Ing. Stanislav Jakoubek

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Ing. Stanislav Jakoubek"

Transkript

1 Ing. Stanislav Jakoubek

2 Číslo DUMu III/ III/ III/ III/ III/ III/ III/ Název DUMu Ideální plyn Rychlost molekul plynu Základní rovnice pro tlak ideálního plynu Stavová rovnice pro ideální plyn Stavové změny ideálního plynu Adiabatický děj s ideálním plynem Reálný plyn

3 Ing. Stanislav Jakoubek

4 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ V této kapitole se seznámíme se základním důležitým modelem plynu s ideálním plynem. Řekneme si, z jakých předpokladů vychází a jaká zjednodušení pro představu plynu z nich vycházejí.

5 Plyn tvoří volně se pohybující částice (jednoatomové a víceatomové molekuly). Rychlost a směr jejich pohybu se díky vzájemným srážkám neustále mění. Plyn je rozpínavý. Z toho lze usoudit, že přitažlivé síly mezi molekulami jsou velmi malé.

6 Je to model; vychází ze 3 předpokladů 1. Rozměry molekul jsou zanedbatelné ve srovnání s jejich střední vzdáleností 2. Nepůsobí na sebe přitažlivými silami 3. Vzájemné srážky jsou dokonale pružné, tedy bez ztráty vnitřní energie.

7 Předpoklad přesně splňuje podmínky pro vhodnost použití představy hmotného bodu. Neuvažujeme tedy vlastní tvar a objem molekul. Zajímá nás pouze jejich hmotnost.

8 Nepůsobí-li na sebe přitažlivými silami, molekuly se nepohybují v silovém poli a tedy potenciální energie tohoto (neexistujícího) pole je nulová. Vnitřní energie je dána pouze součtem kinetických energií jednotlivých molekul. Ep 0 U Ek

9 Protože nedochází ke ztrátám kinetické energie, je vnitřní energie plynu (za předpokladu konstantní teploty) stálá.

10 Mají-li skutečné plyny dostatečně velkou teplotu a nízký tlak. Vysoká teplota při vyšší teplotě se molekuly pohybují rychleji, mají velkou kinetickou energii a vůči ní lze malou potenciální zanedbat. Nízký tlak ke srážkám mezi molekulami dochází málokdy a proto lze zanedbat ztráty kinetické energie.

11 t n =0 C p n =1, Pa Za podmínek, které se příliš neliší od normálních podmínek, lze většinu plynů s dostatečnou přesností považovat za ideální plyn. Poznámka: je dobré, že se v běžných podmínkách dá model použít. Model, který by fungoval jen za nějakých extrémních podmínek, by nám pro praxi moc platný nebyl.

12 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN

13 Ing. Stanislav Jakoubek

14 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Už víme, že molekuly látek libovolného skupenství se neustále chaoticky pohybují. I v chaosu je však potřeba najít nějaký řád. Pro rychlosti molekul v ideálním plynu je tímto řádem Maxwellův zákon.

15 Víme, že rychlost molekul se neustále mění a tedy se neustále mění jejich kinetická energie Srážky jsou pružné, takže celková kinetická energie E k se (za stálé teploty) nemění E E k 0 počet molekul N

16 Střední kinetické energii odpovídá jakási střední rychlost E 2 m0v k Střední kvadratická rychlost v k taková rychlost, jakou by se musely pohybovat všechny molekuly, aby se celková kinetická energie posuvného pohybu molekul nezměnila

17 N počet molekul s danou rychlostí v p nejpravděpodobnější rychlost v střední (průměrná) rychlost v k střední kvadratická rychlost

18 v[m/s] % molekul , , , , , , ,2 nad 700 7,7

19 Mějme 1mol molekul kyslíku O 2. Kolik z nich se pohybuje rychlostí v rozmezí m.s -1? Z grafu plyne, že jde o 41,8% z jejich celkového počtu. Protože 1mol látky obsahuje Avogadrovo číslo částic, je výsledek: N 23 0,418. N A 0,418.6, ,

