α + β < 180 trojúhelník lze sestrojit 3. ROZBOR 5. KONSTRUKCE

Rozměr: px
Začít zobrazení ze stránky:

Download "α + β < 180 trojúhelník lze sestrojit 3. ROZBOR 5. KONSTRUKCE"

Transkript

1 GEOMETRIE KONSTRUKCE TROJÚHELNÍKŮ Knstrukce trjúhelníku zadanéh pdle věty sss SSS strana, strana, strana Př. Sestrjte trjúhelník ABC, je-li dán a = 6 cm, b = 8 cm a c = 7 cm 1. NÁČRT VĚTA sss Dva trjúhelníky jsu shdné právě tehdy, když se shdují ve všech třech stranách. 2. ZKOUŠKA Trjúhelníkvá nervnst Sučet dvu nejkratších stran musí být větší než strana třetí 6+7> 8 - trjúhelník lze sestrjit 3. ROZBOR 4. POPIS KONSTRUKCE 5. KONSTRUKCE 6. OVĚŘENÍ Trjúhelník vyhvuje zadání 7. DISKUSE Jedn řešení v jedné plrvině Knstrukce trjúhelníku zadanéh pdle věty sus SuS strana, úhel, strana Př. Sestrjte trjúhelník ABC, je-li dán α =40 b = 7 cm a c = 8 cm VĚTA sus Dva trjúhelníky jsu shdné právě tehdy, když se shdují ve dvu stranách a úhlu jimi sevřeném. 1. NÁČRT k 2. ZKOUŠKA α < 180 trjúhelník lze sestrjit 4. POPIS KONSTRUKCE 3. ROZBOR 5. KONSTRUKCE 6. OVĚŘENÍ 7. DISKUSE Trjúhelník vyhvuje zadání Jedn řešení v jedné plrvině 10

2 Knstrukce trjúhelníku zadanéh pdle věty usu usu úhel, strana, úhel Př. Sestrjte trjúhelník ABC, je-li dán α =40 β = 60 a c = 8 cm 1. NÁČRT 2. ZKOUŠKA α + β < 180 trjúhelník lze sestrjit VĚTA usu Dva trjúhelníky jsu shdné právě tehdy, když se shdují v jedné straně a dvu úhlech k tét straně přilehlých. 4. POPIS KONSTRUKCE 3. ROZBOR 5. KONSTRUKCE 6. OVĚŘENÍ Trjúhelník vyhvuje zadání 7. DISKUSE Jedn řešení v jedné plrvině STŘEDOVÁ SOUMĚRNOST Středvá suměrnst je, shdné zbrazení v rvině, které převádí vzry na brazy. Překlpení vzru prbíhá přes jediný bd, který nazýváme střed suměrnsti. Středvá suměrnst je určena středem suměrnsti a dvjící dpvídajících si bdů. Jediným samdružným bdem je střed suměrnsti. Středvá suměrnst zachvává rvnběžnst,, t znamená, že kterákliv úsečka vzru je rvnběžná se svým brazem. Knstrukce brazu ve středvé suměrnsti 1. Jak sestrjit braz A` bdu A ve středvé suměrnsti se středem S? a) Narýsuj přímku AS. b) Na přímce AS sestrj bd A`tak, aby bd S byl středem úsečky A A`(kružítkem neb pravítkem) 2. Jak sestrjit braz útvaru ve středvé suměrnsti se středem S? Zadání : Sestrjte braz trjúhelníku ABC ve středvé suměrnsti se středem S. Pstup knstrukce Pstupně vyneseme plpřímky AS, BS, CS a sestrjíme bdy A', B', C' tak, aby bd S byl vždy středem úsečky vzr-braz. braz. Obrazy bdů A,B,C spjíme v trjúhelník, čímž dstaneme braz ABC ve středvé suměrnsti se středem S. Středvě suměrný útvar je vždy suměrný pdle vlastníh středu S. T znamená, že ke každému bdu nalezneme jeh braz ve středvé suměrnsti se středem S, který rvněž náleží tmut útvaru. Ve středvé suměrnsti se středem S se zbrazí sám na sebe. 11

