1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;"

Transkript

1 I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá jevu A ) B při jednom hodu padne sudé číslo; Řešení: P B) = = 1 = 0 Je celkem šest možností {1,,, 4,, } a tři {, 4, } jsou příznivé jevu B c) C při dvou hodech padnou oě šestky; Řešení: P C) = 1 = Je celkem možností {i, j); i, j = 1,, } a z nich je jedna {, )} je příznivá jevu C d) D při dvou hodech padnou stejné počty ok; Řešení: P D) = = = 1 = 01 Je celkem možností viz c) ) Příznivých jevu D je z nich šest, {1, 1),,, )} Neo inteligentně: Při prvním hodu padne číslo a toto předepsané číslo padne při druhém hodu s pravděpodoností p = 1 e) E při dvou hodech padne alespoň jednou šestka; Řešení: Jev E je,že nepadne žádná šestka a ten má pravděpodonost P E) = = = 11 Je tedy P E) = 1 P E) = f) F při dvou hodech padne právě jednou šestka; Řešení: P F ) = = 18 Je F = F 1 F, kde jev F 1 je prvním hodem šestka a druhým ne šestka a F je prvním hodem ne šestka a druhým šestka Jevy F 1 a F se navzájem vylučují, tedy pravděpodonosti se sčítají Při výpočtu pravděpodoností P F 1 ) a P F ) využíváme skutečnosti, že hody jsou nezávislé, tedy jednotlivé pravděpodonosti se násoí g) G při dvou hodech padne alespoň na jedné kostce lichý počet ok; Řešení: Jev G je, že padne při oou hodech sudý počet ok Pravděpodonost, že při hodu padne sudý počet ok je = 1 Je tedy P G) = 1 P G) = = = = 07 Využíváme opět nezávislosti 4 hodů a tedy násoení odpovídajících pravděpodoností h) H při dvou hodech je součet ok roven 8; Řešení: Z možností {i, j); i, j = 1,, } jsou jevu H příznivé možnosti {, ),, ), 4, 4),, ),, )}, tedy celkem pět Hledaná pravděpodonost je 1

2 P H) = = k) K při dvou hoden je součin počtů ok roven 8; Řešení: Z možností {i, j); i, j = 1,, } jsou jevu K příznivé možnosti {, 4), 4, )}, tedy celkem dvě Je tedy P K) = = 1 18 = 00 Házíme třikrát mincí třemi mincemi) Určete pravděpodonosti těchto jevů: Kolik je elementárních jevů a zapište je Jakou mají pravděpodonost Řešení: Elementárních jevů je celkem 8 Můžeme je zapsat jako uspořádané trojice {R, R, R), R, R, L), R, L, R), L, R, R), R, L, L), L, R, L), L, L, R), L, L, L)} Místo písmen můžeme volit např symoly 0 a 1 Pravděpodonost toho, že na minci padne ru neo líc je stejná a je rovna 1 Když využijeme toho, že jsou jednotlivé hody nezávislé, tedy se pravděpodonosti průniku jevů dostanou jako součin jednotlivých pravděpodoností, dostaneme pro každý elementární jev pravděpodonost P = = 1 8 = 01 a) A na všech mincích padne ru; Řešení: Je P A) = 1, když si uvědomíme, že z 8 možností je jevu A příznivá 8 pouze jedna Můžeme postupovat i pomocí násoení pravděpodonosti při výpočtu pravděpodoností průniku nezávislých jevů ) B na všech mincích padne stejná strana; Řešení: Je P B) = 8 = 1 = 0, když uvážíme, že z osmi možností jsou jevu 4 příznivé dvě Lze postupovat také takto Je B = B 1 B, kde jev B 1 je na všech ru a jev B je na všech líc Jevy se navzájem vylučují B 1 B = V a tedy P B) = P B 1 ) + P B ) = = 1 4 c) C alespoň na jedné minci padne ru; Řešení: Jev C je opačný k jevu C na všech mincích padne líc Je P C) = = 1 8 Je tedy P C) = 1 P C) = = 7 = 0, 87 8 d) D padne právě jednou ru; Řešení: Z osmi možností jsou příznivé jevu tři Je tedy P D) = 8 = 0, 7 V osudí máme ílých koulí a c černých koulí, které jsou nerozlišitelné Určete pravděpodonosti uvedených jevů: a) A náhodně vyjmutá koule je ílá Řešení: Je celkem + c možností jakou kouli vyjmeme Z nich má za následek jev A Je tedy P A) = + c