20 Z grafu odhadněte střední kvadratickou rychlost molekul O 2 při teplotě 0 C. Využijte teoretický graf, kde je poloha v k znázorněna. Použijeme-li navržený postup, zjistíme, že v k 450m. s 1

21 Na čem závisí v k? Na teplotě T čím vyšší teplota, tím rychlejší Na hmotnosti molekul čím těžší, tím pomalejší v k 3kT m 0 k 1, J. K 1 Boltzmannova konstanta

22 Anglický fyzik

23 t[ C] Plyn v k [m.s -1 ] Dusík Helium Chlor Kyslík Oxid uhličitý Vodík Vzduch

24 kT E0 m0vk m0 2 2 m kt Střední kinetická energie je přímo úměrná termodynamické teplotě. Pozn.: Mějme dva plyny o téže teplotě. E 0 je tedy stejná. Z toho plyne, že lehčí molekuly se pohybují rychleji.

25 Odvoďte jednotku Boltzmannovy konstanty. E J 3 2 kt k. K k J K J. K

26 Vypočtěte střední kvadratickou rychlost molekul kyslíku při teplotách 0 C a 100 C. t C T 273,15K, t 100C T 373, 15K v A k r 27 O 16, m 1,66.10 kg; v? 3kT m 0 u 3kT 2. A. m r u , , v k 0 m. s 461m. s ,66.10 k , , v k 100 m. s 539m. s ,66.10 V dobré shodě s odhadem.

27 Vypočtěte střední kinetickou energii jednoatomové molekuly ideálního plynu o teplotě 0 C. t 0C T 273,15K; E0? 3 23 E0 kt.1, ,15j 5, J

28 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN [2] AUTOR NEUVEDEN. Wikipedia.cz [online]. [cit ]. Dostupný na WWW: [3] HLAVIČKA, Alois a kol. Fyzika pro pedagogické fakulty 1. Praha: Státní pedagogické nakladatelství, n.p., 1971, ISBN [4] MIKULČÁK, Jiří a kol. Matematické, fyzikální a chemické tabulky pro střední školy. Praha: Státní pedagogické nakladatelství, n.p., 1988, ISBN /

29 Ing. Stanislav Jakoubek

30 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Na základě představy o neustálém chaotickém pohybu molekul v plynu si vysvětlíme, co je to vlastně tlak. Dále si uvedeme rovnici pro tlak v plynu a ukážeme si, že si v ní podávají ruce mikroskopické veličiny, jako je třeba hmotnost molekuly, s makroskopickými veličinami, jako je kupříkladu tlak.

31 Díky chaotickému pohybu molekul dochází k jejich nárazům do molekul ve stěnách nádoby. Síla nárazů působí na plochu stěny a způsobuje tlak. Při stálých vnějších podmínkách se nemění.

32 S rostoucí teplotou roste E 0 a tedy roste v k. p p v k S rostoucí v k dochází k větším nárazům na stěny nádoby a tedy roste tlak. Jaká je ta funkce?

33 p 1 3 N V m v 2 0 k N počet molekul v plynu V objem plynu m 0 hmotnost jedné molekuly v k střední kvadratická rychlost Důležitý vztah, protože dává dohromady veličiny vztahující se k samotným molekulám (m 0,v k ) s makroskopicky měřitelnou veličinou (p).

34 p 1 3 N V 2 N 3 V m v k 0 k p konst. m v Tlak je přímo úměrný střední kinetické energii připadající na jednu molekulu E 0. E 0 N m m;. 0 Hmotnost celého plynu. m V Hustota plynu. 1 p v 3 k 2

35 p Ověřte pomocí jednotek, že základní rovnice pro tlak opravdu počítá tlak v pascalech. p 3 F S m a S 2. kg. m. s 1 2 Pa kg. m. s 2 m Tohle musí vyjít. 1 N m0 v 1.. kg. m. s m. kgm.. s kg. m. s k 3 V m

36 V ocelové nádobě vnitřního objemu 10 litrů je kyslík o hmotnosti 0,1kg.Jaký je tlak kyslíku při teplotě 0 C? V 10l 0,01m 3, m 0,1 kg, v k 461m. s 1 ; p? p m 2 1 0,1 2 vk vk..461 Pa Pa 0, 708MPa 3 3 V 3 0,01

37 Vzduch v uzavřené nádobě má tlak 0,1MPa a hustotu 1,28kg.m -3. Jaká je střední kvadratická rychlost molekul plynů vzduchu za těchto podmínek? Jak se změní tako rychlost, jestliže se tlak plynu čtyřikrát zvětší a hustota zůstane konstantní? 3 p,1mpa, 1,28kgm., p 4p;? 0 1 v k p p 3.0, v v m. s 484m. s k k 3 1, p 3p v. k v k Dvakrát vzroste.

