Ing. Stanislav Jakoubek

Rozměr: px
Začít zobrazení ze stránky:

Download "Ing. Stanislav Jakoubek"

Transkript

1 Ing. Stanislav Jakoubek

2 Číslo DUMu III/ III/ III/ III/ III/ III/ III/ Název DUMu Ideální plyn Rychlost molekul plynu Základní rovnice pro tlak ideálního plynu Stavová rovnice pro ideální plyn Stavové změny ideálního plynu Adiabatický děj s ideálním plynem Reálný plyn

3 Ing. Stanislav Jakoubek

4 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ V této kapitole se seznámíme se základním důležitým modelem plynu s ideálním plynem. Řekneme si, z jakých předpokladů vychází a jaká zjednodušení pro představu plynu z nich vycházejí.

5 Plyn tvoří volně se pohybující částice (jednoatomové a víceatomové molekuly). Rychlost a směr jejich pohybu se díky vzájemným srážkám neustále mění. Plyn je rozpínavý. Z toho lze usoudit, že přitažlivé síly mezi molekulami jsou velmi malé.

6 Je to model; vychází ze 3 předpokladů 1. Rozměry molekul jsou zanedbatelné ve srovnání s jejich střední vzdáleností 2. Nepůsobí na sebe přitažlivými silami 3. Vzájemné srážky jsou dokonale pružné, tedy bez ztráty vnitřní energie.

7 Předpoklad přesně splňuje podmínky pro vhodnost použití představy hmotného bodu. Neuvažujeme tedy vlastní tvar a objem molekul. Zajímá nás pouze jejich hmotnost.

8 Nepůsobí-li na sebe přitažlivými silami, molekuly se nepohybují v silovém poli a tedy potenciální energie tohoto (neexistujícího) pole je nulová. Vnitřní energie je dána pouze součtem kinetických energií jednotlivých molekul. Ep 0 U Ek

9 Protože nedochází ke ztrátám kinetické energie, je vnitřní energie plynu (za předpokladu konstantní teploty) stálá.

10 Mají-li skutečné plyny dostatečně velkou teplotu a nízký tlak. Vysoká teplota při vyšší teplotě se molekuly pohybují rychleji, mají velkou kinetickou energii a vůči ní lze malou potenciální zanedbat. Nízký tlak ke srážkám mezi molekulami dochází málokdy a proto lze zanedbat ztráty kinetické energie.

11 t n =0 C p n =1, Pa Za podmínek, které se příliš neliší od normálních podmínek, lze většinu plynů s dostatečnou přesností považovat za ideální plyn. Poznámka: je dobré, že se v běžných podmínkách dá model použít. Model, který by fungoval jen za nějakých extrémních podmínek, by nám pro praxi moc platný nebyl.

12 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN

13 Ing. Stanislav Jakoubek

14 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Už víme, že molekuly látek libovolného skupenství se neustále chaoticky pohybují. I v chaosu je však potřeba najít nějaký řád. Pro rychlosti molekul v ideálním plynu je tímto řádem Maxwellův zákon.

15 Víme, že rychlost molekul se neustále mění a tedy se neustále mění jejich kinetická energie Srážky jsou pružné, takže celková kinetická energie E k se (za stálé teploty) nemění E E k 0 počet molekul N

16 Střední kinetické energii odpovídá jakási střední rychlost E 2 m0v k Střední kvadratická rychlost v k taková rychlost, jakou by se musely pohybovat všechny molekuly, aby se celková kinetická energie posuvného pohybu molekul nezměnila

17 N počet molekul s danou rychlostí v p nejpravděpodobnější rychlost v střední (průměrná) rychlost v k střední kvadratická rychlost

18 v[m/s] % molekul , , , , , , ,2 nad 700 7,7

19 Mějme 1mol molekul kyslíku O 2. Kolik z nich se pohybuje rychlostí v rozmezí m.s -1? Z grafu plyne, že jde o 41,8% z jejich celkového počtu. Protože 1mol látky obsahuje Avogadrovo číslo částic, je výsledek: N 23 0,418. N A 0,418.6, ,

