Základní kombinatorické principy

Rozměr: px
Začít zobrazení ze stránky:

Download "Základní kombinatorické principy"

Transkript

1 Základní kombinatorické principy 1.1 Princip bijekce je vzájemně jednoznačné přiřazení prvků dvou množin: jedna množina pro nás může být nepřehledná a vztahy v ní dokážeme těžko postihnout, zatímco druhá množina je pro řešení problému přehledná Známe-li tedy řešení na množině přehledné, známe i řešení na druhé množině. Kombinatoricky: jestliže na první množině existuje právě m -řešení, pak na vzájemně jednoznačně přiřazené množině existuje také m - řešení. Každému prvku z množiny A je přiřazen právě jeden prvek z množiny B. Obě množiny musí být stejně početné, tj. #A #B. Symbol #A budeme chápat jako počet prvků množiny A. V praxi to znamená, že si popis množiny můžeme zjednodušit nějakou analogií - představou na papíře

2 Základní kombinatorické principy 1.2 Kombinatorické pravidlo o součinu Máme vybrat kprvků: první prvek vybíráme z konečné neprázdné množiny s počtem prvků #A 1 druhý prvek vybíráme z konečné neprázdné množiny s počtem prvků #A 2 třetí prvek... s počtem prvků #A 3... poslední, k-tý prvek, vybíráme z konečné neprázdné množiny s počtem prvků #A k pokud výběr každého z prvku je nezávislý na výběru ostatních prvků, existuje celkem (#A 1 #A 2... #A k ) různých možností, jak vybrat tyto prvky

3 Příklad na Kombinatorické pravidlo o součinu V restauraci mají na jídelním lístku uvedeno 3 polévky, 6 hlavních jídel a 2 moučníky. Kolika způsoby lze sestavit menu ze všech třech chodů? Výběr polévky je nezávislý na výběru hlavního jídla i moučníku, totéž platí o dalších chodech, proto použijeme kombinatorické pravidlo o násobení: N 3*6*2 36 možností, jak sestavit menu

4 Základní kombinatorické principy 1.3 Kombinatorické pravidlo o součtu Předpokládejme, že máme k disjunktních množin potom sjednocení těchto množin má právě #A 1 + #A #A k prvků. A B Lichá čísla prázdný 1,3,5 Sudá čísla průnik ø 2,4,6 Disjunktní množiny mají prázdný průnik

5 Příklad 1 na Kombinatorické pravidlo o součtu V restauraci mají na stálém jídelním lístku uvedena tato hlavní jídla: bezmasá jídla (3), ryby (2), drůbež (2), vepřové maso(5), hovězí maso(4). Kolik dní můžete chodit do této restaurace, abyste jedli každý den jiné jídlo? Řešení: Protože se jedná o disjunktní množiny, použijeme pravidlo osoučtu: N dní

6 Základní kombinatorické principy 1.4 Součet prvků obecných množin Uvažujme množinu A a množinu B, které mají neprázdný průnik. Pokud sečteme prvky každé množiny, pak společné prvky jsme sečetli dvakrát, proto je jednou musíme odečíst: A B prvočísla < 10 1, 2, 3, 5, 7 průnik 2 Sudá čísla < 10 2, 4, 6, 8 {1, 2, 3, 5, 7}+ {2, 4, 6, 8} {1, 2, 2, 3, 4, 5, 6, 7, 8} průnik (číslo 2) musíme odečíst Obecný zápis: # (A B) # A + # B - # (A B)

7 Příklad na Součet prvků obecných množin Ve třídě je 16 studentů. Z celkového počtu mluví aktivně 10 anglicky a 8 německy. 5 studentů zvládá aktivně oba jazyky. Určete, kolik studentů mluví jen anglicky nebo jen německy Kolik studentů nemluví aktivně žádným z těchto dvou jazyků Kolik studentů mluví aktivně nějakým jazykem? A N Zadání : A 10 N 8 A N Řešení : A ( A N) N ( A N) ( A N) 16 ( ) 3 ( A N)