3 ) B vyíráme jednu po druhé a poslední, která v osudí zyde je černá Řešení: Každá koule má stejnou pravděpodonost ýt poslední Je tedy celkem +c možností a z nich je c příznivých jevu B Je tedy P B) = c + c c) C vyjmeme kouli, vrátíme zpátky a opět vyjmeme kouli Oě koule mají ílou arvu Řešení: V každém tahu je pravděpodonost vyjmutí ílé koule rovna + c Protože jsou oa tahy nezávislé, je pravděpodonost dvou tahů rovna součinu pravděpodoností z jednotlivých tahů Je tedy P C) = + c d) D vyjmeme kouli, odložíme stranou a vyjmeme další kouli Oě mají černou arvu Řešení: Musí ýt c Podoně jako v c) je P D) = c + c c 1 + c 1 e) E vyjmeme kouli, vrátíme zpátky a opět vyjmeme kouli Oě koule mají stejnou arvu Řešení: Jev je sjednocením dvou jevů, které se navzájem vylučují Jsou to E 1 tažené koule jsou ílé a E oě tažené jsou černé Je pak c + c P E) = P E 1 ) + P E ) = + = + c + c + c) f) F vyjmeme kouli, odložíme stranou a vyjmeme další kouli Oě mají rozdílnou arvu Řešení: Jev je sjednocením dvou jevů, které se navzájem vylučují Jsou to jevy F 1, první koule je ílá, druhá černá a jev F první je černá a druhá ílá Je tedy P F ) = c P F 1 ) + P F ) = + c) + c 1) + c + c) + c 1) = c + c) + c 1) oě g) G vyjmeme pět koulí a všechny jsou ílé ) Vypočtěte pro = 1 a c = 10 + c Řešení: Je celkem možností jak vyjmout pětici koulí a znich je příz- nivých jevu G Je tedy P G) = Pro číselné zadání je 1 + c P G) = ) = = = 1 0 = 00 4 Píšeme náhodně tři cifry Určete pravděpodonosti těchto jevů:

4 Úlohu řešte ve dvou variantách: číslo může ýt liovolné, neo číslo nesmí začínat nulou) a) A Cifry jsou navzájem různé Řešení: Každou z cifer je možné vyrat celkem 10 způsoy Celkový počet možných vole je tedy 10 = 0 Příznivých možností jevu A je 1098 = 70, neoť první cifru lze vyrat 10 způsoy, druhou 9 způsoy 1 je už z výěru vyloučena) a třetí 8 již dvě jsou zakázány) Je tedy P A) = 70 0 = 07 Varianta A Pro všechny voly je možné první cifru vyrat 9 způsoy nesmí ýt 0), druhou a třetí deseti, tedy je celkem = 900 možností Příznivé jevu A jsou voly: 9 možností pro první cifru, nula je vyloučena), 9 možností pro druhou zvolená je vyloučena, ale přidáme nulu) a 8 pro třetí cifru, tedy celkem 998 = 41 Je tedy P A ) = = 07 To znamená, že P A) = P A ) ) B Pravě dvě cifry jsou stejné Řešení: Je opět 0 všech možností voly Příznivých jevu B je 70 Dvojici shodných cifer lze vyrat 10 způsoy, 9 pak zývající cifru, kterou lze umístit na první, druhou či třetí pozici Dostaneme tak celkem 109 = 70 možností Je tedy P B) = 70 = 07 0 Pro variantu B dostaneme opět 900 všech možností výěru Příznivých jevu B je 99 = 4 Oznamčme si cifry písmeny a a Uvažovaná čísla mají tvar {a, a, }, {a,, a} {, a, a} Pro první dva tvary je a 0, tedy 9 možností a může ýt nula, tj taky 9 možností Pro třetí tvar je 0, tedy 9 možností a a může ýt nulové, tj opět 9 možností Každá z uvažovaných variant čísla se vyskytne ve 99 = 81 možnostech, tudíž všech je celkem 81 = 4 Je tedy P B ) = 4 = 07 Rovněž i tady je P B) = P 900 B ) c) C Cifry jsou všechny stejné Řešení: Cifru je možné volit 10 způsoy, je tedy P C) = 10 = Pro variantu C dostaneme 9 možností voly cifry a tudíž je P C ) = 9 = 001, 900 tedy i zde je P C) = P C ) Poznamenejme, že ovšem platí: P A) + P B) + P C) = 1 Ve sportce se losuje čísel ze 49 Vypočtěte pravděpodonosti jevu A k uhodneme k čísel, k = 0, 1,, Poznamenejme, že výhra se vyplácí v případě jevů A, A, A 4, A 49 Řešení: Pro volu šestice čísel ze 49 máme celkem možností Uhádnout zvolenou šestici znamená zvolit jedinou možnost Je tedy P A ) = 1 ) = = Pokud chceme uhádnout pět čísel, musíme zvolit pět čísel ze šesti To je celkem možností Poslední šesté číslo volíme ze zývajících 49 = 4 čísel Je tedy 4