20 Z grafu odhadněte střední kvadratickou rychlost molekul O 2 při teplotě 0 C. Využijte teoretický graf, kde je poloha v k znázorněna. Použijeme-li navržený postup, zjistíme, že v k 450m. s 1

21 Na čem závisí v k? Na teplotě T čím vyšší teplota, tím rychlejší Na hmotnosti molekul čím těžší, tím pomalejší v k 3kT m 0 k 1, J. K 1 Boltzmannova konstanta

22 Anglický fyzik

23 t[ C] Plyn v k [m.s -1 ] Dusík Helium Chlor Kyslík Oxid uhličitý Vodík Vzduch

24 kT E0 m0vk m0 2 2 m kt Střední kinetická energie je přímo úměrná termodynamické teplotě. Pozn.: Mějme dva plyny o téže teplotě. E 0 je tedy stejná. Z toho plyne, že lehčí molekuly se pohybují rychleji.

25 Odvoďte jednotku Boltzmannovy konstanty. E J 3 2 kt k. K k J K J. K

26 Vypočtěte střední kvadratickou rychlost molekul kyslíku při teplotách 0 C a 100 C. t C T 273,15K, t 100C T 373, 15K v A k r 27 O 16, m 1,66.10 kg; v? 3kT m 0 u 3kT 2. A. m r u , , v k 0 m. s 461m. s ,66.10 k , , v k 100 m. s 539m. s ,66.10 V dobré shodě s odhadem.

27 Vypočtěte střední kinetickou energii jednoatomové molekuly ideálního plynu o teplotě 0 C. t 0C T 273,15K; E0? 3 23 E0 kt.1, ,15j 5, J

28 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN [2] AUTOR NEUVEDEN. Wikipedia.cz [online]. [cit ]. Dostupný na WWW: [3] HLAVIČKA, Alois a kol. Fyzika pro pedagogické fakulty 1. Praha: Státní pedagogické nakladatelství, n.p., 1971, ISBN [4] MIKULČÁK, Jiří a kol. Matematické, fyzikální a chemické tabulky pro střední školy. Praha: Státní pedagogické nakladatelství, n.p., 1988, ISBN /

29 Ing. Stanislav Jakoubek

30 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Na základě představy o neustálém chaotickém pohybu molekul v plynu si vysvětlíme, co je to vlastně tlak. Dále si uvedeme rovnici pro tlak v plynu a ukážeme si, že si v ní podávají ruce mikroskopické veličiny, jako je třeba hmotnost molekuly, s makroskopickými veličinami, jako je kupříkladu tlak.

31 Díky chaotickému pohybu molekul dochází k jejich nárazům do molekul ve stěnách nádoby. Síla nárazů působí na plochu stěny a způsobuje tlak. Při stálých vnějších podmínkách se nemění.

32 S rostoucí teplotou roste E 0 a tedy roste v k. p p v k S rostoucí v k dochází k větším nárazům na stěny nádoby a tedy roste tlak. Jaká je ta funkce?

33 p 1 3 N V m v 2 0 k N počet molekul v plynu V objem plynu m 0 hmotnost jedné molekuly v k střední kvadratická rychlost Důležitý vztah, protože dává dohromady veličiny vztahující se k samotným molekulám (m 0,v k ) s makroskopicky měřitelnou veličinou (p).

34 p 1 3 N V 2 N 3 V m v k 0 k p konst. m v Tlak je přímo úměrný střední kinetické energii připadající na jednu molekulu E 0. E 0 N m m;. 0 Hmotnost celého plynu. m V Hustota plynu. 1 p v 3 k 2

35 p Ověřte pomocí jednotek, že základní rovnice pro tlak opravdu počítá tlak v pascalech. p 3 F S m a S 2. kg. m. s 1 2 Pa kg. m. s 2 m Tohle musí vyjít. 1 N m0 v 1.. kg. m. s m. kgm.. s kg. m. s k 3 V m

36 V ocelové nádobě vnitřního objemu 10 litrů je kyslík o hmotnosti 0,1kg.Jaký je tlak kyslíku při teplotě 0 C? V 10l 0,01m 3, m 0,1 kg, v k 461m. s 1 ; p? p m 2 1 0,1 2 vk vk..461 Pa Pa 0, 708MPa 3 3 V 3 0,01

