, a tedy tato funkce není ordinální užitkovou funkcí slečny Hladové. Přidáme-li ještě k našim znalostem o slečně Hladové také její relaci indiference R I = {[čočka, fazole], [rýže, těstoviny]}, potom jedinou možnou ordinální užitkovou funkcí z předchozích je u 3, v níž jako jediné jsou slečně těstoviny a rýže indiferentní. Všimněte si, že u ordinální užitkové funkce vůbec nezávisí na hodnotách v jednotlivých variantách (jen na pořadí těchto hodnot). Právě proto, že u ordinální užitkové funkce nezávisí na hodnotách funkce, ale pouze na pořadí hodnot, nelze s touto funkcí nikterak dále matematicky počítat. (Tedy nelze počítat nějaké průměry apod.) Na následujícím příkladu budeme ilustrovat, že nelze s ordinální užitkovou funkcí provádět žádné matematické operace. Řešený příklad 5. Škole se podařilo zajistit pro studenty navazujícího magisterského studia týdenní pobyt v zahraničí. Bohužel kapacita této akce je omezená, a tak se musí škola rozhodnout, pro který ze dvou blízkých studijních oborů bude tato akce určena. Vedení se rozhodlo, že vybere obor dle výsledků studentů u bakalářské zkoušky. U bakalářské zkoušky mohli studenti dosáhnout čtyř možných výsledků A výborně, B velmi dobře, C dobře a D nevyhověl. V jednotlivých studijních oborech byly výsledky následující: obor I obor II A 5% 20% B 70% 20% C 20% 50% D 5% 10%. Řešení. O rozhodnutí byly požádány dvě nezávislé osoby. První osoba si položila u(a) = 4, u(b) = 3, u(c) = 2 a u(d) = 1.

5 KAPITOLA 1. TEORIE UŽITKU 5 A spočítala průměrný prospěch studentů jednotlivých oborů následovně u(obori) = 0, , , , 05 1 = 2, 75, u(oborii) = 0, , , , 1 1 = 2, 41. Doporučila tedy určit akci pro první obor. Druhá osoba určila užitky z jednotlivých známek následovně u(a) = 50, u(b) = 30, u(c) = 25 a u(d) = 10. A spočítala průměrný prospěch studentů jednotlivých oborů následovně u(obori) = 0, , , , = 29, u(oborii) = 0, , , , 1 10 = 29, 5. Tentokrát lépe vyšlo hodnocení pro druhý obor. V tomto příkladě jsme tedy demonstrovali, že nelze využívat ordinální užitkovou funkci k výpočtu průměru. Obě osoby použily správné ordinální funkce a přesto dostaly opačné výsledky. Z tohoto zadání nelze určit, které řešení je správné a které nikoliv. K tomu by bylo zapotřebí od zadavatele dostat ještě dodatečné informace, pomocí níž by již bylo možné sestrojit kardinální užitkovou funkci Kardinální užitková funkce Při konstrukci této funkce nás kromě pořadí ještě zajímají rozdíly v užitcích jednotlivých variant. Nebo-li předpokládáme, že dokážeme užitek měřit, že dokážeme určit, zda více preferejume variantu a před variantou b nebo více preferujeme variantu c před variantou d. Definice 2. Zobrazení v : A R nazveme kardinální užitkovou funkcí, jestliže pro libovolné a, b, c, d A platí: v(a) v(b) a b v(a) u(b) v(c) u(d) a preferuji před b více než preferujic před d, tj. rozhodovatel preferuje výměnu b za a, více než výměnu d za c. Příklad 2. Na základě zadaných preferencí slečny Hladové, viz řešené příklady 1 a 2, nedokážeme určit její kardinální užitkovou funkci. Nevíme totiž, zda raději zvolí rýži před brambory, či více ocení volbu brambor před knedlíky. Kdyby nám ale slečna Hladová řekla, že nemá ráda knedlíky, a tedy cokoliv upřednostní před knedlíky velmi ráda. Brambory má celkem ráda, ale něco raději má těstoviny či rýži, potom již můžeme sestrojit její kardinální užitkovou funkci například následovně: v(rýže) = 5, v(těstoviny) = 5, v(brambory) = 4, v(knedlíky) = 1 nebo v(rýže) = 50, v(těstoviny) = 50, v(brambory) = 45, v(knedlíky) = 1. I tentokrát je možné sestrojit více kardinálních užitkových funkcí, ale volnost již není taková jako u ordinálních funkcí. V případě, že máme k dispozici informace, ze kterých lze sestrojit kardinální užitkovou funkci, lze z těchto informací sestrojit i ordinální užitkovou funkci, ne však naopak. Řešený příklad 6. Uvažujme řešený příklad 6. Mějme dodatečnou informaci, že rozdíly mezi jednotlivými známkami jsou stejné.