5 49 4 P A ) = = 49 Odoně dostaneme = P A 4 ) = P A ) = P A ) = P A 1 ) = a 4 = 49 4 = = = = , = 1710, = 017, = 04101, P A 0 ) = = = 049 Poznamenejme, že je jedná o hypergeometrické rozdělení: 49 je všech prvků; je sledované vlastnosti tažených); k, k = 0, 1,, je počet tažených ve výěru čísel Tedy P A k ) = 4 ) k k 49, k = 0, 1,, V osudí je ílých koulí a c černých koulí Dva hráči jeden po druhém náhodně vyjímají kouli a po tahu ji vrací) Hra končí jakmile některý z hráčů vytahne ílou kouli Vypočtěte pravděpodonosti P 1 výhry prvního hráče a P výhry druhého Vyčíslete pro = c = 1 házení mincí) a = 1, c = házení hrací kostkou)

6 Řešení: Pravděpodonost tažení ílé koule v kterékoliv pokusu je a černé je + c c K tomu, ay první hráč vyhrál v prvním kole, je nutné, ay vytáhl ílou kouli + c hned na první pokus Ay vyhrál druhý hráč, musí ýt první neúspěšný a druhý musí vytáhnout ílou kouli Ay tyto situace nastaly až v k tém kole, k > 1, musí proěhnout k 1 kol losování, ve kterých jsou oa hráči neúspěšní Celkovou pravděpodonost dostaneme jako součet pravděpodoností výher jednotlivých kol Je tedy P 1 = c c 4 c k + c + + c + c + + c + c + + c + c + = = c k + c = + c k=0 + c + c, a P = c c c k+1 + c + c + + c + c c + c + = = c c k c = + c + c + c + c k=0 Pochopitelně můžeme počítat jednodušeji P = 1 P 1 Pro uvedená číselná zadání dostaneme: = c = 1 : P 1 =, P = 1 ; = 1, c = : P 1 = 11, P = 11 7 Dva střelci střílí dvakrát na terč První jej zasahuje s pravděpodoností p 1 a druhý s p Vítězí ten, kdo má více zásahů Vypočtěte pravděpodonosti možných výsledků Vyčíslete jednotlivé pravděpodonosti pro hodnoty a) p 1 = 09, p = 08; ) p 1 = 09, p = 08 Řešení: Jednotlivé výstřely jsou na soě nezávislé, pravděpodonosti průniků jednotlivých jevů dostaneme násoením P 1 vítězí první musí nastat tyto situace: 1 dvakrát zasáhne, dvakrát mine; 1 dvakrát zasáhne, jednou zasáhne a jednou mine; 1 jednou zasáhne a jednou mine, dvakrát mine Potom je pravděpodonost výhry prvního rovna P 1 = p 11 p ) + p 1p 1 p ) + p 1 1 p 1 )1 p ) Odoně dostaneme pro výhru druhého pravděpodonost P = p 1 p 1 ) + p p 1 1 p 1 ) + p 1 p )1 p 1 ) a pravděpodonost nerozhodného výsledku P x = p 1p + 4p 1 p 1 p 1 )1 p ) + 1 p 1 ) 1 p ) Pro zadané číselné hodnoty dostaneme: a) P 1 = 089, P = 0198, P x = 014; ) P 1 = 0988, P = 0148, P x = 074