37 Vzduch v uzavřené nádobě má tlak 0,1MPa a hustotu 1,28kg.m -3. Jaká je střední kvadratická rychlost molekul plynů vzduchu za těchto podmínek? Jak se změní tako rychlost, jestliže se tlak plynu čtyřikrát zvětší a hustota zůstane konstantní? 3 p,1mpa, 1,28kgm., p 4p;? 0 1 v k p p 3.0, v v m. s 484m. s k k 3 1, p 3p v. k v k Dvakrát vzroste.

38 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN

39 Ing. Stanislav Jakoubek

40 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Víme, že plyn je popsán stavovými veličinami. Jsou na sobě nezávislé nebo například změna teploty způsobí změnu tlaku? Odpovědi na tyto a další otázky nám dá tato kapitola.

41 Popisujeme ho pomocí stavových veličin Nejčastěji: o tlak p o objem V o termodynamická teplota T Vztah mezi těmito veličinami se nazývá stavová rovnice pro ideální plyn.

42 Měníme teplotu, tlak či objem a zkoumáme, jak se tato změna projeví na hodnotách zbylých veličin.

43 T [K] V [.10-3 m -3 ] p[.10 3 Pa] pv/t [J.K -1 ] 280 1, ,0 0, , ,4 0, , ,0 0, , ,4 0,361 Podobný závěr lze udělat i pro jiný plyn o libovolné hmotnosti. Jen ta konstanta by vyšla jiná.

44 Při stavové změně ideálního plynu stálé hmotnosti je výraz pv konstantní. T pv T konst

45 Na počátku děje má plyn tlak p 1, objem V 1, teplotu T 1. Na konci děje má plyn tlak p 2, objem V 2, teplotu T 2. p V 1 T 1 1 p 2 T V 2 2

46 pnv T Proveďme popsaný experiment s 1 mol plynu za normálních podmínek (p n =1, Pa,t n =0 CT n =273,15K). Za těchto podmínek má každý plyn molární objem V m =22, m 3 mol -1 n m R m 5 3 1, , ,15 8,31J. K 1. J. K mol 1. mol 8,31J. K. mol Pro všechny ideální plyny je stejná.

47 p. V T m R m p. Vm Rm. T V m molární objem ideálního plynu za tlaku p a teploty T.

48 Víme: m m m M m n n m M n V V ; Upravíme: m M V n V V m m Dosadíme do stavové rovnice pro 1 mol: T R m M pv m m T R M m pv m m

49 V A V tlakové nádobě o objemu 20dm 3 je vodík H 2 o hmotnosti 4g a teplotě 27 C. Jaký je tlak vodíku, považujeme-li ho za ideální plyn? 20dm r pv 3 0,02m 3, m 4g 0,004kg, t 27C T 1 H 1 M H 2 M H 0,002kgmol m M m R m T r p 2 m 2. mrmt M V m Po zaokrouhlení: 0,004.8,31.300,15 0,002.0,02 300,15K; Pa p? Pa p 0, 25MPa

50 Vzduch má při teplotě 293K tlak 99,7kPa a objem 2m 3. Jaký objem má vzduch za normálních podmínek? T T 1 n p V T 1 293K, p 1 273,15K, 99,7kPa, V p n p V2 2 T 1 1 V n 2m 101,325kPa; V 1 n 1 n , p1v T 99, ,15 m 1, 83m T p ,325 n?

51 Jak se změní tlak plynu, jestliže se jeho termodynamická teplota zvětší třikrát a jeho objem vzroste o 25% původního objemu? p1, T1, V1, T2 3T 1, V2 1,25V 1; p2? p V T 1 p2v2 2 T 1 1 p 2 p V T TV , p V.3T T.1,25V 1 1 p 1 Tlak se zvýší 2,4 krát.

