1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;"

Transkript

1 I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá jevu A ) B při jednom hodu padne sudé číslo; Řešení: P B) = = 1 = 0 Je celkem šest možností {1,,, 4,, } a tři {, 4, } jsou příznivé jevu B c) C při dvou hodech padnou oě šestky; Řešení: P C) = 1 = Je celkem možností {i, j); i, j = 1,, } a z nich je jedna {, )} je příznivá jevu C d) D při dvou hodech padnou stejné počty ok; Řešení: P D) = = = 1 = 01 Je celkem možností viz c) ) Příznivých jevu D je z nich šest, {1, 1),,, )} Neo inteligentně: Při prvním hodu padne číslo a toto předepsané číslo padne při druhém hodu s pravděpodoností p = 1 e) E při dvou hodech padne alespoň jednou šestka; Řešení: Jev E je,že nepadne žádná šestka a ten má pravděpodonost P E) = = = 11 Je tedy P E) = 1 P E) = f) F při dvou hodech padne právě jednou šestka; Řešení: P F ) = = 18 Je F = F 1 F, kde jev F 1 je prvním hodem šestka a druhým ne šestka a F je prvním hodem ne šestka a druhým šestka Jevy F 1 a F se navzájem vylučují, tedy pravděpodonosti se sčítají Při výpočtu pravděpodoností P F 1 ) a P F ) využíváme skutečnosti, že hody jsou nezávislé, tedy jednotlivé pravděpodonosti se násoí g) G při dvou hodech padne alespoň na jedné kostce lichý počet ok; Řešení: Jev G je, že padne při oou hodech sudý počet ok Pravděpodonost, že při hodu padne sudý počet ok je = 1 Je tedy P G) = 1 P G) = = = = 07 Využíváme opět nezávislosti 4 hodů a tedy násoení odpovídajících pravděpodoností h) H při dvou hodech je součet ok roven 8; Řešení: Z možností {i, j); i, j = 1,, } jsou jevu H příznivé možnosti {, ),, ), 4, 4),, ),, )}, tedy celkem pět Hledaná pravděpodonost je 1

2 P H) = = k) K při dvou hoden je součin počtů ok roven 8; Řešení: Z možností {i, j); i, j = 1,, } jsou jevu K příznivé možnosti {, 4), 4, )}, tedy celkem dvě Je tedy P K) = = 1 18 = 00 Házíme třikrát mincí třemi mincemi) Určete pravděpodonosti těchto jevů: Kolik je elementárních jevů a zapište je Jakou mají pravděpodonost Řešení: Elementárních jevů je celkem 8 Můžeme je zapsat jako uspořádané trojice {R, R, R), R, R, L), R, L, R), L, R, R), R, L, L), L, R, L), L, L, R), L, L, L)} Místo písmen můžeme volit např symoly 0 a 1 Pravděpodonost toho, že na minci padne ru neo líc je stejná a je rovna 1 Když využijeme toho, že jsou jednotlivé hody nezávislé, tedy se pravděpodonosti průniku jevů dostanou jako součin jednotlivých pravděpodoností, dostaneme pro každý elementární jev pravděpodonost P = = 1 8 = 01 a) A na všech mincích padne ru; Řešení: Je P A) = 1, když si uvědomíme, že z 8 možností je jevu A příznivá 8 pouze jedna Můžeme postupovat i pomocí násoení pravděpodonosti při výpočtu pravděpodoností průniku nezávislých jevů ) B na všech mincích padne stejná strana; Řešení: Je P B) = 8 = 1 = 0, když uvážíme, že z osmi možností jsou jevu 4 příznivé dvě Lze postupovat také takto Je B = B 1 B, kde jev B 1 je na všech ru a jev B je na všech líc Jevy se navzájem vylučují B 1 B = V a tedy P B) = P B 1 ) + P B ) = = 1 4 c) C alespoň na jedné minci padne ru; Řešení: Jev C je opačný k jevu C na všech mincích padne líc Je P C) = = 1 8 Je tedy P C) = 1 P C) = = 7 = 0, 87 8 d) D padne právě jednou ru; Řešení: Z osmi možností jsou příznivé jevu tři Je tedy P D) = 8 = 0, 7 V osudí máme ílých koulí a c černých koulí, které jsou nerozlišitelné Určete pravděpodonosti uvedených jevů: a) A náhodně vyjmutá koule je ílá Řešení: Je celkem + c možností jakou kouli vyjmeme Z nich má za následek jev A Je tedy P A) = + c