7 8 Mezi součástkami je % vadných Ze skupiny součástek jich náhodně vyereme 1 Jaké jsou pravděpodonosti jevů, že ve vyrané skupině je k, k = 0, 1,, vadných součástek Řešení: Připomeňme, že se jedná o hypergeometrické rozdělení Všech možných výěrů 1 součástek prvků) ze sta je K tomu, ay souor 1 osahoval k vadných součástek musíme je vyrat ze souoru vadných Zývajících 1 k dorých musíme vyrat ze souoru 97 dorých Pravděpodonost jevu, že souor osahuje k vadných součástek je tedy 97 P k = k 1 k, k = 0, 1,, 1 Dosazením dostaneme: 97 P 0 = P 1 = P = P = ) = = 0108, ) = = 01, ) = = 00, ) = = Student zná odpověď na 0 otázek z Náhodně si vytáhne otázky Jaké jsou pravděpodonosti toho, že zodpoví,, 1 či žádnou otázku Řešení: 0 P = P = 0 ) = = 049; ) = = 04104; 7

8 0 P 1 = = 04 4 = 0089; P 0 = ) = 4 4 = V osudí jsou ílé a černé koule Náhodně vytáhneme dvě a pravděpodonost toho, že jsou ílé je 0 Jaký je nejmenší možný počet koulí v osudí Řešení: Předpokládejme, že je v osudí celkem n koulí a z toho je k, k ílých Potom je pravděpodonost tažení dvou ílých koulí rovna k p = = n kk 1) nn 1) Odtud dostaneme podmínku 1 = kk 1) nn 1) nn 1) = kk 1) Postupným dosazováním dostáváme: n =, k = : = 4; n =, k = : = 4; k = : = 1; n = 4, k = : 1 = 4; k = : 1 = 1; k = 4 : 1 = 4 Podmínka je splněna pro n = 4 a k = V osudí jsou 4 koule, ílé a 1 černá 11 Máme domluvenou schůzku mezi 1 a 1 hodinou, na kterou oa přicházíme náhodně a čekáme nejvýše 10 minut Určete jaká je pravděpodonost P s, že dojde k setkání Jaká ude tato pravděpodonost P s, pokud čeká pouze jeden Řešení: Označme t 1 čas po 1 hodině, kdy přijde první označený, ne v čase) a t, kdy přijde druhý Potom od t 1, t ) ve čtverci 0, 1) 0, 1) označuje odpovídající situaci Ay došlo k setkání, musí ýt t 1 t < 1 Protože je každá situace stejně pravděpodoná, je pravděpodonost setkání rovna poměru osahu části čtverce, která odpovídá setkání ku osahu čtverce Je tedy ) P s = 1 ) : 1 = 1 = 11 = 0, 0 Pokud ude čekat jen první, musí přijít dříve a pak setkání odpovídá stav 0 t t 1 < 1 Je tedy 8