3 ČTYŘÚHELNÍKY R O V N O B Ě Ž N Í K Y Čtverec Obdélník Ksčtverec Ksdélník Všechny strany jsu stejně dluhé Susední strany mají různé délky Všechny strany jsu stejně dluhé Susední strany mají různé délky Všechny vnitřní úhly jsu pravé (pravúhelníky) Žádný vnitřní úhel není pravý (ksúhelníky) Úhlpříčky se navzájem půlí Úhlpříčky mají stejnu délku Úhlpříčky nemají stejnu délku Úhlpříčky jsu k sbě klmé Úhlpříčky k sbě nejsu klmé Úhlpříčky jsu k sbě klmé Úhlpříčky k sbě nejsu klmé Úhlpříčky půlí vnitřní úhly Úhlpříčky nepůlí vnitřní úhly Úhlpříčky půlí vnitřní úhly Úhlpříčky nepůlí vnitřní úhly Středvě suměrné útvary Osvě suměrný (čtyři sy suměrnsti) Osvě suměrný (dvě sy suměrnsti) Osvě suměrný (dvě sy suměrnsti) Není svě suměrný 12

4 Susední vrchly čtyřúhelníku: A a B; B a C; C a D; D a A Prtější vrchly čtyřúhelníku: A a C; B a D Susední strany čtyřúhelníku: a b; b a c; c a d; d a a Prtější strany čtyřúhelníku: a c; b a d Susední vnitřní úhly čtyřúhelníku: Prtější vnitřní úhly čtyřúhelníku: α a β ; β a χ; χ a δ ; δ a α α a χ; β a δ Úhlpříčky čtyřúhelníku: AC; BD Rvnběžník je čtyřúhelník, jehž každé dvě prtější strany jsu rvnběžné a shdné. Každé dva prtější vnitřní úhly rvnběžníku jsu shdné Sučet velikstí všech vnitřních úhlů rvnběžníku je 360 Sučet velikstí susedních úhlů rvnběžníku je 180 Výška rvnběžníku udává vzdálenst rvnběžek, na kterých leží jeh prtější strany. Existuje neknečně mnh výška na stranu rvnběžníku, všechny jsu navzájem rvnběžné a stejně dluhé. 13

5 Př. Sestrj rvnběžník ABCD, je-li dán: Náčrt a rzbr: k X l p Zkuška: úhel BAD je menší než 180 trjúhelník ABD lzde sestrjit Ppis knstrukce: Knstrukce: D p q Ověření: : čtyřúhelník vyhvuje zadání Diskuse: jedn řešení v jedné plrvině OBVOD ROVNOBĚŽNÍKU = a + b + c + d / a = c ; b = d = a + b + a + b = 2. a + 2. b = 2.( a + b) 14

6 OBSAH ROVNOBĚŽNÍKU Obsah rvnběžníku je sučin délky strany a výšky k tét straně S = a. v a = b. v b OBVOD TROJÚHELNÍKU Obvd trjúhelníku se spčítá jak sučet délek všech tří stran. = a + b + c O ABC = a + b +c OBSAH TROJÚHELNÍKU Obsah trjúhelníku se rvná plvině sučinu délky strany trjúhelníku a výšky příslušné k tét V b straně. V a av. a bv. b cv. c S ABC = = = bsah pravúhléh trjúhelníku je rven sučinu jeh dvěsen vydělený dvěma 15

7 LICHOBĚŽNÍKY Obecný Pravúhlý Rvnramenný Dvě prtější strany jsu rvnběžné, dvě různběžné Dvě prtější strany jsu rvnběžné, dvě různběžné Dvě prtější strany jsu rvnběžné, dvě různběžné Sučet vnitřních úhlů je 360 Nemá žádný vnitřní úhel pravý Vnitřní úhly při základnách nejsu shdné Není své suměrný Sučet vnitřních úhlů je 360 Má dva vnitřní úhly pravé Vnitřní úhly při základnách nejsu shdné Není svě suměrný Sučet vnitřních úhlů je 360 Nemá žádný vnitřní úhel pravý Vnitřní úhly při základnách jsu shdné Je svě suměrný pdle spjnice středů bu základen Úhlpříčky nejsu shdné Úhlpříčky nejsu shdné Úhlpříčky jsu shdné Lichběžník je čtyřúhelník, jehž dvě prtější strany jsu rvnběžné a další dvě zbývající různběžné A, B, C, D - vrchly lichběžníku a, b, c, d - strany lichběžníku AB, CD - základny lichběžníku (jsu rvnběžné) BC, AD - ramena lichběžníku (jsu různběžné) v -výška rvnběžníku (vzdálenst rvnběžných přímek p, q) AC, BD - úhlpříčky lichběžníku α, β, γ, δ- vnitřní úhly lichběžníku OBVOD LICHOBĚŽNÍKU Sučet délek jeh stran = a + b + c + d OBSAH LICHOBĚŽNÍKU S = ( a + c) 2.v 16 Obsah lichběžníku S spčteš tak, že vynásbíš sučet délek bu základen (a + c) výšku v a výsledek pdělíš dvěma.