3 ) B vyíráme jednu po druhé a poslední, která v osudí zyde je černá Řešení: Každá koule má stejnou pravděpodonost ýt poslední Je tedy celkem +c možností a z nich je c příznivých jevu B Je tedy P B) = c + c c) C vyjmeme kouli, vrátíme zpátky a opět vyjmeme kouli Oě koule mají ílou arvu Řešení: V každém tahu je pravděpodonost vyjmutí ílé koule rovna + c Protože jsou oa tahy nezávislé, je pravděpodonost dvou tahů rovna součinu pravděpodoností z jednotlivých tahů Je tedy P C) = + c d) D vyjmeme kouli, odložíme stranou a vyjmeme další kouli Oě mají černou arvu Řešení: Musí ýt c Podoně jako v c) je P D) = c + c c 1 + c 1 e) E vyjmeme kouli, vrátíme zpátky a opět vyjmeme kouli Oě koule mají stejnou arvu Řešení: Jev je sjednocením dvou jevů, které se navzájem vylučují Jsou to E 1 tažené koule jsou ílé a E oě tažené jsou černé Je pak c + c P E) = P E 1 ) + P E ) = + = + c + c + c) f) F vyjmeme kouli, odložíme stranou a vyjmeme další kouli Oě mají rozdílnou arvu Řešení: Jev je sjednocením dvou jevů, které se navzájem vylučují Jsou to jevy F 1, první koule je ílá, druhá černá a jev F první je černá a druhá ílá Je tedy P F ) = c P F 1 ) + P F ) = + c) + c 1) + c + c) + c 1) = c + c) + c 1) oě g) G vyjmeme pět koulí a všechny jsou ílé ) Vypočtěte pro = 1 a c = 10 + c Řešení: Je celkem možností jak vyjmout pětici koulí a znich je příz- nivých jevu G Je tedy P G) = Pro číselné zadání je 1 + c P G) = ) = = = 1 0 = 00 4 Píšeme náhodně tři cifry Určete pravděpodonosti těchto jevů:

4 Úlohu řešte ve dvou variantách: číslo může ýt liovolné, neo číslo nesmí začínat nulou) a) A Cifry jsou navzájem různé Řešení: Každou z cifer je možné vyrat celkem 10 způsoy Celkový počet možných vole je tedy 10 = 0 Příznivých možností jevu A je 1098 = 70, neoť první cifru lze vyrat 10 způsoy, druhou 9 způsoy 1 je už z výěru vyloučena) a třetí 8 již dvě jsou zakázány) Je tedy P A) = 70 0 = 07 Varianta A Pro všechny voly je možné první cifru vyrat 9 způsoy nesmí ýt 0), druhou a třetí deseti, tedy je celkem = 900 možností Příznivé jevu A jsou voly: 9 možností pro první cifru, nula je vyloučena), 9 možností pro druhou zvolená je vyloučena, ale přidáme nulu) a 8 pro třetí cifru, tedy celkem 998 = 41 Je tedy P A ) = = 07 To znamená, že P A) = P A ) ) B Pravě dvě cifry jsou stejné Řešení: Je opět 0 všech možností voly Příznivých jevu B je 70 Dvojici shodných cifer lze vyrat 10 způsoy, 9 pak zývající cifru, kterou lze umístit na první, druhou či třetí pozici Dostaneme tak celkem 109 = 70 možností Je tedy P B) = 70 = 07 0 Pro variantu B dostaneme opět 900 všech možností výěru Příznivých jevu B je 99 = 4 Oznamčme si cifry písmeny a a Uvažovaná čísla mají tvar {a, a, }, {a,, a} {, a, a} Pro první dva tvary je a 0, tedy 9 možností a může ýt nula, tj taky 9 možností Pro třetí tvar je 0, tedy 9 možností a a může ýt nulové, tj opět 9 možností Každá z uvažovaných variant čísla se vyskytne ve 99 = 81 možnostech, tudíž všech je celkem 81 = 4 Je tedy P B ) = 4 = 07 Rovněž i tady je P B) = P 900 B ) c) C Cifry jsou všechny stejné Řešení: Cifru je možné volit 10 způsoy, je tedy P C) = 10 = Pro variantu C dostaneme 9 možností voly cifry a tudíž je P C ) = 9 = 001, 900 tedy i zde je P C) = P C ) Poznamenejme, že ovšem platí: P A) + P B) + P C) = 1 Ve sportce se losuje čísel ze 49 Vypočtěte pravděpodonosti jevu A k uhodneme k čísel, k = 0, 1,, Poznamenejme, že výhra se vyplácí v případě jevů A, A, A 4, A 49 Řešení: Pro volu šestice čísel ze 49 máme celkem možností Uhádnout zvolenou šestici znamená zvolit jedinou možnost Je tedy P A ) = 1 ) = = Pokud chceme uhádnout pět čísel, musíme zvolit pět čísel ze šesti To je celkem možností Poslední šesté číslo volíme ze zývajících 49 = 4 čísel Je tedy 4