8 Kombinatorika - příklad Když se bude státní vlajka skládat ze tří svislých pruhů v barvách červená modrá a bílá, kolika způsoby lze pruhy uspořádat? Řešení: červená může být na 1., 2. nebo 3. místě modrá po umístění červené může být na 2 místech bílá barva na posledním - zbývajícím místě č m b m č b b m č č b m b č m m b č č m b č b m m č b b č m b m č m b č Počet možností vypočteme jako 3*2*1 6 Kdyby se jednalo o 4 různé barvy (žlutá, červená, modrá, bílá) Počet kombinací vypočteme jako násobek: počet umístění žluté (4) * počet umístění červené (3) * * počet umístění modré (2) * počet umístění bílé (1) tj. 4*3*2*1 24

9 PERMUTACE 2.1 Permutace Máme n-různýchpřihrádek, n -různýchpředmětů (počet různých předmětů je stejný jako počet různých přihrádek) Každý předmět můžeme umístit právě do jedné přihrádky a záleží na pořadí předmětu(jedná se o uspořádaný výběr) Je zřejmé, že 1. předmětmůžeme umístit do jedné z n přihrádek, 2.předmětjiž jen do jedné zn-1přihrádek, protože jsme již jednu vyčerpali, 3. předmětdo jedné z n-2přihrádek Poslední n-tý předmět pak můžeme umístit jen poslední n-té přihrádky S odvoláním na pravidlo o násobení můžeme vyjádřit počet způsobů umístění různých předmětů do různých přihrádek (záleží na pořadí) jako: P(n) n * (n -1) * (n -2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: P ( n) n!

10 Příklad na Permutace Kolik různých slov vznikne přesmyčkou písmen ve slově POPOKATEPETL*? Řešení: Celkem písmen: 12 Pokud by byla všechna písmena rozdílná, počet různých slov bychom vypočetli jako násobek 12*11*10*9*8*7*6*5*4*3*2*1 Protože se některá písmena opakují, počet možností je menší tolikrát, kolik různých možností bychom z nich udělali, kdyby byla rozdílná: pro dvě stejná písmena: počet možností se zmenší 2! (2 faktoriál krát) 2 pro tři stejná písmena: počet možností se zmenší 3! (3 faktoriál krát) 6 Četnost písmen ve slově: P 3x, O 2x, K 1x, A 1x, T 2x, E 2x, L 1x 12! Počet možných slov: ! 2! 1! 1! 2! 2! 1! * Z aztéckého popoka-dýmati, tepetl-hora. Činná sopka ve střední části Mexika. Poslední erupce v roce 1932.

11 VARIACE bez opakování 2.2 Variace bez opakování Máme n-různýchpřihrádek, k -různýchpředmětů každý předmět chceme umístit právě do jedné přihrádky a záleží na pořadí předmětu(jedná se o uspořádaný výběr) Předpokládejme, že n > k(jinak stačí zaměnit pojem přihrádka a předmět) Je zřejmé, že 1. předmětmůžeme umístit do jedné z n přihrádek, 2.předmětjiž jen do jedné zn-1přihrádek, protože jsme již jednu vyčerpali, 3. předmětdo jedné z n-2přihrádek Poslední k-tý předmět pak můžeme umístit jen do n-k+1 přihrádek, jež zbyly prázdné. S odvoláním na pravidlo o násobení můžeme vyjádřit počet způsobů, jimiž lze danou úlohu vyřešit jako: V k (n) n * (n-1) * (n-2) *... * (n-k+1)

12 Příklad na Variace bez opakování V divadle je druhé zvonění. Šatnářka má volných 12 věšáků. Ve frontě stojí 5 netrpělivých lidí. Šatnářka v rychlosti bere kabát jeden po druhém, každý pověsí vždy na prázdný věšák, číslo předá majiteli kabátu. Ptáme se: Kolika způsoby může umístit 5 kabátů na 12 volných věšáků? Řešení: první z 5 kabátů může pověsit na 12 věšáků, druhý už jen na 11, třetí na 10,... Možností, jak kabáty umístit bude podle pravidla o násobení 12*11*10*9*8 7*6*5* 4*3* 2*1 12 *11*10*9*8 * 1 (12 5)! Z toho odvodíme vzorec pro VARIACE BEZ OPAKOVÁNÍ V k ( n) n! ( n k)!