8 HRANOLY pdstava výška výška Pdstavná hrana Bční hrana ČTYŘBOKÝ HRANOL = KVÁDR Bční stěna pdstava TROJBOKÝ HRANOL Pdstavu hranlu jsu dva shdné čtyřúhelníky (bdelníky). Pdstavu hranlu jsu dva shdné trjúhelníky Hranl je těles, jehž Bční stěny jsu bdélníky neb čtverce Pdstavy jsu rvnběžné, shdné n- úhelníky Výška je délka jeh bční hrany SÍŤ HRANOLU POVRCH HRANOLU S p bsah pdstavy S = 2 S p +S pl Rzvinutý plášť hranlu je bdelník, neb čtverec. Jeden jeh rzměr se rvná bvdu pdstavy, druhý rzměr se rvná výšce hranlu. S pl..bsah pláště OBJEM HRANOLU V = a b c Sučin a b je bsah pdstavy Vzrec bjemu hranlu lze napsat V = S p v 17 c je výška kvádru

Analytická geometrie (3. - 4. lekce)

Analytická geometrie (3. - 4. lekce) Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

Obecnou rovnici musíme upravit na středovou. 2 2 2 2 2 2 2 2. leží na kružnici musí vyhovovat její rovnici dosadíme ho do ní.

Obecnou rovnici musíme upravit na středovou. 2 2 2 2 2 2 2 2. leží na kružnici musí vyhovovat její rovnici dosadíme ho do ní. 75 Hledání kružnic I Předpklady: 750, kružnice z gemetrie Př : Kružnice je dána becnu rvnicí x y x y plměr Rzhdni, zda na kružnici leží bd A[ ; ] + + + 6 + = 0 Najdi její střed a Obecnu rvnici musíme upravit

Více

a : b : c = sin α : sin β : sin γ

a : b : c = sin α : sin β : sin γ 12 Řešení becnéh trjúhelníku, věta sinvá a ksinvá Sinvá věta - platí v becném trjúhelníku (nemusí být pravúhlý) a : b : c sin α : sin β : sin γ Pměr délek stran je rven pměru sinů prtilehlých vnitřních

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.057 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

5.1.2 Volné rovnoběžné promítání

5.1.2 Volné rovnoběžné promítání 5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty

Více

Název: Osová souměrnost

Název: Osová souměrnost Název: Osová souměrnost Autor: Mgr. Lukáš Saulich Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika a její aplikace Ročník: 3. (1. ročník vyššího gymnázia)

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_181 Vzdělávací oblast: Matematika a její aplikace Vzdělávací

Více

Matematika 4+5 (Chytré dítě)

Matematika 4+5 (Chytré dítě) Matematika 4+5 (Chytré dítě) Úvdní brazvka KNIHA MOUDROSTÍ A ZÁHAD MATEMATICKÝCH Menu Upravení hlasitsti Uknčení prgramu Výukvá část Úvd (bsah knihy) 6 stran Jak se učit 3 strany Úhel 11 stran C t je úhel

Více

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), 3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat? 3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.

Více

Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou

Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou Shodná zobrazení Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz; zapisujeme Z: X X. Zobrazení v rovině je shodné

Více

PALETOVÉ REGÁLY. Pevné, kvalitní a s dlouhou životností. Sestava paletového regálu: PLOTOVÉ CENTRUM Vyškov; www.mgv.cz

PALETOVÉ REGÁLY. Pevné, kvalitní a s dlouhou životností. Sestava paletového regálu: PLOTOVÉ CENTRUM Vyškov; www.mgv.cz PLOTOVÉ CENTRUM Vyškv; www.mgv.cz PALETOVÉ REGÁLY Pevné, kvalitní a s dluhu živtnstí Název regálvých dílů Paletvé regály a jejich pužití Rám paletvéh regálu Nsníky paletvéh regálu Příčník Ochranné prvky

Více

5.2.3 Kolmost přímek a rovin I

5.2.3 Kolmost přímek a rovin I 5.2.3 Kolmost římek rovin I ředokldy: 5202 vě římky jsou k soě kolmé rávě tehdy, když jejich odchylk je 90. Nvzájem kolmé mohou ýt i mimoěžky. vě úsečky jsou kolmé, rávě když leží n kolmých římkách. íšeme:

Více

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2 Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t

Více

1.9.5 Středově souměrné útvary

1.9.5 Středově souměrné útvary 1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

M - Příprava na 1. čtvrtletní písemku

M - Příprava na 1. čtvrtletní písemku M - Příprava na 1. čtvrtletní písemku Určeno pro třídu 2ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na www.dosli.cz.