5 49 4 P A ) = = 49 Odoně dostaneme = P A 4 ) = P A ) = P A ) = P A 1 ) = a 4 = 49 4 = = = = , = 1710, = 017, = 04101, P A 0 ) = = = 049 Poznamenejme, že je jedná o hypergeometrické rozdělení: 49 je všech prvků; je sledované vlastnosti tažených); k, k = 0, 1,, je počet tažených ve výěru čísel Tedy P A k ) = 4 ) k k 49, k = 0, 1,, V osudí je ílých koulí a c černých koulí Dva hráči jeden po druhém náhodně vyjímají kouli a po tahu ji vrací) Hra končí jakmile některý z hráčů vytahne ílou kouli Vypočtěte pravděpodonosti P 1 výhry prvního hráče a P výhry druhého Vyčíslete pro = c = 1 házení mincí) a = 1, c = házení hrací kostkou)

6 Řešení: Pravděpodonost tažení ílé koule v kterékoliv pokusu je a černé je + c c K tomu, ay první hráč vyhrál v prvním kole, je nutné, ay vytáhl ílou kouli + c hned na první pokus Ay vyhrál druhý hráč, musí ýt první neúspěšný a druhý musí vytáhnout ílou kouli Ay tyto situace nastaly až v k tém kole, k > 1, musí proěhnout k 1 kol losování, ve kterých jsou oa hráči neúspěšní Celkovou pravděpodonost dostaneme jako součet pravděpodoností výher jednotlivých kol Je tedy P 1 = c c 4 c k + c + + c + c + + c + c + + c + c + = = c k + c = + c k=0 + c + c, a P = c c c k+1 + c + c + + c + c c + c + = = c c k c = + c + c + c + c k=0 Pochopitelně můžeme počítat jednodušeji P = 1 P 1 Pro uvedená číselná zadání dostaneme: = c = 1 : P 1 =, P = 1 ; = 1, c = : P 1 = 11, P = 11 7 Dva střelci střílí dvakrát na terč První jej zasahuje s pravděpodoností p 1 a druhý s p Vítězí ten, kdo má více zásahů Vypočtěte pravděpodonosti možných výsledků Vyčíslete jednotlivé pravděpodonosti pro hodnoty a) p 1 = 09, p = 08; ) p 1 = 09, p = 08 Řešení: Jednotlivé výstřely jsou na soě nezávislé, pravděpodonosti průniků jednotlivých jevů dostaneme násoením P 1 vítězí první musí nastat tyto situace: 1 dvakrát zasáhne, dvakrát mine; 1 dvakrát zasáhne, jednou zasáhne a jednou mine; 1 jednou zasáhne a jednou mine, dvakrát mine Potom je pravděpodonost výhry prvního rovna P 1 = p 11 p ) + p 1p 1 p ) + p 1 1 p 1 )1 p ) Odoně dostaneme pro výhru druhého pravděpodonost P = p 1 p 1 ) + p p 1 1 p 1 ) + p 1 p )1 p 1 ) a pravděpodonost nerozhodného výsledku P x = p 1p + 4p 1 p 1 p 1 )1 p ) + 1 p 1 ) 1 p ) Pro zadané číselné hodnoty dostaneme: a) P 1 = 089, P = 0198, P x = 014; ) P 1 = 0988, P = 0148, P x = 074