13 PERMUTACE a VARIACE 2.1 Permutace P(n) n * (n -1) * (n -2) *... * (n-n+1) To odpovídá zápisu, ve kterém využíváme faktoriál: ( n) n! P 2.2 Variace bez opakování Zápis: V k (n) n * (n-1) * (n-2) *... * (n-k+1) Zapíšeme pomocí faktoriálů: V k ( n) n! ( n k)! Jedná se o vzorec pro počet variací k-té třídy z n prvků bez opakování.

14 Příklad na Variace bez opakování Parkoviště má 10 míst pro osobní vozy. Zaměstnanců firmy je 6. Kolika způsoby může být zaparkováno všech šest aut zaměstnanců? První zaměstnanec si může auto zaparkovat na libovolné místo z 10, druhý zaměstnanec už vybírá jen z 9 míst, třetí z osmi, čtvrtý ze sedmi, pátý z šesti a šestému zbývá pět míst, kam může zaparkovat svůj vůz. Obecný zápis : V k (n) n * (n-1) * (n-2) *... * (n-k+1) Výpočet: 10*9*8*7*6* Existuje způsobů parkování 6 vozů na 10 parkovacích místech pomocí faktoriálů: ( n) V k n! ( n k)! 10! ( 10 6)! 10*9*8*7*6*5* 4*3* 2*1 4*3* 2*

15 Příklad Ve školce připravili pro děti 16 jogurtů, ale většina dětí onemocněla a zbývajících 5 dětí si mohlo vybrat ze tří druhů: 5 jahodových, 5 meruňkových a 6 borůvkových jogurtů. Určete kolika způsoby můžeme rozdat dětem jogurty tak, aby každé dítě dostalo právě jeden, který si vybere. Řešení: Každé dítě si může vybrat ze 3 druhů jogurtů. Dětí je 5, tj. počet způsobů bude 3*3*3*3*3 3 5 Přihrádky druhy jogurtů n... některé přihrádky zůstanou prázdné Předměty děti k... přidělujeme dítě k jogurtu (každé musí dostat jeden, ale může si vybrat z n-druhů) Vyjádřeno pomocí mocniny: n k

16 VARIACE s opakováním 2.3 Variace s opakováním Máme n-různýchdruhůpřihrádek a k-různýchpředmětů Každýdruhpřihrádkymámenejméněk-krát Musíme přiřadit každému předmětu některou přihrádku. Každémuz k-předmětů můžemepřiřadit n-druhůpřihrádek S odvoláním na pravidlo o násobení můžeme vyjádřit počet řešení jako: * V k ( n) n n... n Vzorec pro počet variací k -té třídy z n -druhů prvků s opakováním: * k ( n) n k V

17 Příklad na Variace s opakováním Typickou úlohou je výpočet možností, které skýtá morseova abeceda Má dva druhy znaků -tečka, čárka Písmena tvoří z 1, 2, 3 nebo 4 znaky, číslice jsou ze 4 nebo 5 znaků pro jednoznaková písmena: možnosti: pro dvouznaková písmena: možnosti: pro tříznaková písmena: možností: pro čtyřznaková písmena /čísla: možností: analogicky pro pětiznaková čísla: možností: analogicky,,,,,,,,,, Počet možných variací v morseově abecedě je tedy:

18 Příklad na Variace s opakováním Ve škole píší děti test. Skládá se z 10 otázek a pro každou otázku jsou uvedeny 4 odpovědi, ale jen jedna je správná. existují tedy 4 druhy odpovědí Určete kolika způsoby mohou děti náhodně vyplnit test bez ohledu na to, zda odpovídaly správně. Určete pravděpodobnost, že dítě zodpovědělo všechny otázky správně. Řešení: n 4 druhů odpovědí -přihrádky A, B, C, D k 10 otázek Počet variací vypočteme podle pravidla o násobení násobením počtu možností pro každou z 10 otázek: 4*4*4*4*4*4*4*4*4*4 V * 10(4) Jen jedna varianta je úplně správná. k ( n) n V Pravděpodobnost, že nastane je: 1/ , * k

19 KOMBINACE - odvodíme z Variací bez opakování 2.4 Kombinace Máme n- různých přihrádek a k- nerozlišitelných předmětů a platí, že n > k Budeme obsazovat přihrádky předměty, ale protože jsou předměty stejné -záleží jen na tom, které přihrádky obsadíme a které zůstanou volné. n! Vyjdeme ze vzorce 2.2 pro variace bez opakování V k ( n) ( n k)! ale počet kombinací bude tolikrát menší, kolik variant navíc dovolovalo k - různých předmětů, tj. k! n! C k ( n) n k! ( ) k! Jedná se o vzorec pro počet kombinací k-té třídy z n -prvků Kombinace (angl. COMBINATION) představují neuspořádaný výběr

20 Příklad na KOMBINACE V rezervačním systému do Divadelního sálu Metropoluzbývá osm volných míst. a)kolika způsoby mohou tři zájemci obsadit volná křesla? b)kolika způsoby je může obsadit pět zájemců? Řešení: Pokud by záleželo na pořadí (uspořádání) zájemců, první zájemce by si mohl sednou na 8 míst, druhý na 7 míst, třetí na 6 míst, tj. počet možností by bylo 8*7*6 336 (variací) V rezervačním systému ale nezáleží na tom, zda na místě 125 sedí pan Novák nebo paní Housková. Důležité je pouze, zda je místo volné nebo obsazené. Proto počet variací musíme zmenšit -bude jich tolikrát méně, kolik možností přibylo díky uspořádání, tj. 3! Výpočet a): 8*7* Výpočet b): 3! 6 Dosadíme-li do vzorce pro výpočet kombinací ověříme si, proč je výsledek stejný 8! (8 3)!3! 8*7*6*5* 4 5! C k ( n) 8! (8 5)!5! n! ( n k)! k! 56

21 KOMBINAČNÍ ČÍSLO Základní vzorec: Další pravidla pro počítání s kombinačními čísly: ( ) ( ) k n k k n n n C k!!! k n n k n n n 1 1 n n 0 1 n 1 0 0

22 PRAVDĚPODOBNOST, KOMBINACE Příklad 12 Mezi 8 bezvadných výrobků se přimíchaly 3 zmetky. Náhodně byly vybrány 2 výrobky. a) Jaká je pravděpodobnost, že jsou oba bezvadné? C C Vypočteme počet možností, jak vybrat 2 výrobky z 11 - jedná se o kombinace 2 prvků z 11: C2(11) 11 11! (11 2)! 2! ! 9! 2! ( 11) počet možností, že vybereme 2 bezvadné výrobky C2(8) 8 8! (8 2)! 2! 8 7 6! 6! 2! ( 8) 28 2 Pravděpodobnost, že jsou oba bezvadné je p 28/55 0,

23 Řešení příkladu 12 pomocí kombinatoriky b) Jaká je pravděpodobnost, že je jeden vadný? počet možností pro 1 vadný a 1 bezvadný C1(8)*C1(3) C ! (3 1)! 1! 8! (8 1)! 1! 3 2! 2! 1! 8 7! 7! 1! ( ) C ( 8) Pravděpodobnost, že je právě jeden vadný, je p 24/55 0,436 c) Jaká je pravděpodobnost, že je alespoň jeden vadný? Jedná se o jev opačný k případu a) p 1-0,509 0,491 Pravděpodobnost, že je alespoň jeden vadný, je 0,491