38 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN

39 Ing. Stanislav Jakoubek

40 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Víme, že plyn je popsán stavovými veličinami. Jsou na sobě nezávislé nebo například změna teploty způsobí změnu tlaku? Odpovědi na tyto a další otázky nám dá tato kapitola.

41 Popisujeme ho pomocí stavových veličin Nejčastěji: o tlak p o objem V o termodynamická teplota T Vztah mezi těmito veličinami se nazývá stavová rovnice pro ideální plyn.

42 Měníme teplotu, tlak či objem a zkoumáme, jak se tato změna projeví na hodnotách zbylých veličin.

43 T [K] V [.10-3 m -3 ] p[.10 3 Pa] pv/t [J.K -1 ] 280 1, ,0 0, , ,4 0, , ,0 0, , ,4 0,361 Podobný závěr lze udělat i pro jiný plyn o libovolné hmotnosti. Jen ta konstanta by vyšla jiná.

44 Při stavové změně ideálního plynu stálé hmotnosti je výraz pv konstantní. T pv T konst

45 Na počátku děje má plyn tlak p 1, objem V 1, teplotu T 1. Na konci děje má plyn tlak p 2, objem V 2, teplotu T 2. p V 1 T 1 1 p 2 T V 2 2

46 pnv T Proveďme popsaný experiment s 1 mol plynu za normálních podmínek (p n =1, Pa,t n =0 CT n =273,15K). Za těchto podmínek má každý plyn molární objem V m =22, m 3 mol -1 n m R m 5 3 1, , ,15 8,31J. K 1. J. K mol 1. mol 8,31J. K. mol Pro všechny ideální plyny je stejná.

47 p. V T m R m p. Vm Rm. T V m molární objem ideálního plynu za tlaku p a teploty T.

48 Víme: m m m M m n n m M n V V ; Upravíme: m M V n V V m m Dosadíme do stavové rovnice pro 1 mol: T R m M pv m m T R M m pv m m

49 V A V tlakové nádobě o objemu 20dm 3 je vodík H 2 o hmotnosti 4g a teplotě 27 C. Jaký je tlak vodíku, považujeme-li ho za ideální plyn? 20dm r pv 3 0,02m 3, m 4g 0,004kg, t 27C T 1 H 1 M H 2 M H 0,002kgmol m M m R m T r p 2 m 2. mrmt M V m Po zaokrouhlení: 0,004.8,31.300,15 0,002.0,02 300,15K; Pa p? Pa p 0, 25MPa

50 Vzduch má při teplotě 293K tlak 99,7kPa a objem 2m 3. Jaký objem má vzduch za normálních podmínek? T T 1 n p V T 1 293K, p 1 273,15K, 99,7kPa, V p n p V2 2 T 1 1 V n 2m 101,325kPa; V 1 n 1 n , p1v T 99, ,15 m 1, 83m T p ,325 n?

51 Jak se změní tlak plynu, jestliže se jeho termodynamická teplota zvětší třikrát a jeho objem vzroste o 25% původního objemu? p1, T1, V1, T2 3T 1, V2 1,25V 1; p2? p V T 1 p2v2 2 T 1 1 p 2 p V T TV , p V.3T T.1,25V 1 1 p 1 Tlak se zvýší 2,4 krát.