7 8 Mezi součástkami je % vadných Ze skupiny součástek jich náhodně vyereme 1 Jaké jsou pravděpodonosti jevů, že ve vyrané skupině je k, k = 0, 1,, vadných součástek Řešení: Připomeňme, že se jedná o hypergeometrické rozdělení Všech možných výěrů 1 součástek prvků) ze sta je K tomu, ay souor 1 osahoval k vadných součástek musíme je vyrat ze souoru vadných Zývajících 1 k dorých musíme vyrat ze souoru 97 dorých Pravděpodonost jevu, že souor osahuje k vadných součástek je tedy 97 P k = k 1 k, k = 0, 1,, 1 Dosazením dostaneme: 97 P 0 = P 1 = P = P = ) = = 0108, ) = = 01, ) = = 00, ) = = Student zná odpověď na 0 otázek z Náhodně si vytáhne otázky Jaké jsou pravděpodonosti toho, že zodpoví,, 1 či žádnou otázku Řešení: 0 P = P = 0 ) = = 049; ) = = 04104; 7

8 0 P 1 = = 04 4 = 0089; P 0 = ) = 4 4 = V osudí jsou ílé a černé koule Náhodně vytáhneme dvě a pravděpodonost toho, že jsou ílé je 0 Jaký je nejmenší možný počet koulí v osudí Řešení: Předpokládejme, že je v osudí celkem n koulí a z toho je k, k ílých Potom je pravděpodonost tažení dvou ílých koulí rovna k p = = n kk 1) nn 1) Odtud dostaneme podmínku 1 = kk 1) nn 1) nn 1) = kk 1) Postupným dosazováním dostáváme: n =, k = : = 4; n =, k = : = 4; k = : = 1; n = 4, k = : 1 = 4; k = : 1 = 1; k = 4 : 1 = 4 Podmínka je splněna pro n = 4 a k = V osudí jsou 4 koule, ílé a 1 černá 11 Máme domluvenou schůzku mezi 1 a 1 hodinou, na kterou oa přicházíme náhodně a čekáme nejvýše 10 minut Určete jaká je pravděpodonost P s, že dojde k setkání Jaká ude tato pravděpodonost P s, pokud čeká pouze jeden Řešení: Označme t 1 čas po 1 hodině, kdy přijde první označený, ne v čase) a t, kdy přijde druhý Potom od t 1, t ) ve čtverci 0, 1) 0, 1) označuje odpovídající situaci Ay došlo k setkání, musí ýt t 1 t < 1 Protože je každá situace stejně pravděpodoná, je pravděpodonost setkání rovna poměru osahu části čtverce, která odpovídá setkání ku osahu čtverce Je tedy ) P s = 1 ) : 1 = 1 = 11 = 0, 0 Pokud ude čekat jen první, musí přijít dříve a pak setkání odpovídá stav 0 t t 1 < 1 Je tedy 8

9 P s = ) ) : 1 = 1 1 ) = 11 7 = 0, Přijímač přijímá signály ze dvou zdrojů Signály přicházejí náhodně v intervalu 0,s Pokud je přijat signál z 1 vysílače, je přijímač na 0,1s lokován Vypočtěte pravděpodonosti P p přijetí signálu a P z zalokování příjmu Řešení: Označme si t 1 okamžik příchodu signálu z 1 vysílače a t okamžik příchodu signálu z vysílače Je 0 < t 1, < 0, Ay yl přijímač lokován, musí ýt t 1 < t < t + 0, 1 Bod t 1, t 1 ) ve čtverci 0; 0, ) 0; 0, ) odpovídá situaci příchodu oou signálů Protože je každá možnost stejně pravděpodoná, je pravděpodonost zalokování P z rovna poměru části čtverce ku osahu celého čtverce Je tedy P z = 1 0, 0, ) : 0, 0, 0, 1 = = 0, 0, Pravděpodonost příjmu je tedy P p = 1 P z = 1 0, = 0, 74 1 Vlaky metra jezdí po minutách Jestliže jdeme náhodně na metro, vypočtěte pravděpodonost P jevu, že čekáme nejvýše 1 minutu : Řešení Označíme si t 1 okamžik našeho příchodu a t okamžik příjezdu metra K tomu, ay nastal sledovaný jev musí platit 0 t t 1 1 Každé situaci odpovídá od t 1, t ) ve čtverci 0, 0, Příznivé situace sledovanému jevu jsou v pásu splňujícím podmínku 0 t t 1 1 Pravděpodonost P je rovna poměru osahu pásu a osahu čtverce Je tedy P = 1 1) ) = 1 = 9 0 = 0, 18 9