Více

Pravoúhlá axonometrie - řezy hranatých těles

Pravoúhlá axonometrie - řezy hranatých těles Pravoúhlá axonometrie - řezy hranatých těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - řezy hranatých těles ZS 2008 1 / 41 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého

Více

TYÚHELNÍKY 1 HODINA. Lomená ára: je to skupina úseek, kde koncový bod jedné úseky je poátením bodem druhé úseky

TYÚHELNÍKY 1 HODINA. Lomená ára: je to skupina úseek, kde koncový bod jedné úseky je poátením bodem druhé úseky TYÚHELNÍKY HODINA Díve, než se dstneme k vysvtlení pjmu tyúhelník, zpkujeme si nkteré zákldní pjmy, jk je npíkld lmená ár mnhúhelník. Lmená ár: je t skupin úseek, kde kncvý bd jedné úseky je pátením bdem

Více

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení

ZOBRAZOVÁNÍ ODRAZEM NA KULOVÉ PLOŠE aneb Kdy se v zrcadle vidíme převrácení PedDr. Jze Beňušk ZOBRAZOÁNÍ ODRAZEM NA KULOÉ PLOŠE neb Kd se v zrcdle vidíme převrácení Kulvá zrcdl - jsu zrcdl, jejichž zrcdlící plchu tvří část pvrchu kule (kulvý vrchlík). 1. Duté kulvé zrcdl - světl

Více

Průměty rovinných obrazců a těles

Průměty rovinných obrazců a těles Průměty rovinných obrazců a těles Tato část je podmíněna znalostí základních úloh, principů Mongeova promítání a pravoúhlé axonometrie. Slouží jako pracovní sešit na procvičování. Pracovní list č. 1 Zadání:

Více

Ráda bych poděkovala RNDr. Jarmile Robové, CSc., která mi pomohla při tvorbě této práce. Dále pak svým spolužákům a rodině za podporu.

Ráda bych poděkovala RNDr. Jarmile Robové, CSc., která mi pomohla při tvorbě této práce. Dále pak svým spolužákům a rodině za podporu. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Bakalářská práce Ludmila Kadlecová Webová aplikace pro výuku stereometrie Katedra didaktiky matematiky Vedoucí bakalářské práce: RNDr. Jarmila Robová,

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel. Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například

Více

Lineární algebra. Vektorové prostory

Lineární algebra. Vektorové prostory Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

GEOMETRIE NÁPRAV. Kontrolní a seřizovací podmínky. Výšky vozidla v referenční poloze

GEOMETRIE NÁPRAV. Kontrolní a seřizovací podmínky. Výšky vozidla v referenční poloze Správný tlak vzduchu v pneumatikách. GEOMETRIE NÁPRAV Kontrolní a seřizovací podmínky Uvedení vozidla do referenční výškové polohy. Výšky vozidla v referenční poloze Výška vpředu H1 = Vzdálenost mezi zónou

Více

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.19 Grafické řešení soustav lineárních rovnic a nerovnic .3.19 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu.

Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Svarové spoje Posouzení únosnosti svaru se provádí podle zásad pružnosti a pevnosti v nebezpečném průřezu. Vybrané druhy svarů a jejich posouzení dle EN ČSN 1993-1-8. Koutový svar -T-spoj - přeplátovaný

Více

1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15

1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15 Varianta A 4 4 4 4 4 4 4 4 1) Vypočítej A) 32 B) 44 C) 48 D) 56 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 20 120 A. A) 12 B) 13 C) 14 D) 15 3) Najdi největší a nejmenší trojciferné číslo skládající

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M9101 provádí početní operace

Více

3.5.8 Otočení. Předpoklady: 3506

3.5.8 Otočení. Předpoklady: 3506 3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

Vítězslav Bártl. prosinec 2013

Vítězslav Bártl. prosinec 2013 VY_32_INOVACE_VB09_ČaP Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, vzdělávací obor, tematický okruh, téma Anotace Vítězslav