6 KAPITOLA 1. TEORIE UŽITKU 6 Řešení. V takovém případě je správné řešení první osoby, která uvažovala užitkovou funkci u(a) = 4, u(b) = 3, u(c) = 2 a u(d) = 1. Také by bylo správné napsat si užitkovou funkci například nebo u(a) = 50, u(b) = 40, u(c) = 30 a u(d) = 20, u(a) = 50, u(b) = 48, u(c) = 46 a u(d) = 44. Ve všech těchto případech vyjde, po dopočtení průměrné známky, lépe druhá škola. Ani kardinální funkce není jediná. Každá její lineární funkce s kladným argumentem je také kardinální užitkovou funkcí (pro tytéž preference). Každá kardinální užitková funkce je zároveň ordinální užitkovou funkcí. Opačné tvrzení neplatí Mezní užitek V případě, že je užitek dobře měřitelný, a tedy je možné sestrojit kardinální užitkovou funkci, hovoříme o mezním užitku. Mezním užitkem rozumíme změnu užitku při jednotkové změnně vstupu. Matematicky vyjádřeno je mezní užitek derivací celkového užitku, zapisujeme MU(x) = du(x) dx. Pokud předpokládáme, že funkce celkového užitku (ve výše popsaném kardinální užitková funkce) je konkávní, potom předpokládáme, že mezní užitek je klesající (viz Matematika funkce je konkávní, je-li její 2. derivace záporná (a tedy první derivace klesající)). Ekonomové tento předpoklad označují jako zákon klesajícího mezního užitku. Obrázek 1.1: Graf celkového a mezního užitku Příklad 3. Pepa Kulička dostal na konci roku velké prémie, a tak se rozhodl, že jako dárek k Vánocům pořídí pro sebe a pro ženu zájezd do Hurghády na příští léto. Zvažuje, jak dlouhý zájezd má vybrat. Ví, že první den bude nadšen Rudým mořem, které ještě nikdy neviděl. Druhý den bude stále ještě co obdivovat, a tedy užitek z druhého dne sice bude o trochu menší než z prvního, ale stále velký. Třetí den už budou kemp znát, a tak by se mohli vypravit na šnorchlovací výlet, užitek tedy bude

7 KAPITOLA 1. TEORIE UŽITKU 7 opět o trochu menší než z předchozího dne, ale stále celkem vysoký. Čtvrtý den už budou mít prošlé a probádané všechno v okolí, tak snad si trochu odpočinou. Pátý den bude podobný jako čtvrtý, a tak už ke konci dne to asi nebude příliš bavit. Šestý den už Pepu odpočívání nebude příliš bavit a už asi nebude co nového by poznával, tento den mu asi žádný užitek nepřinese. Sedmý den už se Pepovi začne stýskat po jeho firmě a bude stále přemýšlet, jak mu chybí, také mu začne vadit to věčné vedro. Osmý den, už bude vedro nesnesitelné a pro firmu bude nepostradatelný. Když se pokusíme Pepovy preference vyjádřit číselně, můžeme dostat například následující hodnoty mezní užitek z prvního dne je 10, ze druhého dne 9, z třetího dne 8, ze čtvrtého dne 4, z pátého 2, ze šestého 0. Ze sedmého dne stráveného v Hurghádě by byl jeho mezní užitek 2 a z osmého 5. Pokud tedy Pepovi nezáleží na penězích nebo jsou zájezdy přibližně stejně drahé s různým počtem dnů (což v tomto případě bývá), potom zvolí buď pěti či šesti denní pobyt. Pokud by ceny pobytu byly cenově odstupňovány, musel by svůj mezní užitek z jednotlivých dní vyjádřit peněžně (tedy udat, kolik je ochoten za tento další den zaplatit) a porovnat tento mezní užitek se skutečnými náklady na tento den. 1.3 Užitková funkce za rizika V textu jsme zatím uvažovali užitkovou funkci jen z hlediska kvantity komodity. Někdy ale (např. ve finančnictví) s kvantem komodity roste také riziko s tím spojené. Např. cenné papíry s vyšší střední hodnotou výnosů mají též větší variabilitu výnosu, vklady úročené vyšší úrokovou mírou mají větší riziko nestability (viz kampeličky),.... Chceme-li znázornit užitkovou funkci za rizika, potřebujeme nejprve rozumět pojmu jistotní ekvivalent a pro studium různých typů užitkových funkcí za rizika znát různé postoje rozhodovatele k riziku. Jak již bylo řečeno, v této kapitole se bude pracovat s pojmem rizika. K této práci je zapotřebí znát základní pojmy z teorie pravděpodobnosti. Pro připomenutí viz kapitola??. Jistotní ekvivalent Představme si následující situaci. Vlastníte los, který může vyhrát s pravděpodobností 1 : částku 10 miliónů Kč. Kamarád chce od vás tento los odkoupit, jaká je minimální cena, za jakou jste ochotni mu tento los přenechat? Do jaké částky raději zkusíte štěstí a od jaké částky už budete preferovat přímou výplatu? Právě tato vámi zvolená zlomová částka je vaším jistotním ekvivalentem. Petrohradský paradox: Představme si následující situaci. Někdo vám nabídne následující hru. Bude házet korunou a počítat, kolikrát za sebou padne panna (do prvního orla). Poté vám vyplatí částku, kterou určí dle vzorce 2 p, kde p je počet panen, který napočítal. Jakou částku jste ochotni zaplatit za tuto hru? Na této hře je zajímavé (proto se také nazývá paradoxem), že střední hodnota výhry je neomezená. Spočítejme si střední hodnotu výhry. Označíme-li X hodnotu výhry (náhodná veličina), potom tato veličina může nabývat hodnot x 0, x 1, x 2,..., kde x i = 2 i (x 0 = 2 0 = 1, x 1 = 2 1 = 2,... ). Každé této hodnoty nabyde náhodná veličina X s pravděpodobností p i = 1/2 i+1. (Pravděpodobnost, že nepadne žádná panna (výplata bude x 0 ) je 1/2, pravděpodobnost, že padne právě jedna panna (výplata x 1 ), je 1/2 1/2 = 1/4,....)) A tedy pro střední hodnotu výhry dostáváme E X = + i=0 x i p i = + i=0 2 i 1 2 = + 1 i+1 2 = +. i=0 Z tohoto výpočtu vyplývá, že člověk neutrální k riziku by měl být ochoten za danou hru zaplatit libovolnou částku. Přesto je málokdo ochoten zaplatit více než 50 Kč.