24 Řešení příkladu 12 pomocí pravděpodobnosti 1. Vypočteme pravděpodobnost toho, že oba budou bezvadné, tj. 1. výrobek vybereme s p-ností 8/11 (8 bezvadných z celkem 11 výrobků) a 2. výrobek s p-ností 7/10 (zbylo 7 bezvadných a celkem 10 výrobků): 8 7 p 0, Pravděpodobnost, že bude jeden vadný, vypočteme analogicky: 8 3 p , ,218 0, První vybraný výrobek vybíráme z 11 výrobků -je bezvadný, druhý bude vadný vybraný z 10 výrobků. Nebo první bude vadný vybraný z 11 výrobků a druhý bezvadný vybraný z 10 výrobků. Obě pravděpodobnosti musíme sečíst, protože mohou nastat obě možnosti. 3. Pravděpodobnost, že bude alespoň jeden vadný, vypočteme jako opačný jev k jevu, že oba výrobky budou bezvadné 8 7 p 1 1 0, ,491

25 Příklad: Pravděpodobnost, kombinace a variace s opakováním Ve skříni je naházeno 5 párů střevíců. Tatínek jde potmě, aby nevzbudil děti a potřebuje si vybrat aspoň jeden pár bot. Namátkou tedy vybere 4 střevíce a doufá, že alespoň 2 půjdou do páru. Jaká je pravděpodobnost, že se mu to podaří? Jaká je pravděpodobnost, že neuspěje? K řešení použijte selský rozum. reseny_priklad_strevice.xls

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

Teorie. Kombinatorika

Teorie. Kombinatorika Teorie Kombinatorika Kombinatorika Jak obecně vybrat k prvkové množiny z n prvkové množiny? Dvě možnosti: prvky se v množině neopakují bez opakování. prvky se v množině opakují s opakováním. prvky jsou

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS)

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS) KOMBINATORIKA (4.ročník I.pololetí DE,.ročník I.pololetí NS) Kombinatorika je část matematiky, zabývající se uspořádáváním daných prvků podle jistých pravidel do určitých skupin a výpočtem množství těchto

Více

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

2. Elementární kombinatorika

2. Elementární kombinatorika 2.1. Kombinace, variace, permutace bez opakování 2. Elementární kombinatorika Definice 2.1. Kombinace je neuspořádaná k-tice prvků z dané n-prvkové množiny. Variace je uspořádaná k-tice prvků z dané n-prvkové

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2016/2017 Tutoriál č. 1: Kombinatorika, úvod do teorie pravděpodobnosti Jan Kracík jan.kracik@vsb.cz Kombinatorika Kombinatorika

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška osmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Kombinatorika: pravidla součtu a součinu 2 Kombinatorika:

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ. Čas ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umět použít

0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ. Čas ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umět použít 0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ Čas ke studiu kapitoly: 30 minut Cíl: Po prostudování této kapitoly budete umět použít základní pojmy kombinatoriky vztahy pro výpočet kombinatorických úloh - 6 -

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

Při určování počtu výběrů skupin daných vlastností velmi často používáme vztahy, ve kterých figuruje číslo zvané faktoriál.

Při určování počtu výběrů skupin daných vlastností velmi často používáme vztahy, ve kterých figuruje číslo zvané faktoriál. Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

Motivační úloha: Určete počet přirozených dvojciferných čísel, v jejichž dekadickém zápisu se každá, vyskytuje nejvýše jednou.