Více

2.8.8 Kvadratické nerovnice s parametrem

2.8.8 Kvadratické nerovnice s parametrem .8.8 Kvadratické nerovnice s arametrem Předoklady: 806 Pedagogická oznámka: Z hlediska orientace v tom, co studenti očítají, atří tato hodina určitě mezi nejtěžší během celého středoškolského studia. Proto

Více

Soutěž - DOBRÁ ŠKOLA Ústeckého kraje 2015/2016

Soutěž - DOBRÁ ŠKOLA Ústeckého kraje 2015/2016 Krajský úřad Ústeckéh kraje Sutěž - DOBRÁ ŠKOLA Ústeckéh kraje 2015/2016 Pdmínky sutěže Odbr SMT 2.10.2015 Pdmínky celkrajské mtivační sutěže na šklní rk 2015/2016 DOBRÁ ŠKOLA Ústeckéh kraje 2015/2016

Více

ÚŘAD PRO OCHRANU HOSPODÁŘSKÉ SOUTĚŽE ROZHODNUTÍ. Č. j.: ÚOHS-S340/2010/VZ-13419/2010/510/OKo V Brně dne: 4.11.2010

ÚŘAD PRO OCHRANU HOSPODÁŘSKÉ SOUTĚŽE ROZHODNUTÍ. Č. j.: ÚOHS-S340/2010/VZ-13419/2010/510/OKo V Brně dne: 4.11.2010 *uhsx002xtbp* UOHSX002XTBP ÚŘAD PRO OCHRANU HOSPODÁŘSKÉ SOUTĚŽE ROZHODNUTÍ Č. j.: ÚOHS-S340/2010/VZ-13419/2010/510/OK V Brně dne: 4.11.2010 Úřad pr chranu hspdářské sutěže příslušný pdle 112 zákna č. 137/2006

Více

Průniky rotačních ploch

Průniky rotačních ploch Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I. Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

Předmětem projektu je elektroinstalace při výstavbě 2 rodinný dům Chotěšov č.par. 1062; 620/1.

Předmětem projektu je elektroinstalace při výstavbě 2 rodinný dům Chotěšov č.par. 1062; 620/1. 1. Základní údaje 1.1 Předmět projektu Předmětem projektu je elektroinstalace při výstavbě 2 rodinný dům Chotěšov č.par. 1062; 620/1. 1.2 Podklady Výchozími podklady pro zpracování projektu byl projekt

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 7. ročník J.Coufalová : Matematika pro 7.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro 7.ročník ZŠ (Prometheus)

Více

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数

Č část četnost. 部 分 频 率 relativní četnost 率, 相 对 频 数 A absolutní člen 常 量 成 员 absolutní hodnota čísla 绝 对 值 algebraický výraz 代 数 表 达 式 ar 公 亩 aritmetický průměr 算 术 均 数 aritmetika 算 术, 算 法 B boční hrana 侧 棱 boční hrany jehlanu 角 锥 的 侧 棱 boční stěny jehlanu

Více

STEREOMETRIE, OBJEMY A POVRCHY TĚLES

STEREOMETRIE, OBJEMY A POVRCHY TĚLES STEREOMETRIE, OBJEMY POVRCHY TĚLES Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE

MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE MS Word 2007 REVIZE DOKUMENTU A KOMENTÁŘE 1 ZAPNUTÍ SLEDOVÁNÍ ZMĚN Pokud zapnete funkci Sledování změn, aplikace Word vloží značky tam, kde provedete mazání, vkládání a změny formátu. Na kartě Revize klepněte

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu

Více

Výzva k podání nabídky na veřejnou zakázku na dodávky

Výzva k podání nabídky na veřejnou zakázku na dodávky Výzva k pdání nabídky na veřejnu zakázku na ddávky (dále jen Výzva ), která v suladu s ustanvením 18 dst. 3 zákna č. 137/2006 Sb., veřejných zakázkách, v platném znění (dále jen zákn ), není zadávána pdle

Více

Slovní úlohy. Mgr. Šárka Steklá. 1. pololetí 2012/2013. MATEMATIKA 8. ročník. Základní škola, Chrudim, Dr. Peška 768

Slovní úlohy. Mgr. Šárka Steklá. 1. pololetí 2012/2013. MATEMATIKA 8. ročník. Základní škola, Chrudim, Dr. Peška 768 Slovní úlohy Mgr. Šárka Steklá 1. pololetí 2012/2013 MATEMATIKA 8. ročník Základní škola, Chrudim, Dr. Peška 768 Zadání Skupina A 1. Odměnu 2110 Kč si 3 dělníci rozdělili tak, že druhý dostal o 40% více

Více

GEOMETRICKÁ TĚLESA. Mnohostěny

GEOMETRICKÁ TĚLESA. Mnohostěny GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická

Více

1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací.