52 Při teplotě 20 C je tlak vzduchu v pneumatice osobního automobilu 0,15MPa. Jaký tlak má vzduch, zvýší-li se teplota o 30 C a objem vzroste o 1%? t 1 t 20C T 1 30C T 293,15K, p ,15K, V 0,15MPa, 2 1,01V 1 ; p 2? p V T 1 p2v2 2 T 1 1 p 2 p1v 1T2 0,15. V1.323,15 MPa TV 293,15.1,01V ,16MPa

53 Chlór Cl 2 má při tlaku 98,4kPa a teplotě 22 C objem 3 litry. Určete jeho hmotnost. p 98,4kPa, t 22C T 295,15K, V 3l 0,003m 3, A r Cl 35,5 M Cl 71; m? r 2 pv m M m R m T m pvm R T ,003.0,071 3 m kg 8,55.10 kg 8, 55g 8,31.295,15 m m

54 Jaký je tvar stavové rovnice ideálního plynu pro látkové množství n? Víme: pv m R T; V Dosadíme a upravíme: m m V n V p R T pv nr T n m n

55 Jaký je tvar stavové rovnice ideálního plynu pro daný počet molekul N? Víme: p 2 3 N V 2 m0vk E0 m0vk kt Upravíme: 2 2 m0vk pv N NE0 N kt NkT pv NkT

56 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN

57 Ing. Stanislav Jakoubek

58 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Čeká nás velmi důležitá kapitola o dějích v plynech. Bez jejího pochopení by nefungovaly tepelné motory, chladničky atd.

59 Obecně: při změně stavu plynu se mění současně tlak, teplota i objem ideálního plynu. Pokud zůstává jedna z veličin konstantní, mluvíme o jednoduchých dějích s ideálním plynem Jiný název: izoděje

60 Teplota plynu je stálá, tedy T 1 =T 2 =T p 1 2 1V T p2v T pv p V Obecně: pv konst. Poznámka: zákon Boylův - Mariottův

61 Irský filozof, chemik a fyzik

62 Francouzský kněz a fyzik (pravděpodobně)

63 V grafu jsou znázorněny tři izotermy pro tři různé teploty T 1, T 2 a T 3.

64 Teplota plynu se nemění střední kinetická energie molekul se nemění vnitřní energie plynu se nemění (U=0J) Z 1.termodynamického zákona: Q U W Q W Teplo přijaté ideálním plynem při izotermickém ději se rovná práci, kterou plyn při tomto ději vykoná.

65 Kde se projeví vykonaná práce? Posunem pístu vzhůru silou F po dráze h.

66 Objem plynu je stálý, tedy V 1 =V 2 =V p1v T 1 p2v T 2 p1 T 1 p T 2 2 p Obecně: konst. T Poznámka: zákon Charlesův

67 Francouzský chemik a fyzik

68 Objem je stále stejný!

69 p T konst. p konstt. Formálně odpovídá přímé úměrnosti. Při izochorickém ději s ideálním plynem stálé hmotnosti je tlak plynu přímo úměrný termodynamické teplotě.

70 Na zvýšení teploty dodáme plynu teplo Q=m.c v.δt (c v měrná tepelná kapacita plynu při stálém objemu). Nemění se objem nic se nikam neposouvá nevykonává se práce (W =0) Q U W Q U Teplo přijaté ideálním plynem při izochorickém ději se rovná přírůstku jeho vnitřní energie.

71

72 Tlak plynu je stálý, tedy p 1 =p 2 =p pv T 1 1 pv T 2 2 V1 T 1 V T 2 2 V Obecně: konst. T Poznámka: zákon Gay-Lussacův (1802)

73 Francouzský fyzik

74 Tlak je stále stejný!

75 V T konst. V konstt. Formálně odpovídá přímé úměrnosti. Při izobarickém ději s ideálním plynem stálé hmotnosti je objem plynu přímo úměrný jeho termodynamické teplotě.

76 Na zvýšení teploty dodáme plynu teplo Q=m.c p.δt (c p měrná tepelná kapacita při stálém tlaku) Zahřívá se roste vnitřní energie Mění se objem koná se práce W Q U W Teplo přijaté ideálním plynem při izobarickém ději se rovná součtu přírůstku jeho vnitřní energie a práce, kterou plyn vykoná.