8 KAPITOLA 1. TEORIE UŽITKU 8 Definice 3. Uvažujme situaci (hru), ve které můžeme získat množství x 1,..., x k nějaké komodity a každé toto množství s pravděpodobností postupně p 1,..., p k, potom jistotním ekvivalentem k této hře je takové množství dané komodity ˆx, pro které platí, že užitek z něj je stejný jako střední hodnota užitku při hře, nebo-li k u(ˆx) = p i u(x i ). Nebo-li je to minimální částka, za kterou jste ochotni vyměnit hru. i=1 Příklad 4. Podnikatel má možnost realizovat projekt, který mu může přinést zisk 10 milionů Kč s pravděpodobností 0, 6 a s pravděpodobností 0, 4 může mít ztrátu 1 milion Kč. Střední hodnota zisku je 5,6 milionu Kč. Kdyby měl možnost získat 3 miliony bez realizace projektu, byl by spokojený. Jistotní ekvivalent je v tomto případě 3 miliony (rozhodovatel s averzí k riziku). Někdo jiný by požadoval např. 7 milionů jistých, jinak by raději realizoval projekt. Jistotní ekvivalent u tohoto rozhodovatele je 7 milionů Kč a můžeme říci, že tento rozhodovatel má sklon k riziku. Pokud by jistotní ekvivalent byl shodný se střední hodnotou výnosů projektu, pak by se jednalo o rozhodovatele s neutrálním vztahem k riziku. Riziková prémie V případě, že je jistotní ekvivalent rozhodovatele nižší než střední hodnota výnosu rizikového projektu, pak částka, kterou je rozhodovatel ochoten obětovat za jistotu se vypočte podle vztahu P = E(X) ˆx. Příklad 5. K narozeninám jste dostali los, o kterém víte, že na něj můžete vyhrát s pravděpodobností 1/ miliónů Kč. Kamarád by tento los rád získal a přesvědčuje vás, ať mu ho prodáte, nakonec se dohodnete na ceně 200 Kč. Střední hodnota výnosu losu je 1000 Kč. A tedy riziková prémie je v tomto případě 800 Kč Postoj rozhodovatele k riziku Postoj rozhodovatele k riziku hraje významnou roli při výběru varianty určené k realizaci. Rozhodovatel může mít averzi k riziku, neutrální postoj k riziku, sklon k riziku. Rozhodovatel s averzí k riziku dává přednost méně rizikovým variantám, které mu přináší uspokojivé výsledky s vysokou pravděpodobností. Pro rozhodovatel s neutrálním postojem k riziku jsou stejně přitažlivé varianty s vysokým i nízkým rizikem, mají stejnou střední hodnotu užitku. Rozhodovatel se sklonem k riziku realizuje i varianty s vysokým rizikem, které mohou být hodně výnosné, ale mohou být i hodně prodělečné. Jinými slovy, pokud porovnáváme jistotní ekvivalent se střední hodnotou hry, potom rozlišujeme rozhodovatele s averzí k riziku, neutrálního k riziku a rozhodovatele se sklonem k riziku, a to následovně: ˆx < E(X) averze k riziku (rozhodovatel se spokojí s jistou částkou, která je menší než očekávaná hodnota výhry) ˆx = E(X) neutrální vztah k riziku (rozhodovateli je jedno, zda hraje loterii nebo zda dostane částku rovnající se očekávané hodnotě výhry) ˆx > E(X) sklon k riziku (rozhodovatel dá přednost hraní loterie před výplatou očekávané hodnoty výhry, popřípadě by jistá částka musela být vyšší než očekávaná střední hodnota)