1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací. 1 NÁPRAVA De-Dion Představuje přechod mezi tuhou nápravou a nápravou výkyvnou. Používá se (výhradně) jako náprava hnací. Skříň rozvodovky spojena s rámem zmenšení neodpružené hmoty. Přenos točivého momentu

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha

Více

OPAKOVÁNÍ Z 5. ROČNÍKU

OPAKOVÁNÍ Z 5. ROČNÍKU OPKOÁNÍ Z 5. ROČNÍKU ❺ Letecká dvlená na Gran Canaria stjí v dbě jarních rázdnin 18 990 Kč r dsělu sbu a 8 999 Kč r dítě. Je mžn si řikuit výlet strvě v ceně 799 Kč r dsělu sbu a 599 Kč r dítě. Klik celkem

Více

ÚVOD DO HRY PRINCIP HRY

ÚVOD DO HRY PRINCIP HRY Počet hráčů: 2-6 Věk: od 6 let Délka hry: cca 20 min. Obsah: 66 hracích karet: 45 karet s čísly (hodnota 0 8 čtyřikrát, hodnota 9 devětkrát), 21 speciálních karet (9 karet Výměna, 7 karet Špehuj, 5 karet

Více

Lymfodrenážní terapeutický systém Q-1000

Lymfodrenážní terapeutický systém Q-1000 Lymfdrenážní terapeutický systém Q-1000 Lymfdrenážní terapeutický systém Q-1000 Návd k pužití Důležité bezpečnstní instrukce Dále uvedené instrukce jsu určené pr zajištění bezpečnsti uživatelů a přístrjů.

Více

Definice tolerování. Technická dokumentace Ing. Lukáš Procházka

Definice tolerování. Technická dokumentace Ing. Lukáš Procházka Technická dokumentace Ing. Lukáš Procházka Téma: geometrické tolerance 1) Definice geometrických tolerancí 2) Všeobecné geometrické tolerance 3) Základny geometrických tolerancí 4) Druhy geometrických

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 7 M7PZD16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika.

Základní škola a mateřská škola, Ostrava-Hrabůvka, Mitušova 16, příspěvková organizace Školní vzdělávací program 2. stupeň, Matematika. Matematika Matematika pro žáky 6. až 9. ročníku napomáhá k rozvoji paměti, logického myšlení, kritickému usuzování a srozumitelné a věcné argumentaci prostřednictvím matematických problémů. Žáci si prostřednictvím

Více

Parabola. Definice a ohniskovјі vlastnosti. (nebo jinak: odchylka roviny 0 0ezu od osy je rovna odchylce povrchov 0 5ch p 0 0ЈЊmek)

Parabola. Definice a ohniskovјі vlastnosti. (nebo jinak: odchylka roviny 0 0ezu od osy je rovna odchylce povrchov 0 5ch p 0 0ЈЊmek) Parabla 0 5kla efinice a hniskјі lastnsti 6І1 prstrјђ efinice (iz brјђzek nah 0 0e): parabla je pr 0 1se 0 0nu k 0 0iku rinnјіh 0 0ezu na rta 0 0nЈЊ ku 0 6elЈІ pl 0 8e, jestli 0 6e 0 0eznЈЂ rina mјђ taku

Více

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G

SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G SYLABUS PŘEDNÁŠKY 6b Z INŽENÝRSKÉ GEODÉZIE (Polohové vytyčování) 4. ročník bakalářského studia studijní program G studijní obor G říjen 2014 1 1O POLOHOVÉ VYTYČOVÁNÍ Pod pojem polohového vytyčování se

Více

1 Měření kapacity kondenzátorů

1 Měření kapacity kondenzátorů . Zadání úlohy a) Změřte kapacitu kondenzátorů, 2 a 3 LR můstkem. b) Vypočítejte výslednou kapacitu jejich sériového a paralelního zapojení. Hodnoty kapacit těchto zapojení změř LR můstkem. c) Změřte kapacitu

Více

ESII-2.1 Elektroměry

ESII-2.1 Elektroměry Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: ESII-2.1 Elektroměry Obor: Elektrikář - silnoproud Ročník: 2. Zpracoval(a): Bc. Josef Dulínek Střední průmyslová škola Uherský Brod, 2010 OBSAH 1. Měření