52 Při teplotě 20 C je tlak vzduchu v pneumatice osobního automobilu 0,15MPa. Jaký tlak má vzduch, zvýší-li se teplota o 30 C a objem vzroste o 1%? t 1 t 20C T 1 30C T 293,15K, p ,15K, V 0,15MPa, 2 1,01V 1 ; p 2? p V T 1 p2v2 2 T 1 1 p 2 p1v 1T2 0,15. V1.323,15 MPa TV 293,15.1,01V ,16MPa

53 Chlór Cl 2 má při tlaku 98,4kPa a teplotě 22 C objem 3 litry. Určete jeho hmotnost. p 98,4kPa, t 22C T 295,15K, V 3l 0,003m 3, A r Cl 35,5 M Cl 71; m? r 2 pv m M m R m T m pvm R T ,003.0,071 3 m kg 8,55.10 kg 8, 55g 8,31.295,15 m m

54 Jaký je tvar stavové rovnice ideálního plynu pro látkové množství n? Víme: pv m R T; V Dosadíme a upravíme: m m V n V p R T pv nr T n m n

55 Jaký je tvar stavové rovnice ideálního plynu pro daný počet molekul N? Víme: p 2 3 N V 2 m0vk E0 m0vk kt Upravíme: 2 2 m0vk pv N NE0 N kt NkT pv NkT

56 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN

57 Ing. Stanislav Jakoubek

58 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Čeká nás velmi důležitá kapitola o dějích v plynech. Bez jejího pochopení by nefungovaly tepelné motory, chladničky atd.

59 Obecně: při změně stavu plynu se mění současně tlak, teplota i objem ideálního plynu. Pokud zůstává jedna z veličin konstantní, mluvíme o jednoduchých dějích s ideálním plynem Jiný název: izoděje

60 Teplota plynu je stálá, tedy T 1 =T 2 =T p 1 2 1V T p2v T pv p V Obecně: pv konst. Poznámka: zákon Boylův - Mariottův

61 Irský filozof, chemik a fyzik

62 Francouzský kněz a fyzik (pravděpodobně)

63 V grafu jsou znázorněny tři izotermy pro tři různé teploty T 1, T 2 a T 3.

64 Teplota plynu se nemění střední kinetická energie molekul se nemění vnitřní energie plynu se nemění (U=0J) Z 1.termodynamického zákona: Q U W Q W Teplo přijaté ideálním plynem při izotermickém ději se rovná práci, kterou plyn při tomto ději vykoná.

65 Kde se projeví vykonaná práce? Posunem pístu vzhůru silou F po dráze h.

66 Objem plynu je stálý, tedy V 1 =V 2 =V p1v T 1 p2v T 2 p1 T 1 p T 2 2 p Obecně: konst. T Poznámka: zákon Charlesův

67 Francouzský chemik a fyzik

68 Objem je stále stejný!

69 p T konst. p konstt. Formálně odpovídá přímé úměrnosti. Při izochorickém ději s ideálním plynem stálé hmotnosti je tlak plynu přímo úměrný termodynamické teplotě.

70 Na zvýšení teploty dodáme plynu teplo Q=m.c v.δt (c v měrná tepelná kapacita plynu při stálém objemu). Nemění se objem nic se nikam neposouvá nevykonává se práce (W =0) Q U W Q U Teplo přijaté ideálním plynem při izochorickém ději se rovná přírůstku jeho vnitřní energie.

71

72 Tlak plynu je stálý, tedy p 1 =p 2 =p pv T 1 1 pv T 2 2 V1 T 1 V T 2 2 V Obecně: konst. T Poznámka: zákon Gay-Lussacův (1802)

73 Francouzský fyzik

74 Tlak je stále stejný!

75 V T konst. V konstt. Formálně odpovídá přímé úměrnosti. Při izobarickém ději s ideálním plynem stálé hmotnosti je objem plynu přímo úměrný jeho termodynamické teplotě.

76 Na zvýšení teploty dodáme plynu teplo Q=m.c p.δt (c p měrná tepelná kapacita při stálém tlaku) Zahřívá se roste vnitřní energie Mění se objem koná se práce W Q U W Teplo přijaté ideálním plynem při izobarickém ději se rovná součtu přírůstku jeho vnitřní energie a práce, kterou plyn vykoná.