9 KAPITOLA 1. TEORIE UŽITKU 9 Tyto vztahy platí pouze u výnosového typu kritéria, v případě nákladového jsou vztahy opačné. (Jinou možností je uvažovat náklad jako ztrátu, potom nerovnosti zůstanou zachovány.) Tvar užitkové funkce za rizika Otázkou je, jak se změní užitková funkce, pokud budeme uvažovat, že s rostoucím kvantem komodity také roste riziko s tím spojené. Tvar užitkové funkce se liší podle vztahu rozhodovatele k riziku, viz obr.?? užitková funkce výnosového typu. Příklad 6. Rozhodujeme se mezi dvěma investičními záměry (A a B), přičemž úspěšnost varianty A je odhadována na 60% a úspěšnost varianty B na 80%. V případě úspěchu varianta A přinese zisk 10 milionů Kč, varianta B přinese zisk 7,125 milionů. Neúspěch záměru A přinese ztrátu 1 milion Kč, neúspěch záměru B ztrátu 500 tisíc Kč. V obou případech je střední hodnota očekávaného výnosu stejná, 5,6 milionů Kč. Pokud máme averzi k riziku, zřejmě vybereme variantu B, pokud máme sklon k riziku, vybereme variantu A, jsme-li k riziku neutrální, budou nám obě varianty indiferentní.

10 KAPITOLA 1. TEORIE UŽITKU Cvičení Cvičení 1. Sestavte si vlastní relaci ostré preference na množině ovoce (jablka, hrušky, broskve, pomeranče, víno). Pokud s relací ostré preference nevystačíte, zapište i relaci indiference. Cvičení 2. Vyměňte si své relace se spolužákem a napište jeho preferenční uspořádání. Cvičení 3. Určete, zda zapsaná relace je tranzitivní a úplná. Cvičení 4. Je možné na základě zadaných preferencí sestrojit ordinální či kardinální užitkovou funkci? Je-li to možné, udělejte to. Pokud ne, zajistěte si dodatečné informace, a poté funkce sestavte. Cvičení 5. Pro následující výrobky sestavte ordinální i kardinální užitkovou funkci. Výrobky: HIFI věž, CD přehrávač, PC, video, DVD přehrávač, magnetofon, televize. Podívejte se na užitkové funkce spolužáků a porovnejte s kým máte stejné preference. Cvičení 6. Zakreslete funkci vašeho užitku v závislosti na počtu vlastněných svetrů: Prvního svetru si ceníte nejvíce (přináší vám největší užitek). Druhý, třetí a čtvrtý svetr jsou pro vás stejně užitečné (ale méně než první svetr). Pátý svetr je méně užitečný než 2., 3. a 4., šestý méně než 5., sedmý vám nepřinese žádný užitek a osmý svetr nemáte kam dát, překáží vám, jeho užitek je záporný. (Jedná se o mezní užitky). Cvičení 7. Najděte ještě další možné kardinální účelové funkce v řešeném příkladu 6. Cvičení 8. Podnikatel má možnost uložit své peníze v bance a za rok dostat na úrocích 50 tis.kč, nebo investovat do jedné firmy s nadějí, že za rok získá 100 tis.kč, ale s rizikem, že nezíská nic. Jaký má vztah k riziku, jestliže dá přednost investování peněz do uvažované firmy před jejich uložením do banky teprve v případě, že pravděpodobnost úspěchu firmy bude alespoň 0, 8? Cvičení 9. Podnikatel se rozhoduje, zda si má vzít půjčku 100 tis.kč a peníze investovat do nemovitosti, kterou by za rok prodal. S přihlédnutím k nejistému vývoji cen nemovitostí podnikatel odhaduje, že 100 tis.kč investovaných by po odečtení úroku z půjčky mohlo mít na konci roku hodnoty uvedené v tab.9 (v tis.kč). Hodnota na konci roku Pravděpodobnost 0,3 0,4 0,1 0,2 a) Měl by podnikatel investovat, jestliže usiluje o maximální zisk a je neutrální vůči riziku? b) Měl by podnikatel investovat, jestliže usiluje o maximální zisk a má averzi k riziku? c) Měl by podnikatel investovat, jestliže usiluje o maximální zisk a má sklon k riziku? Cvičení 10. Majitel firmy uvažuje o rozšíření svého výrobního programu, a proto si objednal marketingové studie pro zjištění pravděpodobnosti nezměněné, mírně vyšší a značně vyšší poptávky po vyráběných produktech. Současně získal pro uvažované situace na trhu odhady zisku při původním a při rozšířeném rozsahu výroby. Zjištěné údaje jsou uvedeny v tab. 10. Poptávka Zisk (mil.k) Pravděpodobnost Rozšíření výroby Nerozšíření výroby Nezměněná 0,8 1 0,4 Mírně vyšší 1,3 1,4 0,4 Značně vyšší 2,4 1,6 0,2 Ověřte, že rozšíření výroby dává vyšší očekávaný zisk, ale je spojeno s větším rizikem.