Více

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ

Více

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2

SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNÍ A STAVEBNÍ TÁBOR, KOMENSKÉHO 1670 SBÍRKA PŘÍKLADŮ PRO OPAKOVÁNÍ NA PŘIJÍMACÍ ZKOUŠKY 2 ŠKOLNÍ ROK 2014/2015 Obsah 1 Dělitelnost přirozených čísel... 3 2 Obvody a obsahy

Více

IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy:

IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy: IRACIONÁNÍ ROVNICE Motivace: V řadě matematických úloh je nutno ovládat práci s odmocninami a rovnicemi, které obsahují neznámou pod odmocninou, mj. při vyjádření neznámé z technických vzorců. Znalosti

Více

ŠVP - učební osnovy - Vzdělání pro život - rozšířená výuka matematiky, přírodovědných předmětů a informatiky

ŠVP - učební osnovy - Vzdělání pro život - rozšířená výuka matematiky, přírodovědných předmětů a informatiky 1 Učební osnovy 1.1 Matematika a její aplikace Vzdělávací oblast Matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické pro práci s matematickými

Více

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha. 18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa

Více

1)Zapište jako výraz:dekadický logaritmus druhé mocniny součtu 2. odmocnin čísel p,q.

1)Zapište jako výraz:dekadický logaritmus druhé mocniny součtu 2. odmocnin čísel p,q. 7. průzkum bojem 1)Zapište jako výraz:dekadický logaritmus druhé mocniny součtu 2. odmocnin čísel p,q. 2)Jsou dány vektory u = (5;-3), v = (-6;4), f = (53;-33). Určete čísla k,l R taková, že k.u + l.v

Více

SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou

SMĚŠOVACÍ KALORIMETR -tepelně izolovaná nádoba s míchačkou a teploměrem, která je naplněná kapalinou KALORIMETRIE Kalorimetr slouží k měření tepla, tepelné kapacity, případně měrné tepelné kapacity Kalorimetrická rovnice vyjadřuje energetickou bilanci při tepelné výměně mezi kalorimetrem a tělesy v kalorimetru.

Více

Goniometrie trigonometrie

Goniometrie trigonometrie Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických

Více

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost

Příloha č. 7. ročník 9. 1h 1x za 14 dní. dotace. nepovinný. povinnost Příloha č. 7 Seminář z matematiky V učebním plánu 2. druhého stupně se zařazuje nepovinný předmět Seminář z matematiky. V tematickém okruhu Čísla a početní operace na prvním stupni, na který navazuje a

Více

Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R },

Hra a hry. Václav Vopravil. Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována R }, Hra a hry Václav Vopravil Úvod 1 Kombinatorické hry Teorie kombinatorických her se zabývá abstraktními hrami dvou hráčů. Hra je definována pomocí jednodušších her, tj. jako uspořádaná dvojice množin her.

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Dynamická gemetrie v rvině a v prstru Pachner - 4 prgramy Dynamická gemetrie v rvině Dynamická gemetrie v rvině Parametrické systémy funkcí Řešení becnéh trjúhelníku Dynamická gemetrie v rvině Panel nástrjů

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník

Více

Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď.

Jakýkoliv jiný způsob záznamu odpovědí (např. dva křížky u jedné úlohy) bude považován za nesprávnou odpověď. MATEMATIKA 5 M5PZD16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je 60

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor013 Vypracoval(a),

Více

Návod na sestavení naháněcí ohrady

Návod na sestavení naháněcí ohrady Návod na sestavení naháněcí ohrady Obj. č: 3552 ECONOMY 3509 STANDARD 3547 STANDARD+ 3510 STANDARD KOMPLET ECONOMY STANDARD STANDARD+ STANDARD KOMPLET Díly pro základní naháněcí ohradu 3521 1x Posuvné

Více

MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy

MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy MATERIÁL NA JEDNÁNÍ Zastupitelstva města Doksy Jednání zastupitelstva města dne: 08. 04. 2015 Věc: Odměny uvolněným a neuvolněným členům zastupitelstva a další odměny Předkládá: Ing. Eva Burešová, starostka

Více

Záznam zkušební komise Jméno a příjmení Podpis Vyhodnocení provedl INSTRUKCE

Záznam zkušební komise Jméno a příjmení Podpis Vyhodnocení provedl INSTRUKCE VYSOKÉ UČNÍ THNIKÉ V RNĚ FKULT PONIKTLSKÁ Přijímací řízení 2008 akalářské studium Obry: aňvé pradenství knmika a prcesní management Míst pr nalepení kódu Kód nalepí uchazeč Záznam zkušební kmise Jmén a

Více

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr

Více

Fyzika pro chemiky Ukázky testových úloh: Optika 1

Fyzika pro chemiky Ukázky testových úloh: Optika 1 Fyzika pro chemiky Ukázky testových úloh: Optika 1 1. Světelný paprsek prochází rozhraním vzduchu a skla. Pod jakým úhlem se paprsek láme ve skle, dopadá-li paprsek na rozhraní ze vzduchu pod úhlem 45

Více

Radiodiagnostické oddělení NsP Havířov, p. o.