77

78 V nádobě o vnitřním objemu 10 litrů je uzavřen plyn při tlaku 5MPa. Jaký bude jeho objem, poklesne-li izotermicky tlak na 2MPa? V1 10l, p1 5MPa, p2 2MPa, T konst.; V2? p V p V V p1v l p l

79 t 1 V Při teplotě 0 C má ideální plyn tlak 1,02kPa. Určete tlak plynu, jestliže se teplota zvýší o 100 C při stálém objemu. p T 0C T konst.; p ,15K, p p2 2 T 1 p 2? 1 1,02kPa, t 100C T p1 1,02 T2.373,15kPa T 273, ,39kPa 373,15K,

80 Teplota ideálního plynu dané hmotnosti se zvětšuje za stálého tlaku z počáteční hodnoty 20 C. Při jaké teplotě má plyn dvojnásobný objem ve srovnání s objemem při počáteční teplotě? t1 20C T1 293,15K, p konst., V1, V2 2V 1; t2 V T 1 V2 2 T 1 T 2 V V 2 1 T 1 2V 1.293,15K 586,3K t2 313, 15C V 1?

81 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN [2] AUTOR NEUVEDEN. wikipedia.cz [online]. [cit ]. Dostupný na WWW: [3] KROOSHOF, Gerard. wikipedia.cz [online]. [cit ]. Dostupný na WWW: [4] KERSEBOOM, Johann. wikipedia.cz [online]. [cit ]. Dostupný na WWW: [5] AUTOR NEZNÁMÝ. wikipedia.en [online]. [cit ]. Dostupný na WWW:

82 Ing. Stanislav Jakoubek

83 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Vysvětlíme si, co se děje s termodynamickou soustavou, pokud při ději nedochází k tepelné výměně s okolím. Pochopíme, proč se zahřívá ventilek při usilovném pumpování a proč dochází k ochlazení prudce otevřené natlakované láhve s plynem.

84 Řadí se mezi jednoduché děje s ideálním plynem Neprobíhá při něm tepelná výměna mezi plynem a okolím Q=0J Q U W U W 0 U W U W W práce okolních sil

85 Adiabatické stlačení plynu (adiabatická komprese) Adiabatické rozpínání plynu (adiabatická expanze)

86 Vnější síly konají práci na stlačení plynu W>0 a tedy ΔU>0 Roste vnitřní energie plyn se zahřívá Příklady z praxe: při rychlém pumpování kola pumpičkou se ventilek zahřívá (zkuste si to ). Vznícení pohonných látek ve válcích vznětových motorů.

87 Vnější síly práci přijímají, naopak vykonává jí expandující plyn na úkor své vnitřní energie W<0 ΔU<0, plyn se ochlazuje Příklad z praxe: při rychlém otevření plné tlakové láhve s plynem dojde k jejímu ochlazení (někdy vznikne i námraza)

88 Termočlánek připojený k citlivému galvanometru.

89 p Obecně: pv konst. 1V 1 p2v2 c c p v Poissonova konstanta c p měrná tepelná kapacita plynu za stálého tlaku c v měrná tepelná kapacita plynu za stálého objemu

90 Pro ideální plyn s jednoatomovými molekulami: Pro ideální plyn s dvouatomovými molekulami:

91 Francouzský matematik, geometr, astronom a fyzik

92 a adiabata i - izoterma Adiabata klesá pro tentýž plyn rychleji, než izoterma.

93 Adiabatické komprese nebo expanze lze dosáhnout rychlým průběhem dějů (aby plyn neměl čas odevzdat nebo přijmout teplo).

94 Izotermický děj probíhá pomalu a vyžaduje dokonalou tepelnou výměnu mezi plynem a okolím Adiabatický děj probíhá rychle a vyžaduje dokonalou izolaci Reálné děje: něco mezi nimi polytropické děje pv konst. 1 polytropický koeficient

95 Hasivem je oxid uhličitý, který je v hasicím přístroji natlakovaný. Při použití dojde k rychlé (tedy adiabatické) expanzi plynu, který se prudce ochladí a vytvoří suchý led. Po použití se odpaří, proto se hodí i k hašení potravin.