11 KAPITOLA 1. TEORIE UŽITKU Otázky Je každá ordinální užitková funkce zároveň kardinální užitkovou funkcí? Je tomu naopak? Může tomu tak být? Je možné, že vaše ordinální užitková funkce je/není ordinální užitkovou funkcí vašeho kolegy? Znáte-li nějakou (ordinální či kardinální) užitkovou funkci dokážete napsat jinou funkci, která je také (ordinální či kardinální) užitkovou funkcí? Proč se požaduje tranzitivita? Proč se požaduje úplnost relace? Uveďte nějaký jiný příklad relace.

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

EKONOMETRIE 4. přednáška Modely chování spotřebitele

EKONOMETRIE 4. přednáška Modely chování spotřebitele EKONOMETRIE 4. řednáška Modely chování sotřebitele Rozočtové omezení Sotřebitel ři svém rozhodování resektuje tzv. rozočtové omezení x + x y, kde x i množství i-té sotřební komodity, i cena i-té sotřební

Více

Preference Jan Čadil FNH VŠE 2014

Preference Jan Čadil FNH VŠE 2014 Preference Jan Čadil FNH VŠE 2014 Footer Text 3/24/2014 1 Racionalita Chování spotřebitele je založeno na předpokladu racionality. Tento předpoklad znamená, že spotřebitel volí neoptimálnější, resp. nejvíce

Více

Časová hodnota peněz (2015-01-18)

Časová hodnota peněz (2015-01-18) Časová hodnota peněz (2015-01-18) Základní pojem moderní teorie financí. Říká nám, že peníze svoji hodnotu v čase mění. Díky časové hodnotě peněz jsme schopni porovnat různé investiční nebo úvěrové nabídky

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

Kapitálový trh (finanční trh)

Kapitálový trh (finanční trh) Mikroekonomie bakalářský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 9 Kapitálový trh (finanční trh) Obsah 1. Podstata kapitálového trhu 2. Volba mezi současnou a budoucí

Více

12 HRY S NEÚPLNOU INFORMACÍ

12 HRY S NEÚPLNOU INFORMACÍ 12 HRY S NEÚPLNOU INFORMACÍ 543 Ne v každé hře mají všichni hráči úplné informace o výplatních funkcích ostatních. Ve skutečnosti je většina situací s informací neúplnou. Například: V aukcích zpravidla

Více

Teorie her a ekonomické rozhodování. 11. Aukce

Teorie her a ekonomické rozhodování. 11. Aukce Teorie her a ekonomické rozhodování 11. Aukce 11. Aukce Příklady tržních mechanismů prodej s pevnou cenou cenové vyjednávání aukce Využití aukcí prodej uměleckých předmětů, nemovitostí, prodej květin,

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

FINANČNÍ ŘEŠENÍ VAŠICH ŽIVOTNÍCH SITUACÍ PŘINÁŠEJÍ PODÍLOVÉ FONDY Z NABÍDKY SPOLEČNOSTI

FINANČNÍ ŘEŠENÍ VAŠICH ŽIVOTNÍCH SITUACÍ PŘINÁŠEJÍ PODÍLOVÉ FONDY Z NABÍDKY SPOLEČNOSTI VAŠICH ŽIVOTNÍCH SITUACÍ PŘINÁŠEJÍ PODÍLOVÉ FONDY Z NABÍDKY SPOLEČNOSTI www.mojeinvestice.cz Pro Váš domov Ať již nemovitost vlastníte, nebo se na to právě chystáte, dříve či později zjistíte, že vlastnictví

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy:

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy: HODNOCENÍ INVESTIC Podstatou hodnocení investic je porovnání vynaloženého kapitálu (nákladů na investici) s výnosy, které investice přinese. Jde o rozpočtování jednorázových (investičních) nákladů a ročních

Více

Test obecné finanční gramotnosti

Test obecné finanční gramotnosti Test obecné finanční gramotnosti Finanční inteligence je něco, co se ve škole nenaučíte. A přitom je to obor stejně důležitý ne-li důležitější než algebra v matematice nebo historie literatury v češtině.

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/2015

Více

PR5 Poptávka na trhu výrobků a služeb

PR5 Poptávka na trhu výrobků a služeb PR5 Poptávka na trhu výrobků a služeb 5.1. Rovnováha spotřebitele 5.2. Indiferenční analýza od kardinalismu k ordinalismu 5.3. Poptávka, poptávané množství a jejich změny 5.4. Pružnost tržní poptávky Poptávka

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

Tab. č. 1 Druhy investic

Tab. č. 1 Druhy investic Investiční činnost Investice představuje vydání peněz dnes s představou, že v budoucnosti získáme z uvedených prostředků vyšší hodnotu. Vzdáváme se jisté spotřeby dnes, ve prospěch nejistých zisků v budoucnosti.