Radiodiagnostické oddělení NsP Havířov, p. o. Nemcnice s plikliniku Havířv, p.. Dělnická 1132/24, 73601, Havířv - Měst PŘÍRUČKA Radidiagnstické ddělení NsP Havířv, p.. Účinnst: 1.12.2010 Dkument je duševním vlastnictvím NsP Havířv, p.. a je určen

Více

10.1.13 Asymptoty grafu funkce

10.1.13 Asymptoty grafu funkce .. Asmptot grafu funkce Předpoklad:, Asmptot grafu už známe kreslili jsme si je jako přímk, ke kterým se graf funkce přibližuje. Nakreslení asmptot, pak umožňuje přesnější kreslení grafu. Například u hperbol

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů.

Mezní kalibry. Druhy kalibrů podle přesnosti: - dílenské kalibry - používají ve výrobě, - porovnávací kalibry - pro kontrolu dílenských kalibrů. Mezní kalibry Mezními kalibry zjistíme, zda je rozměr součástky v povolených mezích, tj. v toleranci. Mají dobrou a zmetkovou stranu. Zmetková strana je označená červenou barvou. Délka zmetkové části je

Více

OBEC PŘIBYSLAVICE. Zastupitelstvo obce Přibyslavice. Obecně závazná vyhláška. Obce Přibyslavice Č. 1/2015

OBEC PŘIBYSLAVICE. Zastupitelstvo obce Přibyslavice. Obecně závazná vyhláška. Obce Přibyslavice Č. 1/2015 OBEC PŘIBYSLAVICE Zastupitelstvo obce Přibyslavice Obecně závazná vyhláška Obce Přibyslavice Č. 1/2015 O stanovení systému shromažďování, sběru, přepravy, třídění, využívání a odstraňování komunálních

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

2.8.23 Využití Pythagorovy věty III

2.8.23 Využití Pythagorovy věty III .8.3 Využití Pythagorovy věty III Předpoklady: 008 Př. 1: Urči obsah rovnoramenného trojúhelníku se základnou 8 cm a rameny 5,8 cm. Pro výpočet obsahu potřebujeme znát jednu ze stran a odpovídající výšku.

Více

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE

Vysoká škola báňská Technická univerzita Ostrava KUŽELOSEČKY, KOLINEACE Vysoká škola báňská Technická univerzita Ostrava KUŽELOEČKY KOLINECE Deskriptivní geometrie Krista Dudková Radka Hamříková O T R V 0 0 5 OH 1. Kuželosečky 5 1.1. Řezy na kuželové ploše 5 1.. Elipsa 7 odová

Více

F 1.1. TECHNICKÁ ZPRÁVA

F 1.1. TECHNICKÁ ZPRÁVA Objekt sportovního zařízení v areálu TJ ČSAD Havířov SO 02 NÁHRADNÍ ŠATNY A UMYVÁRNY F 1.1. TECHNICKÁ ZPRÁVA dle přílohy č. 1 vyhlášky č. 499/2006 Sb. Objednatel: Projektant: Statutární město Havířov ul.

Více

OVO RVP OVO ŠVP UČIVO

OVO RVP OVO ŠVP UČIVO pro tématický charakterizuje a třídí základní rovinné útvary popíše přímku, polopřímku, úsečku přímka, polopřímka, úsečka, kružnice, 5 kruh, trojúhelník, čtyřúhelník, úhel měří délku úsečky vlastními slovy

Více

TECHNICKÁ ZPRÁVA. Obsah:

TECHNICKÁ ZPRÁVA. Obsah: Stavební a interiérvé úpravy bjektu - recepce a zázemí na Krajském plicejním ředitelství Středčeskéh kraje Dkumentace pr stavební pvlení - Technická zpráva SO. 01 ST. 01 TECHNICKÁ ZPRÁVA Obsah: a) účel

Více