96 Vzduch pod pístem válce má objem 1 litr, tlak 0,1MPa. Jak se změní tlak vzduchu, jestliže se jeho objem zmenší na 1/10 původního objemu a) izotermicky, b) adiabaticky. Poissonova konstanta pro vzduch je 1,4. V1 1l, p1 0,1 MPa, V2 0,1 V1, 1,4; p2?

97 Izotermicky: p1v 1 p1v 1 p1v 1 p2v2 p2 10 p1 10.0,1 MPa 1MPa V2 0,1 V1 Adiabaticky: p1v 1 p1v 1 p2v2 p2 V2 0,1 p2 MPa 2, 5MPa 1,4 0,1 p V 0, V1 p 0,1 Výsledky porovnejte s grafem izotermy a adiabaty! 1

98 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN [2] AUTOR NEUVEDEN. wikipedia.cz [online]. [cit ]. Dostupný na WWW: [3] AUTOR NEUVEDEN. hastex.cz [online]. [cit ]. Dostupný na WWW:

99 Ing. Stanislav Jakoubek

100 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Vysvětlíme si základní rozdíly mezi ideálním plynem a reálným plynem. Pochopíme, jaké další parametry mají vliv na strukturu a vlastnosti plynů. Zmíníme van der Waalsovu rovnici pro reálný plyn.

101 Pro vysoké tlaky neplatí přesně zákon Boylův- Mariottův pv konst V konst p Objem plynu je nepřímo úměrný tlaku. Při vysokých tlacích nelze zanedbat vlastní objem molekul a rovněž se díky malé střední vzdálenosti částic začínají projevovat přitažlivé a odpudivé síly.

102 Pro vysoké tlaky a vysoké teploty neplatí přesně zákon Gay-Lussacův V T konst Teplota plynu souvisí s jeho vnitřní energií. V modelu ideálního plynu je tvořena pouze kinetickou energií pohybujících se molekul. Díky vysokému tlaku (a tím pádem malé vzdálenosti mezi molekulami) se projevují přitažlivé a odpudivé síly. S pohybem v tomto silovém poli souvisí potenciální energie molekul.

103 Pro velmi nízké teploty neplatí přesně Charlesův zákon. Jinak docela přesně ano. p T konst.

104 Přesnější stavová rovnice pro plyn. Zahrnuje vlastní objem molekul a soudržné síly mezi nimi. Dá se použít i při vysokých tlacích. p a V V b R T 2 m m Pro 1 mol plynu. m a konstanta související se soudržností molekul b konstanta související s vlastním objemem molekul

105 Holandský fyzik

106 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN [2] AUTOR NEUVEDEN. wikipedia.cz [online]. [cit ]. Dostupný na WWW: n_der_waals.jpg

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/--3-09 III/--3-0 III/--3- III/--3- III/--3-3 Název DUMu Měrná tepelná kapacita Kalorimetr, kalorimetrická rovnice Přenos vnitřní energie vedením Přenos vnitřní energie

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-3-3-01 III/2-3-3-02 III/2-3-3-03 III/2-3-3-04 III/2-3-3-05 III/2-3-3-06 III/2-3-3-07 III/2-3-3-08 Název DUMu Elektrický náboj a jeho vlastnosti Silové působení

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď)

Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) Jméno: _ podpis: ročník: č. studenta Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) 1. JEDNOTKA PASCAL JE DEFINOVÁNÁ JAKO a. N.m.s b. kg.m-1.s-2 c. kg.m-2 d. kg.m.s 2. KALORIMETRICKÁ

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

ZÁKONY CHEMICKÝCH REAKCÍ

ZÁKONY CHEMICKÝCH REAKCÍ Škola: Masarykovo gymnázium Vsetín Autor: Mgr. Jaroslav Jurčák DUM: MGV_CH_SS_1S2_D23_Z_ATOM_Chemicke_zakony_T Vzdělávací obor: Člověk a příroda Chemie Tematický okruh: Atom Téma: Zákony chemických reakcí

Více

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10

Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10 Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP Termodynamika Příklad 1 Stláčením ideálního plynu na 2/3 původního objemu vzrostl při stálé teplotě jeho tlak na 15 kpa.