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je:

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je: 9. Soustavy rovnic Správný nadpis této kapitoly by měl znít soustavy lineárních rovnic o dvou neznámých, z důvodu přehlednosti jsem jej zkrátil. Hned v úvodu čtenáře potěším teorie bude tentokrát krátká.

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Náklady obětované příležitosti (opportunity cost) I. Rozhodujeme se vždy mezi alternativami. Pokud se pro

Náklady obětované příležitosti (opportunity cost) I. Rozhodujeme se vždy mezi alternativami. Pokud se pro Náklady obětované příležitosti (opportunity cost) I Rozhodujeme se vždy mezi alternativami. Pokud se pro jednu z nich rozhodneme, ostatní alternativy zpravidla nemůžeme realizovat užitek/výnos/příjem,

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice MIKROEKONOMIE ÚVOD, TRH A TRŽNÍ MECHANISMUS Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu

Více

FAKULTA EKONOMICKÁ ZČU PLZEŇ. Katedra ekonomie a financí. Mikroekonomie cvičení 5

FAKULTA EKONOMICKÁ ZČU PLZEŇ. Katedra ekonomie a financí. Mikroekonomie cvičení 5 FAKULTA EKONOMICKÁ ZČU LZEŇ Katedra ekonomie a financí Mikroekonomie cvičení 5 5. CHOVÁNÍ SOTŘEBITELE A FORMOVÁ- NÍ OTÁVKY ŘÍKLAD Č. 1 V rámci kardinalistické teorie užitku definujte pojmy: užitek, celkový

Více

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně

Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně Střední průmyslová škola strojnická Olomouc tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: VI/2 Sada: 2 Číslo

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Finanční gramotnost pro SŠ -10. modul Investování a pasivní příjem

Finanční gramotnost pro SŠ -10. modul Investování a pasivní příjem Modul č. 10 Ing. Miroslav Škvára O investicích O investování likvidita výnosnost rizikovost Kam mám investovat? Mnoho začínajících investorů se ptá, kam je nejlepší investovat? Všichni investiční poradci

Více

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru

Teorie her a ekonomické rozhodování. 4. Hry v rozvinutém tvaru Teorie her a ekonomické rozhodování 4. Hry v rozvinutém tvaru 4.1 Hry v rozvinutém tvaru Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada po sobě následujících

Více

GRAFY A GRAFOVÉ ALGORITMY

GRAFY A GRAFOVÉ ALGORITMY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

3 Elasticita nabídky. 3.1 Základní pojmy. 3.2 Grafy. 3.3 Příklady

3 Elasticita nabídky. 3.1 Základní pojmy. 3.2 Grafy. 3.3 Příklady 3 Elasticita nabídky 3.1 Základní pojmy Vysvětlete následující pojmy: 1. cenová elasticita nabídky, 2. cenově elastická nabídka, 3. cenově neelastická nabídka, 4. jednotkově elastická nabídka, 5. dokonale

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Téma č. 2: Trh, nabídka, poptávka

Téma č. 2: Trh, nabídka, poptávka Téma č. 2: Trh, nabídka, poptávka Obsah 1. Dělba práce 2. Směna, peníze 3. Trh 4. Cena a směnná hodnota 5. Nabídka 6. Poptávka 7. Tržní rovnováha 8. Konkurence Dělba práce Dělba práce Jednotliví lidé se

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Cíl: seznámení s pojetím peněz v ekonomické teorii a s fungováním trhu peněz. Peníze jako prostředek směny, zúčtovací jednotka a uchovatel hodnoty.

Cíl: seznámení s pojetím peněz v ekonomické teorii a s fungováním trhu peněz. Peníze jako prostředek směny, zúčtovací jednotka a uchovatel hodnoty. Vysoká škola finanční a správní, o. p. s. Akademický rok 2006/07, letní semestr Kombinované studium Předmět: Makroekonomie (Bc.) Metodický list č. 3 7) Peníze a trh peněz. 8) Otevřená ekonomika 7) Peníze

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D.