Motivační úloha: Určete počet přirozených dvojciferných čísel, v jejichž dekadickém zápisu se každá, vyskytuje nejvýše jednou. KOMBINATORIKA Cíle: 1. Ovládat pojmy faktoriál, kombinační číslo, umět aktivně využít vlastností kombinačních čísel, Pascalův trojúhelník včetně příslušné terminologie a symboliky. 2. Chápat správně pojmy

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace

KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace 1. Určete počet všech čtyřciferných přirozených čísel sestavených z číslic 1, 3, 5, 8, 9 tak, že se v něm každá číslice vyskytuje nejvýše jednou. (120)

Více

4. Kombinatorika a matice

4. Kombinatorika a matice 4 Kombinatorika a matice 4 Princip inkluze a exkluze Předpokládejme, že chceme znát počet přirozených čísel menších než sto, která jsou dělitelná dvěma nebo třemi Označme N k množinu přirozených čísel

Více

Řešené příklady z pravděpodobnosti:

Řešené příklady z pravděpodobnosti: Řešené příklady z pravděpodobnosti: 1. Honza se ze šedesáti maturitních otázek 10 nenaučil. Při zkoušce si losuje dvě otázky. a. Určete pravděpodobnost jevu A, že si vylosuje pouze otázky, které se naučil.

Více

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková Kombinatorika Opakovací kurz 2015 Radka Hájková 1) Děti z hudební školy Písnička, mezi nimiž byla i dvojčata Dita a Zita, psaly v rámci hudební nauky písemnou práci z not. Kolik možností oznámkování mohla

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 1. KAPITOLA - PRAVDĚPODOBNOST 2.10.2017 Kontakt Mgr. Jana Sekničková, Ph.D. jana.seknickova@vse.cz Katedra softwarového inženýrství Fakulta

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Práce s daty, kombinatorika a pravděpodobnost Gradovaný řetězec úloh Téma: Pravděpodobnost

Více

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Kombinatorika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kombinatorika, faktoriály, kombinační

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_42_INOVACE_M.2.01 Integrovaná střední škola

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika 1. KOMBINATORIKA Průvodce studiem Na střední škole se někteří z vás seznámili se základními pojmy z kombinatoriky. V této kapitole tyto pojmy zopakujeme a prohloubíme vaše znalosti. Předpokládané znalosti

Více

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál:

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: PERMUTACE a VARIACE 2.1 Permutace P() = * ( - 1) * ( - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: ( )! P = Jedá se o vzorec pro počet permutací z prvků bez opakováí. 2.2 Variace bez

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Kombinatorika. Michael Krbek. 1. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle

Kombinatorika. Michael Krbek. 1. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle Kombinatorika Michael Krbek. Základní pojmy. Kombinatorika pracuje se spočitatelnými (tedy obvykle konečnými) strukturami a patří kvůli tomu mezi nejstarší oblasti matematiky. Je těžké podat přesný výčet

Více

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel.

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Základy teorie pravděpodobnosti Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Poznámka: Výsledek pokusu není předem znám (výsledek

Více

Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka

Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1

Více

Kombinatorika. November 12, 2008

Kombinatorika. November 12, 2008 Kombinatorika November 12, 2008 Příklad Do školní jídelny přišla skupina 35 žáků. Určete kolika způsoby se mohli seřadit do fronty u výdeje obědů. Řešení: Počet možností je 1 2... 35 = 35! (Permutace bez

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

Opakovací test. Kombinatorika A, B

Opakovací test. Kombinatorika A, B VY_32_INOVACE_MAT_193 Opakovací test Kombinatorika A, B Mgr. Radka Mlázovská Období vytvoření: listopad 2012 Ročník: čtvrtý Tematická oblast: matematické vzdělávání Klíčová slova: maturita, přijímací zkoušky,

Více

( ) ( ) Binomické rozdělení. Předpoklady: 9209

( ) ( ) Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů b) dá alespoň jeden koš c) dá nejdříve

Více

Hammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad

Hammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad Hammingův odhad koule, objem koule perfektní kód perfektní kódy triviální, Hammingův, Golayův váhový polynom výpočet Hammingův kód H 3 Golayův kód G 23 obecně příklad ternární kód Tvrzení: Dán binární

Více

VARIACE BEZ OPAKOVÁNÍ

VARIACE BEZ OPAKOVÁNÍ VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení.