77

78 V nádobě o vnitřním objemu 10 litrů je uzavřen plyn při tlaku 5MPa. Jaký bude jeho objem, poklesne-li izotermicky tlak na 2MPa? V1 10l, p1 5MPa, p2 2MPa, T konst.; V2? p V p V V p1v l p l

79 t 1 V Při teplotě 0 C má ideální plyn tlak 1,02kPa. Určete tlak plynu, jestliže se teplota zvýší o 100 C při stálém objemu. p T 0C T konst.; p ,15K, p p2 2 T 1 p 2? 1 1,02kPa, t 100C T p1 1,02 T2.373,15kPa T 273, ,39kPa 373,15K,

80 Teplota ideálního plynu dané hmotnosti se zvětšuje za stálého tlaku z počáteční hodnoty 20 C. Při jaké teplotě má plyn dvojnásobný objem ve srovnání s objemem při počáteční teplotě? t1 20C T1 293,15K, p konst., V1, V2 2V 1; t2 V T 1 V2 2 T 1 T 2 V V 2 1 T 1 2V 1.293,15K 586,3K t2 313, 15C V 1?

81 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN [2] AUTOR NEUVEDEN. wikipedia.cz [online]. [cit ]. Dostupný na WWW: [3] KROOSHOF, Gerard. wikipedia.cz [online]. [cit ]. Dostupný na WWW: [4] KERSEBOOM, Johann. wikipedia.cz [online]. [cit ]. Dostupný na WWW: [5] AUTOR NEZNÁMÝ. wikipedia.en [online]. [cit ]. Dostupný na WWW:

82 Ing. Stanislav Jakoubek

83 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Vysvětlíme si, co se děje s termodynamickou soustavou, pokud při ději nedochází k tepelné výměně s okolím. Pochopíme, proč se zahřívá ventilek při usilovném pumpování a proč dochází k ochlazení prudce otevřené natlakované láhve s plynem.

84 Řadí se mezi jednoduché děje s ideálním plynem Neprobíhá při něm tepelná výměna mezi plynem a okolím Q=0J Q U W U W 0 U W U W W práce okolních sil

85 Adiabatické stlačení plynu (adiabatická komprese) Adiabatické rozpínání plynu (adiabatická expanze)

86 Vnější síly konají práci na stlačení plynu W>0 a tedy ΔU>0 Roste vnitřní energie plyn se zahřívá Příklady z praxe: při rychlém pumpování kola pumpičkou se ventilek zahřívá (zkuste si to ). Vznícení pohonných látek ve válcích vznětových motorů.

87 Vnější síly práci přijímají, naopak vykonává jí expandující plyn na úkor své vnitřní energie W<0 ΔU<0, plyn se ochlazuje Příklad z praxe: při rychlém otevření plné tlakové láhve s plynem dojde k jejímu ochlazení (někdy vznikne i námraza)

88 Termočlánek připojený k citlivému galvanometru.

89 p Obecně: pv konst. 1V 1 p2v2 c c p v Poissonova konstanta c p měrná tepelná kapacita plynu za stálého tlaku c v měrná tepelná kapacita plynu za stálého objemu

90 Pro ideální plyn s jednoatomovými molekulami: Pro ideální plyn s dvouatomovými molekulami:

91 Francouzský matematik, geometr, astronom a fyzik

92 a adiabata i - izoterma Adiabata klesá pro tentýž plyn rychleji, než izoterma.

93 Adiabatické komprese nebo expanze lze dosáhnout rychlým průběhem dějů (aby plyn neměl čas odevzdat nebo přijmout teplo).

94 Izotermický děj probíhá pomalu a vyžaduje dokonalou tepelnou výměnu mezi plynem a okolím Adiabatický děj probíhá rychle a vyžaduje dokonalou izolaci Reálné děje: něco mezi nimi polytropické děje pv konst. 1 polytropický koeficient

95 Hasivem je oxid uhličitý, který je v hasicím přístroji natlakovaný. Při použití dojde k rychlé (tedy adiabatické) expanzi plynu, který se prudce ochladí a vytvoří suchý led. Po použití se odpaří, proto se hodí i k hašení potravin.