ČASOVÁ HODNOTA PENĚZ. Manažerská ekonomika obor Marketingová komunikace. 8. přednáška Ing. Jarmila Ircingová, Ph.D. ČASOVÁ HODNOTA PENĚZ Manažerská ekonomika obor Marketingová komunikace 8. přednáška Ing. Jarmila Ircingová, Ph.D. Časová hodnota peněz Každou peněžní operaci prováděnou v současnosti a zaměřenou do budoucnosti

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

INVESTIČNÍ DOTAZNÍK. Zaměstnanec společnosti, který dotazník předkládá zákazníkovi: Datum vyplnění dotazníku: Identifikace zákazníka

INVESTIČNÍ DOTAZNÍK. Zaměstnanec společnosti, který dotazník předkládá zákazníkovi: Datum vyplnění dotazníku: Identifikace zákazníka INVESTIČNÍ DOTAZNÍK se sídlem Pobřežní 97/4, 86, Praha 8 IČ: 4767684 zapsána v obchodním rejstříku vedeném Městským soudem v Praze, oddíl B, vložka 585 (dále také jen Manažer ) Úplné a pravdivé vyplnění

Více

7.1. Jistina, úroková míra, úroková doba, úrok

7.1. Jistina, úroková míra, úroková doba, úrok 7. Finanční matematika 7.. Jistina, úroková míra, úroková doba, úrok Základní pojmy : Dlužník osoba nebo instituce, které si peníze půjčuje. Věřitel osoba nebo instituce, která peníze půjčuje. Jistina

Více

Správné odpovědi. 7, Kdo většinou tvoří peníze: a, centrální banka

Správné odpovědi. 7, Kdo většinou tvoří peníze: a, centrální banka Správné odpovědi 1, Pro dosažení vedoucí a řídící pozice může být největší překážkou: a, nedostatek finanční inteligence b, nedostatek emocionální inteligence je velmi důležitá pro řízení lidí, jejich

Více

2. Chování spotřebitele: užitečnost a poptávka

2. Chování spotřebitele: užitečnost a poptávka 2. Chování spotřebitele: užitečnost a poptávka 2.1 Celkový užitek a mezní užitek Jedním ze základních problémů, které spotřebitel řeší, je, kolik určitého statku má kupovat a jak má svůj důchod mezi různé

Více

CVIČENÍ ZE ZÁKLADŮ FINANCÍ

CVIČENÍ ZE ZÁKLADŮ FINANCÍ CVIČENÍ ZE ZÁKLADŮ FINANCÍ 9.. 0 Veronika Kajurová Katedra financí kancelář č. 0 vkajurova@mail.muni.cz PROGRAM DNEŠNÍHO TUTORIÁLU Část I. - Časová hodnota peněz Příklady - opakování Část II. - Podnikové

Více

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné.

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné. Měření rizika Podnikatelské riziko představuje možnost, že dosažené výsledky podnikání se budou kladně či záporně odchylovat od předpokládaných výsledků. Toto riziko vzniká např. při zavádění nových výrobků

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Antecepční aparát kolektivu konverguje

Antecepční aparát kolektivu konverguje Kapitola Antecepční aparát kolektivu konverguje úsek text datum Shrnutí Ryby v hejnu se drží pohromadě a zahnou jako na povel. Hejno ptáků letí, a jako na povel změní směr. Lidé sympatizují s určitým kandidátem,

Více

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot.

Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Průměr Průměr je ve statistice často používaná hodnota, která se počítá jako aritmetický průměr hodnot. Co je to průměr # Průměrem se rozumí klasický aritmetický průměr sledovaných hodnot. Můžeme si pro

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Že tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad. 1 2 3 4 5 Definiční obor (množina A)

Že tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad. 1 2 3 4 5 Definiční obor (množina A) Funkce úvod Co je funkce Funkce je předpis, který číslu z množiny A přiřazuje právě jedno číslo z množiny B. Množina A je definiční obor funkce a množina B je obor hodnot funkce. Že tuto definici znáte,

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010

FINANČNÍ MATEMATIKA. Ing. Oldřich Šoba, Ph.D. Rozvrh. Soukromá vysoká škola ekonomická Znojmo ZS 2009/2010 Soukromá vysoká škola ekonomická Znojmo FINANČNÍ MATEMATIKA ZS 2009/2010 Ing. Oldřich Šoba, Ph.D. Kontakt: e-mail: oldrich.soba@mendelu.cz ICQ: 293-727-477 GSM: +420 732 286 982 http://svse.sweb.cz web

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Úvod do teorie her ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ

Úvod do teorie her ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ZVYŠOVÁNÍ ODBORNÝCH KOMPETENCÍ AKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉ UNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Úvod do teorie her David Bartl, Lenka Ploháková OSNOVA Úvod (hra n hráčů ve strategickém

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita VI.2 Vytváření podmínek pro rozvoj znalostí, schopností a dovedností v oblasti finanční gramotnosti Výukový materiál pro téma VI.2.1 Řemeslná

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Moderní žena myslí na budoucnost. Jan Diviš Kateřina Dalecká

Moderní žena myslí na budoucnost. Jan Diviš Kateřina Dalecká Moderní žena myslí na budoucnost Jan Diviš Kateřina Dalecká Na úvod pár zajímavých statistik Data z r. 2004 Naděje dožití věk Muži Ženy 30 43,66 49,67 40 34,21 39,92 50 25,32 30,51 60 17,59 21,64 - střední