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

S1P Příklady 01. Náhodné jevy

S1P Příklady 01. Náhodné jevy S1P Příklady 01 Náhodné jevy Pravděpodobnost, že jedinec z jisté populace se dožije šedesáti let, je 0,8; pravděpodobnost, že se dožije sedmdesáti let, je 0,5. Jaká je pravděpodobnost, že jedinec zemře

Více

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných

Více

náhodný jev je podmnožinou

náhodný jev je podmnožinou Pravděpodobnost Dovednosti a cíle - Chápat jev A jako podmnožinu množiny, která značí množinu všech výsledků náhodného děje. - Umět zapsat jevy pomocí množinových operací a obráceně umět z množinového

Více

MATEMATIKA. O paradoxech spojených s losováním koulí

MATEMATIKA. O paradoxech spojených s losováním koulí MATEMATIKA O paradoxeh spojenýh s losováním koulí PAVEL TLUSTÝ IRENEUSZ KRECH Ekonomiká fakulta JU, České Budějovie Uniwersytet Pedagogizny, Kraków Matematika popisuje a zkoumá různé situae reálného světa.

Více

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 4

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 4 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST Příklad 1 a) Jev spočívá v tom, že náhodně vybrané přirozené číslo je dělitelné pěti a jev v tom, že toto číslo náhodně vybrané přirozené číslo zapsané v desítkové soustavě má

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 3 Pravděpodobnost jevů Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola báňská Technická

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Poznámky k předmětu Aplikovaná statistika, 1. téma

Poznámky k předmětu Aplikovaná statistika, 1. téma Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

pravděpodobnost, náhodný jev, počet všech výsledků

pravděpodobnost, náhodný jev, počet všech výsledků Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

kdy A nastal, celkovým počtem pokusů.

kdy A nastal, celkovým počtem pokusů. Povídání k páté sérii V páté sérii se udeš potýkat s určením pravděpodonosti různých událostí. Cílem tohoto povídání není přesné vyudování teorie pravděpodonosti(to y nám kvůli samým definicím rzy došel

Více

MATEMATIKA. O paradoxech spojených s losováním koulí

MATEMATIKA. O paradoxech spojených s losováním koulí MATEMATIKA O paradoxeh spojenýh s losováním oulí PAVEL TLUSTÝ IRENEUSZ KRECH Eonomiá faulta JU, Česé Budějovie Uniwersytet Pedagogizny, Kraów Matematia popisuje a zoumá různé situae reálného světa. Je

Více

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015) III Pravděpodobnost Pravděpodobnost Podmíněná p. Úplná p. Odkud se bere pravděpodobnost? 1. Pravděpodobnost, že z balíčku zamíchaných karet vytáhmene dvě esa je přibližně 0:012. Modely a teorie. 2. Pravděpodobnost,

Více

Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5.

Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5. Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5. Řešení: Výsledky pokusu jsou uspořádané dvojice. První člen dvojice odpovídá hodu 1. kostkou a

Více

Název: Pravděpodobnost a běžný život

Název: Pravděpodobnost a běžný život Název: Pravděpodobnost a běžný život Autor: Mgr. Lukáš Saulich Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika a její aplikace Ročník: 3. (1. ročník

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

A 2.C. Datum: 13.5.2010

A 2.C. Datum: 13.5.2010 Jméno: Řešení Datum: 13.5.2010 A 2.C 1) Vojenskou kolonu budou tvořit dva terénní vozy UAZ, tři auta Praga V3S a čtyři Tatry 138. Kolika způsoby lze kolonu seřadit, jestliže: a) Na pořadí vozidel nejsou

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

(bridžové karty : 52 karet celkem, z toho 4 esa) [= 0, 0194] = 7, = 4, = 1, = 9, = 1, 77 10

(bridžové karty : 52 karet celkem, z toho 4 esa) [= 0, 0194] = 7, = 4, = 1, = 9, = 1, 77 10 2. cvičení - STATISTIKA Náhodný jev, Pravděpodobnost jevu, Podmíněná pravděpodbnost, Úplná pravděpodobnost, Bayesova věta 1. V cele předběžného zadržení sedí vedle sebe 10 podezřelých, z toho 3 ženy. Jaká

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 2. století - využití ICT ve vyučování matematiky na

Více

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS)