9 P s = ) ) : 1 = 1 1 ) = 11 7 = 0, Přijímač přijímá signály ze dvou zdrojů Signály přicházejí náhodně v intervalu 0,s Pokud je přijat signál z 1 vysílače, je přijímač na 0,1s lokován Vypočtěte pravděpodonosti P p přijetí signálu a P z zalokování příjmu Řešení: Označme si t 1 okamžik příchodu signálu z 1 vysílače a t okamžik příchodu signálu z vysílače Je 0 < t 1, < 0, Ay yl přijímač lokován, musí ýt t 1 < t < t + 0, 1 Bod t 1, t 1 ) ve čtverci 0; 0, ) 0; 0, ) odpovídá situaci příchodu oou signálů Protože je každá možnost stejně pravděpodoná, je pravděpodonost zalokování P z rovna poměru části čtverce ku osahu celého čtverce Je tedy P z = 1 0, 0, ) : 0, 0, 0, 1 = = 0, 0, Pravděpodonost příjmu je tedy P p = 1 P z = 1 0, = 0, 74 1 Vlaky metra jezdí po minutách Jestliže jdeme náhodně na metro, vypočtěte pravděpodonost P jevu, že čekáme nejvýše 1 minutu : Řešení Označíme si t 1 okamžik našeho příchodu a t okamžik příjezdu metra K tomu, ay nastal sledovaný jev musí platit 0 t t 1 1 Každé situaci odpovídá od t 1, t ) ve čtverci 0, 0, Příznivé situace sledovanému jevu jsou v pásu splňujícím podmínku 0 t t 1 1 Pravděpodonost P je rovna poměru osahu pásu a osahu čtverce Je tedy P = 1 1) ) = 1 = 9 0 = 0, 18 9

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

9.2.1 Náhodné pokusy, možné výsledky, jevy

9.2.1 Náhodné pokusy, možné výsledky, jevy 9.2.1 Náhodné pokusy, možné výsedky, jevy Předpokady: 9110, 9114 Hodím kámen za normáních okoností jediný výsedek = spadne na zem Hodíme kámen na terč někoik možných výsedků (trefíme desítku, devítku,,

Více

Základy pravděpodobnosti poznámky. Jana Klicnarová

Základy pravděpodobnosti poznámky. Jana Klicnarová Základy pravděpodobnosti poznámky Jana Klicnarová 1 V této části připomeneme základní pojmy a vztahy pro práci s náhodou. 0.1 Náhodné jevy Uvažujme situace, které mohou a nemusí nastat a o kterých v nějakém

Více

Domino jako losovací nástroj a nositel matematických idejí a struktur

Domino jako losovací nástroj a nositel matematických idejí a struktur Domino jako losovací nástroj a nositel matematických idejí a struktur Adam Płocki, Akademia Pedagogiczna, Krakow (Polsko) ABSTRACT: Práce se týká domina jako nositele a tvůrce matematických idejí a problémů.

Více

Pravděpodobnost a statistika pro SŠ

Pravděpodobnost a statistika pro SŠ Pravděpodobnost a statistika pro SŠ RNDr. Blanka Šedivá, Ph.D., katedra matematiky, Fakulta aplikovaných věd Západočeské univerzity v Plzni sediva@kma.zcu.cz 28. března 2012 Počátky teorie pravděpodobnosti

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost

6. Pravděpodobnost a statistika. 6.1. Pravděpodobnost 6. Pravděpodobnost a statistika 6.1. Pravděpodobnost Pravděpodobnost (hovorově šance; značka je P z anglického probability) je hodnota vyčíslující jistotu resp. nejistotu výskytu určité události. K pojmu

Více

Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1

Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1 Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1 Příklad 1. Z uvedených možností vyerte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Jestliže v sootu neude pěkně, koncert se

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

GOLDEN BANK 300. Universe games, s.r.o., U Habrovky 247/11, 140 00 Praha 4. Herní plán

GOLDEN BANK 300. Universe games, s.r.o., U Habrovky 247/11, 140 00 Praha 4. Herní plán Herní plán vstup mincí: 2, 5, 10, 20 Kč případně 50 Kč vstup bankovek: 100, 200, 500, 1000 Kč případně 2000, 5000 Kč max. SÁZKA na 1 hru : 2 Kč (2 kredity) max. výhra : 300 Kč (300 kreditů) v jedné hře

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

RED GAMES MOD elektronik, s.r.o., Bělisko 1386, Nové Město na Moravě

RED GAMES MOD elektronik, s.r.o., Bělisko 1386, Nové Město na Moravě Herní plán vstup mincí 5, 10, 20, 50 Kč vstup bankovek: 100, 200, 500, 1000, 2000 Kč případně 5000 Kč max. sázka na 1 hru: 5 Kč (5 kreditů) max. výhra: 750 Kč (750 kreditů) v jedné hře výherní podíl: 91

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Rozvaha a změny rozvahových položek. Rozvahové a výsledkové účty. Podvojný účetní zápis. Syntetické a analytické účty.

