Termodynamika pro +EE1 a PEE
|
|
- Žaneta Nováková
- před 6 lety
- Počet zobrazení:
Transkript
1 ermodynamika ro +EE a PEE
2 Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3] Prednaska cislo 7 - Zaklady termodynamiky - dolnek [4] Prednaska cislo 8 - echnologie vyroby v elektrarnach [5] Prednaska cislo 9 - yroba el. energie v JE - zakladni omocne obrazky [6] Prednaska cislo 0 - Alternatory (Pro zajemce o detailni rozboz matematickeho modelu alternatoru odkazuji na sekci PJS) [7] Otazky v zkusebnim elektronickem testu [8] Otazky u ustni zkousky
3 Možné zůsoby výroby elektrické energie v současnosti: termodynamická řeměna energie jaderného aliva a salování fosilních aliv v mechanickou energii a následně elektrickou - jaderné a klasické teelné (teelné na fosilní aliva) elektrárny řeměna mechanické olohové a kinetické energie vody v mechanickou energii a následně elektrickou - vodní elektrárny
4 Možné zůsoby výroby elektrické energie v současnosti: řeměna slunečního záření na elektrickou energii (římo nebo zrostředkovaně) - sluneční, větrné, geotermické slaové,
5 Předoklad světového vývoje výroby elektrické energie:
6 Předoklad Evroského vývoje výroby elektrické energie: Jaderné elektrárny Obnovitelné zdroje kromě vodních Ostatní zdroje Uhelné elektrárny odní elektrárny
7 Struktura instalovaného výkonu a vyrobené energie v ČR: Instalovaný výkon yrobená energie
8 Struktura instalovaného výkonu a vyrobené energie v ČR:
9 Struktura instalovaného výkonu a vyrobené energie v ČR:
10 Struktura instalovaného výkonu a vyrobené energie v ČR:
11 Struktura instalovaného výkonu a vyrobené energie v ČR:
12 Struktura sítí v ČR:
13 Struktura sítí v ČR:
14 Struktura sítí v ČR:
15 Struktura sítí v ČR:
16 Struktura instalovaného výkonu a vyrobené energie v ČR:
17 Struktura instalovaného výkonu a vyrobené energie v ČR:
18 Struktura instalovaného výkonu a vyrobené energie v ČR:
19
20 Struktura instalovaného výkonu a vyrobené energie v ČR:
21 Závěr: ýroba elektrické energie v České reublice je v nejbližší budoucnosti možná ředevším na základě termodynamických řeměn vodní áry.
22 Dělení energetických výroben: Podle druhu vyráběné energie: (kondenzační) elektrárny telárny výtony (kotelny) Podle druhu nasazení v denním digramu zatížení: základní (do P MIN ) ološičkové (do P S ) šičkové (do P MAX )
23 Základy termodynamiky KFY / FYE:
24 Základní termodynamické veličiny: telota míra kinetické energie elementárních částic hmoty daná translačním, rotačním a vibračním charakterem C, K tabs0 73.5C 0 K
25 Základní termodynamické veličiny: M m A mol M kg N částic A mol
26 Základní termodynamické veličiny:
27 Základní termodynamické veličiny:
28 Základní termodynamické veličiny: - +
29 Základní termodynamické veličiny: - +
30 Základní termodynamické veličiny:
31 Základní termodynamické veličiny:
32 Základní termodynamické veličiny:
33 Základní termodynamické axiomy: Stavová rovnice lynu: r m. ermodynamický zákon: a v u w h g q v u w h g,,,, v u w h,,,, v u w h Q a
34 Základní termodynamické axiomy: Stavová rovnice lynu: r m. ermodynamický zákon: Pro vodní turbíny: 0 w w h h g a i i Pro arní turbíny: 0 0 i i a w w h h
35 Základní termodynamické děje: Zákon Gay-Lussacův-děj izobarický:. konst. konst Ze stavové rovnice lynu 0 ) ( ) ( P a a d r d r d d di d v di d c d r d c d d c da du dq
36 Základní termodynamické děje: Zákon Gay-Lussacův-děj izobarický: dq c d P d S ds c c ln c ln P P P
37 Základní termodynamické děje: Zákon Gay-Lussacův-děj izobarický: A Q, I A Q S I c P I ln c P ln
38 Základní termodynamické děje: Zákon Charlesův - děj izochorický: a a konst. konst. dq du da 0 d c d d Ze stavové rovnice lynu c d du
39 Základní termodynamické děje: Zákon Charlesův - děj izochorický: dq c d d S ds c c ln c ln
40 Základní termodynamické děje: Zákon Charlesův - děj izochorický: A A Q S U c U ln c ln
41 Základní termodynamické děje: Zákon Boyle-Mariotův-děj izotermický: Ze stavové rovnice lynu. konst. konst r r r d dv a da da da d c da du dq a a d d d konst ln ln ln 0 0 ) (.