96 Vzduch pod pístem válce má objem 1 litr, tlak 0,1MPa. Jak se změní tlak vzduchu, jestliže se jeho objem zmenší na 1/10 původního objemu a) izotermicky, b) adiabaticky. Poissonova konstanta pro vzduch je 1,4. V1 1l, p1 0,1 MPa, V2 0,1 V1, 1,4; p2?

97 Izotermicky: p1v 1 p1v 1 p1v 1 p2v2 p2 10 p1 10.0,1 MPa 1MPa V2 0,1 V1 Adiabaticky: p1v 1 p1v 1 p2v2 p2 V2 0,1 p2 MPa 2, 5MPa 1,4 0,1 p V 0, V1 p 0,1 Výsledky porovnejte s grafem izotermy a adiabaty! 1

98 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN [2] AUTOR NEUVEDEN. wikipedia.cz [online]. [cit ]. Dostupný na WWW: [3] AUTOR NEUVEDEN. hastex.cz [online]. [cit ]. Dostupný na WWW:

99 Ing. Stanislav Jakoubek

100 Název školy Název a číslo OP Název šablony klíčové aktivity Tematická oblast (předmět) Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Číslo DUMu Anotace Střední škola technická AGC a.s. OP Vzdělávání pro konkurenceschopnost, CZ. 1.5 Název projektu: Výuka atraktivně a efektivně, č.p.: CZ.1.07/1.5.00/ III/2 Zvyšování kvality výuky prostřednictvím ICT Fyzika Molekulová fyzika a termodynamika Ing. Stanislav Jakoubek III/2-2-3 III/ Vysvětlíme si základní rozdíly mezi ideálním plynem a reálným plynem. Pochopíme, jaké další parametry mají vliv na strukturu a vlastnosti plynů. Zmíníme van der Waalsovu rovnici pro reálný plyn.

101 Pro vysoké tlaky neplatí přesně zákon Boylův- Mariottův pv konst V konst p Objem plynu je nepřímo úměrný tlaku. Při vysokých tlacích nelze zanedbat vlastní objem molekul a rovněž se díky malé střední vzdálenosti částic začínají projevovat přitažlivé a odpudivé síly.

102 Pro vysoké tlaky a vysoké teploty neplatí přesně zákon Gay-Lussacův V T konst Teplota plynu souvisí s jeho vnitřní energií. V modelu ideálního plynu je tvořena pouze kinetickou energií pohybujících se molekul. Díky vysokému tlaku (a tím pádem malé vzdálenosti mezi molekulami) se projevují přitažlivé a odpudivé síly. S pohybem v tomto silovém poli souvisí potenciální energie molekul.

103 Pro velmi nízké teploty neplatí přesně Charlesův zákon. Jinak docela přesně ano. p T konst.

104 Přesnější stavová rovnice pro plyn. Zahrnuje vlastní objem molekul a soudržné síly mezi nimi. Dá se použít i při vysokých tlacích. p a V V b R T 2 m m Pro 1 mol plynu. m a konstanta související se soudržností molekul b konstanta související s vlastním objemem molekul

105 Holandský fyzik

106 [1] BEDNAŘÍK, Milan; KUNZOVÁ, Vlasta; SVOBODA, Emanuel. Fyzika II pro studijní obory SOU. Praha: Státní pedagogické nakladatelství, n.p., 1986, ISBN [2] AUTOR NEUVEDEN. wikipedia.cz [online]. [cit ]. Dostupný na WWW: n_der_waals.jpg

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Experimenty se systémem Vernier

Experimenty se systémem Vernier Experimenty se systémem Vernier Izotermický děj Petr Kácovský, KDF MFF UK Tyto experimenty vznikly v rámci diplomové práce Využívání dataloggerů ve výuce fyziky, obhájené v květnu 2012 na MFF UK v Praze.