Rozvaha a změny rozvahových položek. Rozvahové a výsledkové účty. Podvojný účetní zápis. Syntetické a analytické účty. Rozvaha ZÁKLADY ÚČETNICTVÍ 5 5 ZÁKLADY ÚČETNICTVÍ Rozvaha a změny rozvahových položek. Rozvahové a výsledkové účty. Podvojný účetní zápis. Syntetické a analytické účty. 5.1 Rozvaha 5.1.1 Aktiva a pasiva

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 62. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Čtvercová tabulka je rozdělena na 16 16 políček. Kobylka se po ní pohybuje dvěma směry: vpravo nebo dolů, přičemž střídá skoky

Více

9.1.1 Základní kombinatorická pravidla I

9.1.1 Základní kombinatorická pravidla I 9.. Základní kombinatorická pravidla I Předpoklady: Př. : Ve třídě je 7 děvčat a 3 kluků. Kolik máme možností jak vybrat dvojici klukholka, která bude mít projev na maturitním plese? Vybíráme ze 7 holek

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Autoři hry: Jan Rojewski a Michał Stajszczak HRA PRO 2 6 HRÁČŮ VE VĚKU 8 99 LET

Autoři hry: Jan Rojewski a Michał Stajszczak HRA PRO 2 6 HRÁČŮ VE VĚKU 8 99 LET Autoři hry: Jan Rojewski a Michał Stajszczak HRA PRO 2 6 HRÁČŮ VE VĚKU 8 99 LET FORMULE jsou hra, díky níž mohou hráči zažít vzrušení, jež znají jen závodní jezdci. Není přitom potřeba mít řidičský průkaz,

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo:

PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: PORG, přijímací zkoušky 2014 Matematika B, str. 1 Reg. číslo: 1. Toník se dopravuje ze školy domů autobusem číslo 176, který jezdí vždy v celou hodinu a pak dále po každých 15 minutách. Dnes dorazil Toník

Více

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární.

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární. Číselné soustavy V běžném životě používáme soustavu desítkovou. Desítková se nazývá proto, že má deset číslic 0 až 9 a v jednom řádu tak dokáže rozlišit deset různých stavů. Mikrokontroléry (a obecně všechny

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Hodnocení soutěžních úloh

Hodnocení soutěžních úloh Hodnocení soutěžních úloh Superciferný součet Koeficient 1 Kategorie mládež Soutěž v programování 24. ročník Krajské kolo 2009/2010 15. až 17. dubna 2010 Vaší úlohou je vytvořit program, který spočítá

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY. Centrum pro zjišťování výsledků vzdělávání

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY. Centrum pro zjišťování výsledků vzdělávání KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY platný od školního roku 009/010 MATEMATIKA ZÁKLADNÍ ÚROVEŇ OBTÍŽNOSTI Zpracoval: Schválil: Centrum pro zjišťování výsledků vzdělávání Ministerstvo

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 60. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Součin číslic libovolného vícemístného čísla je vždy menší než toto číslo. Pokud počítáme součin číslic daného vícemístného čísla, potom součin

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Herní plán číselných loterií a sázkových her SAZKA

Herní plán číselných loterií a sázkových her SAZKA Herní plán číselných loterií a sázkových her SAZKA HLAVA I. obecná ustanovení I.1 1. SAZKA sázková kancelář, a.s., organizuje číselné loterie a sázkové hry ve smyslu ustanovení zákona č. 202/1990 Sb.,

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evroský sociální fond Praha & EU: Investujeme do vaší udoucnosti Ekonomika odniku Katedra ekonomiky, manažerství a humanitních věd akulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Vztahy

Více

Binomické rozdělení zobrazené pomocí modelu římské kašny nádržky se naplní podle Pascalova trojúhelníku: 1:4:6:4:1

Binomické rozdělení zobrazené pomocí modelu římské kašny nádržky se naplní podle Pascalova trojúhelníku: 1:4:6:4:1 Binomické rozdělení Někdy se říká, že statistika je užitý počet pravděpodobnosti, a na tomto tvrzení je nepochybně něco pravdy, pokud se nevezme doslovně. Připomeňme si, že statistiku lze rozdělit na statistiku