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/2-1-3-3 III/2-1-3-4 III/2-1-3-5 Název DUMu Vnější a vnitřní fotoelektrický jev a jeho teorie Technické využití fotoelektrického jevu Dualismus vln a částic Ing. Stanislav

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34. Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_466A Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad

Více

Experimenty se systémem Vernier

Experimenty se systémem Vernier Experimenty se systémem Vernier Izotermický děj Petr Kácovský, KDF MFF UK Tyto experimenty vznikly v rámci diplomové práce Využívání dataloggerů ve výuce fyziky, obhájené v květnu 2012 na MFF UK v Praze.

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost

ROVNOMĚRNĚ ZRYCHLENÝ POHYB, ZPOMALENÝ POHYB TEORIE. Zrychlení. Rychlost Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D05_Z_MECH_Rovnomerne_zrychleny_pohyb_z pomaleny_pohyb_pl Člověk a příroda Fyzika

Více

TESTY Závěrečný test 2. ročník Skupina A

TESTY Závěrečný test 2. ročník Skupina A 1. Teplota tělesa se zvýšila o o C. Analogicky tomu lze říci, že se a) snížila o K. b) zvýšila o 93,15 K c) snížila o 53,15 K d) zvýšila o K. Částice v látce se pohybují a) neustáleným a uspořádaným pohybem

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_96 Jméno autora: Mgr. Eva Mohylová Třída/ročník:

Více

FYZIKA Mechanika tekutin

FYZIKA Mechanika tekutin Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.

Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),

Více

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.

1/5. 9. Kompresory a pneumatické motory. Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9. 1/5 9. Kompresory a pneumatické motory Příklad: 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17 Příklad 9.1 Dvojčinný vzduchový kompresor bez škodného prostoru,

Více

Mechanika plynů. Vlastnosti plynů. Atmosféra Země. Atmosférický tlak. Měření tlaku

Mechanika plynů. Vlastnosti plynů. Atmosféra Země. Atmosférický tlak. Měření tlaku Mechanika plynů Vlastnosti plynů Molekuly plynu jsou v neustálém pohybu, pronikají do všech míst nádoby plyn je rozpínavý. Vzdálenosti mezi molekulami jsou větší než např. v kapalině. Zvýšením tlaku je

Více

N A = 6,023 10 23 mol -1

N A = 6,023 10 23 mol -1 Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO.

CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. 01) Složení látek opakování učiva 6. ročníku: Všechny látky jsou složeny z částic nepatrných rozměrů (tj. atomy, molekuly,

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Grafy s fyzikální. tématikou ANOTACE VY_32_INOVACE_56. VY_32_INOVACE_56 Grafy s fyzikální tématikou autorka: Mgr. Lenka Andrýsková, Ph.D.

Grafy s fyzikální. tématikou ANOTACE VY_32_INOVACE_56. VY_32_INOVACE_56 Grafy s fyzikální tématikou autorka: Mgr. Lenka Andrýsková, Ph.D. Grafy s fyzikální VY_32_INOVACE_56 tématikou Informační a komunikační technologie pro 8. třídu Textové a tabulkové editory Tabulkový editor MS Excel Grafy Mgr. Lenka Andrýsková, Ph.D. leden 2012 ZŠ a MŠ

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové ymnázium Přírodní vědy moderně

Více

Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a

Domácí práce č.1. Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a Domácí práce č.1 Jak dlouho vydrží palivo motocyklu Jawa 50 Pionýr, pojme-li jeho nádrž 3,5 litru paliva o hustote 750kg m 3 a motor beží pri 5000ot min 1 s výkonem 1.5kW. Motor má vrtání 38 mm a zdvih

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 15.03.2013 Číslo DUMu: VY_32_INOVACE_11_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 15.03.2013 Číslo DUMu: VY_32_INOVACE_11_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 15.03.2013 Číslo DUMu: VY_32_INOVACE_11_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná

Více

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn!