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Ing. Stanislav Jakoubek

Ing. Stanislav Jakoubek Ing. Stanislav Jakoubek Číslo DUMu III/-1-3-17 III/-1-3-18 III/-1-3-19 III/-1-3-0 Název DUMu Klasický a relativistický princip relativity Relativnost současnosti Základy relativistické kinematiky Základy

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

FYZIKA, SI, NÁSOBKY A DÍLY, SKALÁR A VEKTOR, PŘEVODY TEORIE. Fyzika. Fyzikální veličiny a jednotky

FYZIKA, SI, NÁSOBKY A DÍLY, SKALÁR A VEKTOR, PŘEVODY TEORIE. Fyzika. Fyzikální veličiny a jednotky Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D01_Z_MECH_Uvod_PL Člověk a příroda Fyzika Mechanika Úvod Fyzika, SI, násobky a

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Úlohy z fyzikální chemie

Úlohy z fyzikální chemie Úlohy z fyzikální chemie Bakalářský kurz Kolektiv ústavu fyzikální chemie Doc. Ing. Lidmila Bartovská, CSc., Ing. Michal Bureš, CSc., Doc. Ing. Ivan Cibulka, CSc., Doc. Ing. Vladimír Dohnal, CSc., Doc.

Více

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovoúvodem... 3

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovoúvodem... 3 Obsah Fyzika je kolem nás(molekulová fyzika a termika) Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová Slovoúvodem 3 1 Jakvelkéjsou malé částice? 5 11 Hmotnostčástic

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

Popis stavového chování plynů

Popis stavového chování plynů ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA CHEMIE Popis stavového chování plynů BAKALÁŘSKÁ PRÁCE Martin Řehák Studijní obor: Chemie se zaměřením na vzdělávání Vedoucí práce: Mgr. Jitka

Více

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce

Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona. U změna vnitřní energie Q teplo W práce Termochemie Termochemie se zabývá tepelným zabarvením chemických reakcí Vychází z 1. termodynamického zákona U = Q + W U změna vnitřní energie Q teplo W práce Teplo a práce dodané soustavě zvyšují její

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 20. 3. 2013 Pořadové číslo 15 1 Energie v přírodě Předmět: Ročník: Jméno autora:

Více

Základní poznatky termodynamiky

Základní poznatky termodynamiky Kapitola 1 Základní poznatky termodynamiky 1.1 Úvod Při studiu fyziky začínáme zpravidla klasickou mechanikou, ve které studujeme mechanický pohyb těles. Při tom si nevšímáme, jaké vlastnosti mají tato

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Termika (Fyzika zajímavě) Pachner Úvodní obrazovka Obsah učebnice (vlevo) Seznamy a přehledy (tlačítka dole) Teorie Zajímavosti Osobnosti Úlohy Pokusy Pojmy Animace Lišta s nástroji (vpravo nahoře) Poznámky

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

VZTAHY MEZI FYZIKÁLNÍMI VELIČINAMI Implementace ŠVP

VZTAHY MEZI FYZIKÁLNÍMI VELIČINAMI Implementace ŠVP Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. VZTAHY MEZI FYZIKÁLNÍMI VELIČINAMI Implementace ŠVP

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.79 Název DUM: Hydrostatický tlak

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

Název DUM: Změny skupenství v příkladech

Název DUM: Změny skupenství v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

6_1_Molekulová fyzika a termodynamika

6_1_Molekulová fyzika a termodynamika Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 6_1_Molekulová fyzika a termodynamika Ing. Jakub Ulmann MOLEKULOVÁ FYZIKA A TERMIKA 1 Molekulová fyzika

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

2.5.12 Přímá úměrnost III

2.5.12 Přímá úměrnost III .5.1 Přímá úměrnost III Předpoklady: 00511 Př. 1: Narýsuj milimetrový papír grafy přímých úměrností. a) y = x b) y = x. U každé přímé úměrnosti si můžeme spočítat několik bodů (ve skutečnosti stačí jeden

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost

CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost CZ.1.07/1.5.00/34.0619 CZ.1.07/1.5.00/34.0619 Zvyšování vzdělanosti pomocí e-prostoru OP Vzdělávání pro konkurenceschopnost Soukromá střední škola a jazyková škola s právem státní jazykové zkoušky Č. Budějovice,