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor004 Vypracoval(a),

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů? 0. Kombinatorika, pravděpodobnost, statistika Kombinatorika ) V restauraci mají na jídelním lístku 3 druhy polévek, 7 možností výběru hlavního jídla, druhy moučníku. K pití si lze objednat kávu, limonádu

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

pravděpodobnosti a Bayesova věta

pravděpodobnosti a Bayesova věta NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,

Více

9.1.6 Permutace I. Předpoklady: 9101, 9102, 9104

9.1.6 Permutace I. Předpoklady: 9101, 9102, 9104 9.1.6 Permutace I Předpoklady: 9101, 9102, 9104 Pedagogická poznámka: První tři příklady jsou opakování, je možné je přeskočit, nebo použít na zkoušení. Př. 1: Vyřeš slovní úlohy. a) Na plese se losuje

Více

Pracovní list č. 4 Počítáme s pravděpodobností

Pracovní list č. 4 Počítáme s pravděpodobností racovní list č. 4 očítáme s pravděpodobností Cíl cvičení: Tento pracovní list je určen pro cvičení předmětu Kvantitativní metody II (přednáška 3.1). Je zaměřen především pro práci s kalkulačkou, program

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Definice pravděpodobnosti 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematických struktur a algoritmů procesy dvojího druhu. Jednodušší jsou deterministické procesy,

Více

Náhodný jev. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy.

Náhodný jev. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Sbírka řešených příkladů z pravděpodobnosti: náhodný jev Vedoucí bakalářské práce:

Více

Matematika III. 24. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 24. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 24. září 2018 Něco málo o mně RNDr. Radomír Paláček, Ph.D. radomir.palacek@vsb.cz H507/3 web: homel.vsb.cz/ pal39 Co nás v semestru čeká? přednášky (pondělí),

Více

A 2.C. Datum: 13.5.2010

A 2.C. Datum: 13.5.2010 Jméno: Řešení Datum: 13.5.2010 A 2.C 1) Vojenskou kolonu budou tvořit dva terénní vozy UAZ, tři auta Praga V3S a čtyři Tatry 138. Kolika způsoby lze kolonu seřadit, jestliže: a) Na pořadí vozidel nejsou

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly METODICKÝ LIST DA6 Název tématu: Autor: Předmět: Dělitelnost dělitel a násobek, sudá a lichá čísla, prvočísla a čísla složená Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky:

Více

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

3. Podmíněná pravděpodobnost a Bayesův vzorec

3. Podmíněná pravděpodobnost a Bayesův vzorec 3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/1 Strojírenství Zaměření: Předmět: Matematika Ročník: 4. Počet hodin týdně: 4 Počet hodin celkem: Tento plán vychází z rámcového vzdělávacího programu pro

Více

9.1.1 Základní kombinatorická pravidla I

9.1.1 Základní kombinatorická pravidla I 9.. Základní kombinatorická pravidla I Předpoklady: Př. : Ve třídě je 7 děvčat a 3 kluků. Kolik máme možností jak vybrat dvojici klukholka, která bude mít projev na maturitním plese? Vybíráme ze 7 holek

Více

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina:

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina: KMA/MAT1 Matematika 1 Přednáška č. 2 Jiří Fišer 26. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 26. září 2016 1 / 24 Součin, podíl a mocniny komplexních čísel v goniometrickém tvaru Dvě nenulová

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Diskrétní matematika. DiM /01, zimní semestr 2018/2019 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

3. podzimní série. ... {z }

3. podzimní série. ... {z } 3. podzimní série Téma: Kombinatorika Datumodeslání: º ÔÖÓ Ò ¾¼¼ ½º ÐÓ Ó Ýµ Monča potřebuje zatelefonovat Pepovi, avšak nemá u sebe svůj telefonní seznam PraSátek. Zná však předvolbu 723 a vzpomněla si,