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn! FYZIKA DIDAKTICKÝ TEST FYM0D11C0T03 Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o 3 - Termomechanika 1. Hustota vzduchu při tlaku p l = 0,2 MPa a teplotě t 1 = 27 C je ρ l = 2,354 kg/m 3. Jaká je jeho hustota ρ 0 při tlaku p 0 = 0,1MPa a teplotě t 0 = 0 C [1,29 kg/m 3 ] 2. Určete objem

Více

Název DUM: Změny skupenství v příkladech

Název DUM: Změny skupenství v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství

Více

Přehled otázek z fyziky pro 2.ročník

Přehled otázek z fyziky pro 2.ročník Přehled otázek z fyziky pro 2.ročník 1. Z jakých základních poznatků vychází teorie látek + důkazy. a) Látka kteréhokoli skupenství se skládá z částic molekul, atomů, iontů. b) Částice se v látce pohybují,

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA U.. vnitřní energie tělesa ( termodynamické soustavy) je celková kinetická energie neuspořádaně se pohybujících částic tělesa ( molekul, atomů, iontů) a celková potenciální energie vzájemné polohy těchto

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_374 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/-1-3-17 III/-1-3-18 III/-1-3-19 III/-1-3-0 Název DUMu Klasický a relativistický princip relativity Relativnost současnosti Základy relativistické kinematiky Základy

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

fyzika v příkladech 1 a 2

fyzika v příkladech 1 a 2 Sbírka pro předmět Středoškolská fyzika v příkladech 1 a 2 Termodynamika a statistická fyzika: ideální plyn zadání Řešení 1. Válec délky l = 60 cm, naplněný vzduchem atmosférického tlaku p = 72 cm Hg,

Více

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.

CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter. CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické

Více

Přednáška 2. Martin Kormunda

Přednáška 2. Martin Kormunda Přednáška 2 Objemové procesy Difuze Tepelná transpirace (efuze) Přenos energie Proudění plynů : proud plynu, vakuová vodivost, vodivost otvoru, potrubí. Proudění plynu netěsnostmi Difuze plynu Veškeré

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_10 ŠVP Podnikání RVP 64-41-L/51

Více

VZTAHY MEZI FYZIKÁLNÍMI VELIČINAMI Implementace ŠVP

VZTAHY MEZI FYZIKÁLNÍMI VELIČINAMI Implementace ŠVP Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. VZTAHY MEZI FYZIKÁLNÍMI VELIČINAMI Implementace ŠVP

Více

Kalorimetrická rovnice, skupenské přeměny

Kalorimetrická rovnice, skupenské přeměny Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Úlohy z fyzikální chemie

Úlohy z fyzikální chemie Úlohy z fyzikální chemie Bakalářský kurz Kolektiv ústavu fyzikální chemie Doc. Ing. Lidmila Bartovská, CSc., Ing. Michal Bureš, CSc., Doc. Ing. Ivan Cibulka, CSc., Doc. Ing. Vladimír Dohnal, CSc., Doc.

Více

Příklady k opakování TERMOMECHANIKY

Příklady k opakování TERMOMECHANIKY Příklady k opakování TERMOMECHANIKY P1) Jaký teoretický výkon musí mít elektrický vařič, aby se 12,5 litrů vody o teplotě 14 C za 15 minuty ohřálo na teplotu 65 C, jestliže hustota vody je 1000 kg.m -3

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 20. 3. 2013 Pořadové číslo 15 1 Energie v přírodě Předmět: Ročník: Jméno autora:

Více

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2 Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

R9.1 Molární hmotnost a molární objem

R9.1 Molární hmotnost a molární objem Fyzika pro střední školy I 73 R9 M O L E K U L O V Á F Y Z I K A A T E R M I K A R9.1 Molární hmotnost a molární objem V čl. 9.5 jsme zavedli látkové množství jako fyzikální veličinu, která charakterizuje

Více

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady Příklady 1. Jaký je tlak vzduchu v pneuatice nákladního autoobilu při teplotě C a hustotě 8, kg 3? Molární hotnost vzduchu M 9 1 3 kg ol 1. t C T 93 K -3 ρ 8, kg, M 9 1 3 kg ol 1 p? p R T R T ρ M V M 8,31

Více