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS) KOMBINATORIKA (4.ročník I.pololetí DE,.ročník I.pololetí NS) Kombinatorika je část matematiky, zabývající se uspořádáváním daných prvků podle jistých pravidel do určitých skupin a výpočtem množství těchto

Více

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení

Více

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů? 0. Kombinatorika, pravděpodobnost, statistika Kombinatorika ) V restauraci mají na jídelním lístku 3 druhy polévek, 7 možností výběru hlavního jídla, druhy moučníku. K pití si lze objednat kávu, limonádu

Více

Diskrétní pravděpodobnost

Diskrétní pravděpodobnost Diskrétní pravděpodobnost Jiří Koula Definice. Konečným pravděpodobnostním prostorem nazveme dvojici(ω, P), kde Ω jekonečnámnožina {ω 1,..., ω n}apfunkcepřiřazujícíkaždépodmnožiněωčíslo zintervalu 0,1,splňujícíP(

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2.

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2. 9..3 Pravděpodobnosti jevů I Předpoklady: 90 Opět se vrátíme k hodu kostkou. Pokus má šest stejně pravděpodobných náhodných výsledků pravděpodobnost každého z nich je 6. Do domečku nám chybí tři políčka.

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze Studijní program Matematika, bakalářské studium Studijní program Informatika, bakalářské studium 2014, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a,

Více

5. Jev B je částí jebu A. Co můžeme říct o podmíněné pravděpodobnosti? (1b)

5. Jev B je částí jebu A. Co můžeme říct o podmíněné pravděpodobnosti? (1b) TEST 3 1. U pacienta je podozření na jednu ze čtyř, navzájem se vylučujících nemocí. Pravděpodobnost výskytu těchto nemocí je 0,1, 0,2, 0,4 a 0,3. Laboratorní zkouška je v případě první nemoci pozitivní

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz). 1 Cvičení z předmětu KMA/PST1 Pro získání zápočtu je nutno mimo docházky (max. 3 absence) uspět minimálně ve dvou ze tří písemek, které budou v průběhu semestru napsány. Součástí třetí písemky bude též

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

4. cvičení 4ST201 - řešení

4. cvičení 4ST201 - řešení cvičící 4. cvičení 4ST201 - řešení Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Kvadratické rovnice. Řešení kvadratických rovnic. Kvadratická rovnice bez lineárního členu. Příklad 1:

Kvadratické rovnice. Řešení kvadratických rovnic. Kvadratická rovnice bez lineárního členu. Příklad 1: Kvadratické rovnice V zadání lineární rovnice se může vyskytovat neznámá ve vyšší než první mocnině. Vždy ale při úpravě tato neznámá ve vyšší než první mocnině zmizí, odečte se, protože se vyskytuje na

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete všechny dvojice (x, y) reálných čísel, která vyhovují soustavě rovnic (x + )2 = y, (y )2 = x + 8. Řešení. Vzhledem k tomu,

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

Podmíněná pravděpodobnost, nezávislost

Podmíněná pravděpodobnost, nezávislost Podmíněná pravděpodobnost, nezávislost Úloha 1: Do třídy 1.A chodí 10 chlapců a 20 dívek, z toho jsou 3 chlapci se jménem Jakub a 2 dívky se jménem Katka. Martina tvrdí, že ráno potkala někoho ze třídy

Více

1. Klasická pravděpodobnost

1. Klasická pravděpodobnost Příklady 1. Klasická pravděpodobnost 1. Házíme dvakrát kostkou. Jaká je pravděpodobnost, že padne alespoň jedna šestka? 2. Základy teorie pravděpodobnosti vznikly v korespondenci mezi dvěma slavnými francouzskými

Více

Radiologická fyzika pravděpodobnost měření a zpracování dat

Radiologická fyzika pravděpodobnost měření a zpracování dat Radiologická fyzika pravděpodobnost měření a zpracování dat podzim 2008, šestá přednáška Měření tlaku nejjednodušší úkon u lékaře aneb jak zacházet s měřenými hodnotami? Běžná situace u lékaře: Paní Nováková,

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Práce s

Více

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Kombinatorika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kombinatorika, faktoriály, kombinační