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

53. ročník matematické olympiády. q = 65

53. ročník matematické olympiády. q = 65 53. ročník matematické olympiády! 1. V rovině je dán obdélník ABCD, kde AB = a < b = BC. Na jeho straně BC eistuje bod K a na straně CD bod L tak, že daný obdélník je úsečkami AK, KL a LA rozdělen na čtyři

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

S U P E R G A M E S HERNÍ PLÁN

S U P E R G A M E S HERNÍ PLÁN Zadávání kreditů : S U P E R G A M E S HERNÍ PLÁN Přístroj přijímá mince v hodnotě 5, 10 a 20 Kč. Akceptor bankovek přijímá bankovky dle nastavení provozovatele v hodnotách : 50,100, 200, 500, 1000 a 2000

Více

VARIACE BEZ OPAKOVÁNÍ

VARIACE BEZ OPAKOVÁNÍ VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení.

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Herní řád soutěžního pořadu,,míň JE VÍC!

Herní řád soutěžního pořadu,,míň JE VÍC! Herní řád soutěžního pořadu,,míň JE VÍC! I. Soutěž a pořadatel soutěže 1. Pořad Míň je víc! je všeobecná znalostní televizní soutěž, v níž vždy tří soutěžní páry soutěží o to, který z nich uvede takovou

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Do jednoho vagonu se vejde 70

Více

strategická desková hra pro dva hráče

strategická desková hra pro dva hráče strategická desková hra pro dva hráče Hrací potřeby: Sada 10 hracích kamenů pro každého hráče: 2 Pěšáci, 2 Rytíři, 1 Věž, 1 Zvěd, 1 Generál, 1 Katapult, 1 Lučištník, 1 Král 1 kámen se symbolem vlajky 4

Více

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 006 MAACZMZ06DT MATEMATIKA didaktický test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

HERNÍ PLÁN A POPIS HRY

HERNÍ PLÁN A POPIS HRY Přijímané mince: 10, 20, 50 Kč Přijímané bankovky: 100, 200, 500, 1000, 2000, 5000 Kč Maximální sázka do hry: 50 Kč Maximální výhra z jedné hry: 50 000 Kč Výherní podíl: 93-97 % Výplata kreditu je možná

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

Herní plán DIRTY MONEY

Herní plán DIRTY MONEY Herní plán DIRTY MONEY Dirty Money 1. Úvod Dirty Money je hra s pěti válci a 9 výherními liniemi. Hra obsahuje 9 různých symbolů. 2. Pravidla hry a její průběh Ve hře Dirty Money může hráč nastavit sázky

Více

Gymnázium, Praha 6, Arabská 16. předmět Programování, vyučující Tomáš Obdržálek Lodě Dokumentace ročníkového projektu Martin Karlík, 1E 17.5.

Gymnázium, Praha 6, Arabská 16. předmět Programování, vyučující Tomáš Obdržálek Lodě Dokumentace ročníkového projektu Martin Karlík, 1E 17.5. Gymnázium, Praha 6, Arabská 16 předmět Programování, vyučující Tomáš Obdržálek Lodě Dokumentace ročníkového projektu Martin Karlík, 1E 17.5.2014 Anotace In this school year we had to chose some year project.

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Diskrétní Matematika (456-533 DIM)

Diskrétní Matematika (456-533 DIM) Diskrétní Matematika (456-5 DIM) Doc. RNDr. Petr Hliněný, Ph.D. petr.hlineny@vsb.cz 7. července 005 Verze.0. Copyright c 004 005 Petr Hliněný. Obsah 0. Předmluva.................................... iv

Více

HERNÍ PLÁN SÁZKOVÉ HRY

HERNÍ PLÁN SÁZKOVÉ HRY HERNÍ PLÁN SÁZKOVÉ HRY Systém : Sada her : Min. sázka na jednu hru (dle nastavení): Max. sázka na jednu hru (dle nastavení): CLS - GAMES SYSTÉM Emotion 1 Kč 1.000 Kč Nastavený výherní podíl: 89-97 % Vložení

Více