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Další vlastnosti kombinačních čísel

Další vlastnosti kombinačních čísel 9.. Další vlastnosti kombinačních čísel Předpoklady: 97, 98 Kombinační čísla udávají počet kombinací bez opakování = neuspořádaných k-tic sestavených z n prvků bez opakování. n! Platí: = - počet možností

Více

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. 1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Kombinatorika a úvod do pravděpodobnosti

Kombinatorika a úvod do pravděpodobnosti Kombinatorika a úvod do pravděpodobnosti Jiří Fišer 27. září 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 27. září 2011 1/ 18 Variacek-tétřídyznprvků: = uspořádanéskupinyokprvcíchvybranýchznprvků. Permutace

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3 Příklad 1 a) Určete počet všech přirozených trojciferných čísel, v jejichž desítkovém zápisu se vyskytuje každá číslice nejvýše jednou s tím, že na prvním místě nesmí stát nula, jak je obvyklé při chápání

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

7. KOMBINATORIKA, BINOMICKÁ VĚTA. Čas ke studiu: 2 hodiny. Cíl

7. KOMBINATORIKA, BINOMICKÁ VĚTA. Čas ke studiu: 2 hodiny. Cíl 7. KOMBINATORIKA, BINOMICKÁ VĚTA Čas ke studiu: hodiy Cíl Po prostudováí této kapitoly budete schopi řešit řadu zajímavých úloh z praxe, týkajících se počtu skupi, které lze sestavit ( vybrat ) z daé možiy

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Co Fibonacci ani Ludolf netušili. aneb

Co Fibonacci ani Ludolf netušili. aneb Co Fibonacci ani Ludolf netušili aneb Jak souvisí čísla Fibonacciho s číslem π Doc. RNDr. Emil Calda, CSc. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol VARIACE

Více

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 4

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 4 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST Příklad 1 a) Jev spočívá v tom, že náhodně vybrané přirozené číslo je dělitelné pěti a jev v tom, že toto číslo náhodně vybrané přirozené číslo zapsané v desítkové soustavě má

Více

Kombinatorika, základy teorie pravděpodobnosti a statistiky

Kombinatorika, základy teorie pravděpodobnosti a statistiky Kombinatorika, základy teorie pravděpodobnosti a statistiky Jiří Fišer 30.zářía5.října2010 JiříFišer (KMA,PřFUPOlomouc) KMA MAT1,MT1 30.zářía5.října2010 1/12 Variacek-tétřídyznprvků: = uspořádanéskupinyokprvcíchvybranýchznprvků.

Více

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2.

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2. 9..3 Pravděpodobnosti jevů I Předpoklady: 90 Opět se vrátíme k hodu kostkou. Pokus má šest stejně pravděpodobných náhodných výsledků pravděpodobnost každého z nich je 6. Do domečku nám chybí tři políčka.

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka; I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte:

Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte: Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte: 8 4 8 4 + 4 8 4 4. Zjednodušte: [ 1680 ] 5 6 7 4 3 [ 840 ] [ 70 ] 5 1 8 + 9 1 30 9 3. Upravte na společného jmenovatele: 1 7 0

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

VELIKOST VEKTORU, POČETNÍ OPERACE S VEKTORY

VELIKOST VEKTORU, POČETNÍ OPERACE S VEKTORY VELIKOST VEKTORU, POČETNÍ OPERACE S VEKTORY Vektoru můžeme přisoudit velikost. S vektory také můžeme provádět početní operace, které jsme zvyklí provádět s čísly, tzn. že je možné je sčítat, odčítat a

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Kombinatorika. Irina Perfilieva. 19. února logo

Kombinatorika. Irina Perfilieva. 19. února logo Kombinatorika Irina Perfilieva Irina.Perfilieva@osu.cz 19. února 2008 Outline 1 Předmět kombinatoriky Základní kombinatorické konfigurace 2 Dvě základní pravidla kombinatoriky 3 Počet základních kombinatorických

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více