Více

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů

1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů 1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ Základní stavové veličiny látky Vztahy mezi stavovými veličinami ideálních plynů Stavová rovnice ideálního plynu f(p, v, T)=0 Měrné tepelné kapacity, c = f (p,t)

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu

Tento materiál byl vytvořen v rámci projektu Operačního programu Tento materiál byl vytvořen v rámci projektu Operačního programu Projekt MŠMT ČR Číslo projektu Název projektu Klíčová aktivita Vzdělávání pro konkurenceschopnost EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.3349

Více

1. Molekulová stavba kapalin

1. Molekulová stavba kapalin 1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ..07/.4.00/2.2759 Název DUM: Mechanické vlastnosti

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu Přírodní vědy moderně a interaktivně FYZIKA 1. ročník šestiletého studia Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu ymnázium Přírodní vědy moderně a interaktivně FYZIKA 1. ročník

Více

3.1 Základní poznatky

3.1 Základní poznatky 3.1 Základní poznatky 3.1 Určete klidovou hmotnost m a atomu uhlíku a atomu ţeleza. 3.2 Určete klidovou hmotnost m m molekuly vody H 2 O a molekuly oxidu uhličitého CO 2. 3.3 Určete molární hmotnost M

Více

21.5 Členění v závislosti na objemu výroby

21.5 Členění v závislosti na objemu výroby Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

Termodynamika ideálních plynů

Termodynamika ideálních plynů Za správnost neručím, cokoli s jinou než černou barvou je asi špatně Informace jsou primárně z přednášek Termodynamika ideálních plynů 1. Definice uzavřené termodynamické soustavy - neprochází přes ni

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ ALEŠ KAJZAR BRNO 2015 Obsah 1 Hmotnostní zlomek 1 1.1 Řešené příklady......................... 1 1.2 Příklady k procvičení...................... 6 2 Objemový zlomek 8 2.1

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

Magnetokalorický jev MCE

Magnetokalorický jev MCE Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Měření tlaku v závislosti na nadmořské výšce KET/MNV

Měření tlaku v závislosti na nadmořské výšce KET/MNV Měření tlaku v závislosti na nadmořské výšce KET/MNV Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P 1. Zadání Změřte hodnotu atmosférického tlaku v různých nadmořských výškách (v několika patrech

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

Termika PROJEKT VĚDA A TECHNIKA NÁS BAVÍ! BYL PODPOŘEN:

Termika PROJEKT VĚDA A TECHNIKA NÁS BAVÍ! BYL PODPOŘEN: Termika PROJEKT BYL PODPOŘEN: Cílem projektu je prostřednictvím vzdělávacích (vzdělávací programy, materiály) a popularizačních ( vědecké road-show) nástrojů a přeshraniční motivační soutěže zvýšit zájem

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

Chemie lambda příklady na procvičování výpočtů z rovnic

Chemie lambda příklady na procvičování výpočtů z rovnic Chemie lambda příklady na procvičování výpočtů z rovnic Příklady počítejte podle postupu, který vám lépe vyhovuje (vždy je více cest k výsledku, přes poměry, přes výpočty hmotností apod. V učebnici v kapitole

Více

MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3 MECHANIKA IDEÁLNÍCH PLYNŮ Studijní text pro řešitele FO a ostatní zájemce o fyziku Bohumil Vybíral Obsah Předmluva 3 1 Základní veličiny a zákony ideálního plynu 4 1.1 Stavovéveličinyplynu.......................

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

C5250 Chemie životního prostředí II definice pojmů

C5250 Chemie životního prostředí II definice pojmů C5250 Chemie životního prostředí II definice pojmů Na základě materiálů Ivana Holoubka a Josefa Zemana zpracoval Jiří Kalina. Ekotoxikologie věda studující vlivy chemických, fyzikálních a biologických

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0215 Anotace

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0215 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

Obr. 9.1: Elektrické pole ve vodiči je nulové

Obr. 9.1: Elektrické pole ve vodiči je nulové Stejnosměrný proud I Dosud jsme se při studiu elektrického pole zabývali elektrostatikou, která studuje elektrické náboje v klidu. V dalších kapitolách budeme studovat pohybující se náboje elektrický proud.

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více