Více

Prvočísla a čísla složená

Prvočísla a čísla složená Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

FVL UO, Brno 2016 str. 1

FVL UO, Brno 2016 str. 1 Příklad 1. Z uvedených možností vyerte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Nesložím zkoušku neo půjdu na ples. A: Nesložím zkoušku neo nepůjdu na ples. B: Nesložím zkoušku a nepůjdu

Více

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1 1 of 9 20. 1. 2014 12:05 Matematická olympiáda - 48. ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7 Zadání úloh Z5 II 1 Do prostředního kroužku je možné zapsat pouze čísla 8

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1

Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/2015

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_17 ŠVP Podnikání RVP 64-41-L/51

Více

Pracovní list č. 4 Počítáme s pravděpodobností

Pracovní list č. 4 Počítáme s pravděpodobností racovní list č. 4 očítáme s pravděpodobností Cíl cvičení: Tento pracovní list je určen pro cvičení předmětu Kvantitativní metody II (přednáška 3.1). Je zaměřen především pro práci s kalkulačkou, program

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

5 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY

5 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY 5 ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY 5. Rovnoměrné rozdělení R(a,) - má náhodná veličina X, která má stejnou možnost naýt kterékoliv hodnoty z intervalu < a, >; a, R Definice

Více

7 Pravděpodobnostní modely úvod

7 Pravděpodobnostní modely úvod 7 Pravděpodobnostní modely úvod 7 Pravděpodobnostní modely úvod Břetislav Fajmon, UMAT FEKT, VUT Brno Nyní ve druhé polovině kursu bude obsahem odlišná matematická disciplína, která snad má s numerickými

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Práce s daty, kombinatorika a pravděpodobnost Gradovaný řetězec úloh Téma: Pravděpodobnost

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

Teorie. Kombinatorika

Teorie. Kombinatorika Teorie Kombinatorika Kombinatorika Jak obecně vybrat k prvkové množiny z n prvkové množiny? Dvě možnosti: prvky se v množině neopakují bez opakování. prvky se v množině opakují s opakováním. prvky jsou

Více

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

TEST 1 (40 bodů) (9 4)! 2. Nejméně kolikrát musíme hodit kostkou, abychom měli alespoň 80% pravděpodobnost, že padne alespoň jedna šestka?

TEST 1 (40 bodů) (9 4)! 2. Nejméně kolikrát musíme hodit kostkou, abychom měli alespoň 80% pravděpodobnost, že padne alespoň jedna šestka? TEST (40 bodů) Jméno:. Pin karty se skládá ze čtyř náhodně vybraných číslic až 9, z nichž se žádné neopakuje. Jaká je pravděpodobnost, že všechny čtyři číslice budou liché? podíl všech možností,jak vybrat

Více

SEMINÁRNÍ PRÁCE Z MATEMATIKY

SEMINÁRNÍ PRÁCE Z MATEMATIKY SEMINÁRNÍ PRÁCE Z MATEMATIKY PETROHRADSKÝ PARADOX TEREZA KIŠOVÁ 4.B 28.10.2016 MOTIVACE: K napsání této práce mě inspiroval název tématu. Když jsem si o petrohradském paradoxu zjistila nějaké informace

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 5

Příklad 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 5 Příklad a) Uvažujme jevy A, B, C. Výsledkem náhodného pokusu může být pouze nastoupení právě jednoho z uvedených jevů, nebo nastoupení všech tří těchto jevů současně. Zjistěte, zda jsou dané jevy vzájemně

Více

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Sbírka řešených příkladů z pravděpodobnosti: náhodný jev Vedoucí bakalářské práce:

Více

pravděpodobnosti 9 Některá význačná diskrétní rozdělení pravděpodobnosti

pravděpodobnosti 9 Některá význačná diskrétní rozdělení pravděpodobnosti pravděpodobnosti pravděpodobnosti Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá část kapitoly 11 ze skript [1] a vše, co se nachází v kapitole 5 sbírky úloh [2] tuto kapitolu 5 sbírky úloh

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

MASARYKOVA UNIVERZITA EKONOMICKO-SPRÁVNÍ FAKULTA LUCIE DOUDOVÁ DAVID HAMPEL JAROSLAV MICHÁLEK HANA PYTELOVÁ Z PRAVDĚPODOBNOSTI A STATISTIKY