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

Spořící chování ve vybraných zemích skupiny Erste Bank

Spořící chování ve vybraných zemích skupiny Erste Bank Spořící chování ve vybraných zemích skupiny Erste Bank Průzkum uskutečněný mezi obyvatelstvem (ve věku 15+) v několika zemích - tj. v Rakousku, České republice a na Ukrajině -září 1 - Návrh průzkumu Tato

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1

MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 =a n 4 a 1 =50. Pro jaké nejmenší přirozené číslo n bude součet prvních n členů záporný? max. 4b, kde Úloha

Více

Základy ekonomie. Petr Musil: petrmusil1977@gmail.com

Základy ekonomie. Petr Musil: petrmusil1977@gmail.com Základy ekonomie Téma č. 2: Trh, nabídka, poptávka Petr Musil: petrmusil1977@gmail.com Obsah 1. Dělba práce 2. Směna, peníze 3. Trh 4. Cena 5. Nabídka 6. Poptávka 7. Tržní rovnováha 8. Konkurence Dělba

Více

Mikroekonomie. Nabídka, poptávka. Kombinované studium 1. cv. Nabídka - rozlišujeme mezi: Nabídka (supply) S 10.10.2014

Mikroekonomie. Nabídka, poptávka. Kombinované studium 1. cv. Nabídka - rozlišujeme mezi: Nabídka (supply) S 10.10.2014 Kombinované studium 1. cv. Mikroekonomie Nabídka, poptávka Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Nabídka (supply) S Nabídka představuje objem zboží, které jsou výrobci ochotni na trh dodat

Více

Přebytek spotřebitele

Přebytek spotřebitele Přebytek spotřebitele a tržní poptávka Varian: Mikroekonomie: moderní přístup, kapitoly 14 a 15 Varian: Intermediate Microeconomics, 8e, Chapters 14 and 15 () 1 / 36 Na této přednášce se dozvíte jak měříme

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

2 HRA V EXPLICITNÍM TVARU

2 HRA V EXPLICITNÍM TVARU 2 HRA V EXPLICITNÍM TVARU 59 Příklad 1 Hra Nim. Uvažujme jednoduchou hru, kdy dva hráči označme je čísly 1, 2 mají před sebou dvě hromádky, z nichž každá je tvořena dvěma fazolemi. Hráč 1 musí vzít z jedné

Více

Obsah Předmluva Finanční kritéria efektivnosti investičních projektů Investiční a finanční rozhodování Grafická analýza investičních projektů

Obsah Předmluva Finanční kritéria efektivnosti investičních projektů Investiční a finanční rozhodování Grafická analýza investičních projektů Obsah Předmluva............................................. 7 1. Finanční kritéria efektivnosti investičních projektů...... 9 1.1 Doba návratnosti.................................. 12 1.2 Čistá současná

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2 Dobrý den. Kladno, 22. 3. 2007 21:35 Chtěl bych se všem omluvit za ten závěr přednášky. Bohužel mě chyba v jednom z příkladů vykolejila natolik, že jsem se již velice těžko soustředil na svůj výkon. Chtěl

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Edgeworthův diagram směny. Přínosy plynoucí ze směny

Edgeworthův diagram směny. Přínosy plynoucí ze směny Mařenčino množství jídla Mařenčino množství jídla Mikroekonomie a chování JEB060 Přednáška 10 PhDr. Jiří KAMENÍČEK, CSc. Edgeworthův diagram směny Obrázek 1 130 75 25 R S 70 Bod R vyjadřuje původní vybavení

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Koaliční hry. Kooperativní hra dvou hráčů

Koaliční hry. Kooperativní hra dvou hráčů Koaliční hry Obsah kapitoly. Koalice dvou hráčů 2. Koalice N hráčů Studijní cíle Cílem tohoto tematického bloku je získání základního přehledu o kooperativních hrách a jejich aplikovatelnosti. Student

Více

Stav affiliate marketingu v České a Slovenské republice

Stav affiliate marketingu v České a Slovenské republice mariorozensky.cz Stav affiliate marketingu v České a Slovenské republice Možná jste již zaslechli mé oblíbené tvrzení, že pouze 2 % obchodníků využívají affiliate marketing. Affiliate trh sice neustále

Více

TGH13 - Teorie her I.

TGH13 - Teorie her I. TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,

Více

Anežka Mičková, těší mě.

Anežka Mičková, těší mě. Anežka Mičková, těší mě. Profese finančního poradce je v České republice ještě v plenkách. Vždyť finanční poradci začali mít u nás význam až po revoluci v 89 roce, kdy se otevřel trh a lidé si měli z čeho

Více

Národní hospodářství poptávka a nabídka

Národní hospodářství poptávka a nabídka Národní hospodářství poptávka a nabídka Chování spotřebitele a poptávka Užitek a spotřebitelův přebytek Jedním ze základních problémů, které spotřebitel řeší, je, kolik určitého statku má kupovat a jak

Více