MASARYKOVA UNIVERZITA EKONOMICKO-SPRÁVNÍ FAKULTA LUCIE DOUDOVÁ DAVID HAMPEL JAROSLAV MICHÁLEK HANA PYTELOVÁ Z PRAVDĚPODOBNOSTI A STATISTIKY MASARYKOVA UNIVERZITA EKONOMICKO-SPRÁVNÍ FAKULTA LUCIE DOUDOVÁ DAVID HAMPEL ZUZANA HRDLIČKOVÁ JAROSLAV MICHÁLEK HANA PYTELOVÁ MAREK SEDLAČÍK SBÍRKA ÚLOH Z PRAVDĚPODOBNOSTI A STATISTIKY BRNO 2006 preprint

Více

Kombinatorika, základy teorie pravděpodobnosti a statistiky

Kombinatorika, základy teorie pravděpodobnosti a statistiky Kombinatorika, základy teorie pravděpodobnosti a statistiky Jiří Fišer 30.zářía5.října2010 JiříFišer (KMA,PřFUPOlomouc) KMA MAT1,MT1 30.zářía5.října2010 1/12 Variacek-tétřídyznprvků: = uspořádanéskupinyokprvcíchvybranýchznprvků.

Více

Co víme o přirozených číslech

Co víme o přirozených číslech Co víme o přirozených číslech 4. Největší společný dělitel a nejmenší společný násobek In: Jiří Sedláček (author): Co víme o přirozených číslech. (Czech). Praha: Mladá fronta, 1961. pp. 24 31. Persistent

Více

Podmíněná pravděpodobnost

Podmíněná pravděpodobnost odmíněná pravděpodobnost 5. odmíněná pravděpodobnost 5.. Motivace: Opakovaně nezávisle provádíme týž náhodný pokus a sledujeme nastoupení jevu A v těch pokusech, v nichž nastoupil jev H. odmíněnou relativní

Více

Studijní program Informatika, bakalářské studium. 2015, varianta A

Studijní program Informatika, bakalářské studium. 2015, varianta A Přijímací zkouška na MFF UK v Praze Studijní program Matematika, bakalářské studium Studijní program Informatika, bakalářské studium 2015, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a,

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor016 Vypracoval(a),

Více

Eliptický paraboloid je kvadrika, která má v nějaké kartézské soustavě souřadnic rovnici x 2 a 2 + y2

Eliptický paraboloid je kvadrika, která má v nějaké kartézské soustavě souřadnic rovnici x 2 a 2 + y2 82 KAPITOLA 2. POPIS JEDNOTLIVÝCH KVADRIK 2.3 Paraoloidy Paraoloidy jsou regulární kvadriky, jejichž charakteristická rovnice má jedno nulové a dvě nenulová řešení. Mají-li oě nenulová řešení stejná znaménka,

Více

O náhodě a pravděpodobnosti

O náhodě a pravděpodobnosti O náhodě a pravděpodobnosti 3. kapitola. Jev In: Adam Płocki (author); Eva Macháčková (translator); Vlastimil Macháček (illustrator): O náhodě a pravděpodobnosti. (Czech). Praha: Mladá fronta, 82. pp.

Více

5. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY

5. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY 5. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI SPOJITÉ NÁHODNÉ VELIČINY Průvodce studiem V teto kapitole se seznámíte se základními typy rozložení spojité náhodné veličiny. Vašim úkolem y neměla ýt pouze

Více

28.ročník. Milý řešiteli!

28.ročník. Milý řešiteli! 28.ročník 3.leták Milý řešiteli! Máme tady nový rok a s ním i další sérii KOperníkova Korespondenčního Semináře. Chtěli bychom Ti v tomto roce popřát jen to nejlepší, hodně vyřešených matematických úloh

Více

9.2.1 Náhodné pokusy, možné výsledky, jevy

9.2.1 Náhodné pokusy, možné výsledky, jevy 9.2.1 Náhodné pokusy, možné výsedky, jevy Předpokady: 9110, 9114 Hodím kámen za normáních okoností jediný výsedek = spadne na zem Hodíme kámen na terč někoik možných výsedků (trefíme desítku, devítku,,

Více

Domino jako losovací nástroj a nositel matematických idejí a struktur

Domino jako losovací nástroj a nositel matematických idejí a struktur Domino jako losovací nástroj a nositel matematických idejí a struktur Adam Płocki, Akademia Pedagogiczna, Krakow (Polsko) ABSTRACT: Práce se týká domina jako nositele a tvůrce matematických idejí a problémů.

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více