42 Základní termodynamické děje: Zákon Boyle-Mariotův-děj izotermický: ln ln ln r r r A da dq dq ds S. konst
43 Základní termodynamické děje: Zákon Boyle-Mariotův-děj izotermický: A A =A=Q Q A A r ln r ln Q S A r ln A r ln
44 Základní termodynamické děje: Děj adiabatický:. 0 ln 0 ln ln , konst d d d d d d c c c d d c da di dq d d c da du dq konst konst q s P P
45 Základní termodynamické děje: Děj adiabatický: r r Dosazením za tlak ze stavové rovnice lynu: Podobně dosazením za objem oět ze stavové rovnice lynu: r r
46 Základní termodynamické děje: Děj adiabatický: Dosazením za : a 0 r r r c a du da dq
47 Základní termodynamické děje: Děj adiabatický: A Q S 0 0
48 Základní termodynamické děje: =konst. =konst. q, s = konst. /=konst. =konst =konst dq di=c P d dq da, da dq 0 a =( - ) u r a ln q a r a
49 Ideální termodynamické cykly: Obecný ideální termodynamický cyklus: du U 0 dq da A L QP Q 0
50 Ideální termodynamické cykly: Carnotův cyklus: - sestává ze dvou izoterm a dvou adiabat S S S S S S Q Q Q P O P
51 Ideální termodynamické cykly: Carnotův cyklus: htt://
52 Ideální termodynamické cykly: Carnotův cyklus: ln ln r r Q Q P O První adiabata Druhá adiabata
53 Ideální termodynamické cykly: Jouleův-Braytonův cyklus lynové turbíny: - sestává ze dvou izobar a dvou adiabat
54 Ideální termodynamické cykly: Jouleův-Braytonův cyklus lynové turbíny: - sestává ze dvou izobar a dvou adiabat i i l C D B C A B D C dod zisk A D B C O P i i i i a a l i i i i q q l
55 Ideální termodynamické cykly: Jouleův-Braytonův cyklus lynové turbíny: B C P A D P B C A D P O c c i i i i Q Q Zavedením: B A - komresní oměr B C - izobarický součinitel A B B A A B A->B adiabata
56 Ideální termodynamické cykly: Jouleův-Braytonův cyklus lynové turbíny: B->C izobara C C B B C B A
57 Ideální termodynamické cykly: Jouleův-Braytonův cyklus lynové turbíny: adiabaty A->B a C->D mají stejné mezní tlaky: A A C D A B D C C D C D B A C D D C A B B A D A C B konst.
58 Ideální termodynamické cykly: Jouleův-Braytonův cyklus lynové turbíny: C D C D A A A A B C P A D P B C A D P O c c i i i i Q Q
59 Cyklus s lynovou turbínou: Jednoduchá raktická realizace:
60 Cyklus s lynovou turbínou: Praktická realizace s výměníkem tela a rozdělenou turbínou:
61 Cyklus Clausius-Rankin arní turbíny: Cyklus sestává ze dvou izobar a dvou adiabat v rostředí vody, mokré a suché vodní áry: K = 647,30 K = C K =.3 MPa
62 Cyklus Clausius-Rankin arní turbíny: Izobara v rostředí vody, mokré a suché vodní áry:
63 Cyklus Clausius-Rankin arní turbíny: Izochora v rostředí vody, mokré a suché vodní áry:
64 Cyklus Clausius-Rankin arní turbíny: ermodynamické děje v rostředí vody, mokré a suché vodní áry: Diagram -S n konstantní
65 Cyklus Clausius-Rankin arní turbíny: ermodynamické děje v rostředí vody, mokré a suché vodní áry: Diagram - n konstantní
66 Cyklus Clausius-Rankin arní turbíny: ermodynamické děje v rostředí vody, mokré a suché vodní áry: Diagram i-s n konstantní
67 Cyklus Clausius-Rankin arní turbíny: oblasti mokré áry zavádíme veličinu suchost: x m / m // m // 0; s s / i i v v / / i x x x s // v // / s / i v Index znamená sytou kaalinu tedy (x =0) Index znamená sytou áru tedy (x =) // /
68 Cyklus Clausius-Rankin arní turbíny: Mezní hodnoty veličin ro sytou kaalinu a sytou áru:
69
70 i
71 Cyklus Clausius-Rankin arní turbíny: ermodynamické děje v rostředí vody, mokré a suché vodní áry: Diagram -S Diagram i-s
72 konst. konst.
73 Cyklus Clausius-Rankin arní turbíny: Základní oběh a schéma arní elektrárny:
74 Cyklus Clausius-Rankin arní turbíny: Diagram -S: - adiabatická komrese v hlavním oběhovém čeradle (naáječce)
75 Cyklus Clausius-Rankin arní turbíny: Diagram -S: - izobarický ohřev v ohříváku - ekonomizéru (součást kotle)
76 Cyklus Clausius-Rankin arní turbíny: Diagram -S: - 3 izobarický a současně izotermický var ve výarníku (součást kotle)
77 Cyklus Clausius-Rankin arní turbíny: Diagram -S: 3-4 izobarické řehřátí áry v řehříváku (součást kotle)
78 Cyklus Clausius-Rankin arní turbíny: Diagram -S: 4-5 adiabatická exanze áry v turbíně
79 Cyklus Clausius-Rankin arní turbíny: Diagram -S: 5 - izobarická a současně izotermická kondenzace v kondenzátoru
80 Cyklus Clausius-Rankin arní turbíny: Diagram i-s: kd (kondenzát) nv (naájecí voda) 4 a (admisní ára) e,k (ára o exanzi)
81 Cyklus Clausius-Rankin arní turbíny: Diagram i-s:
82 Cyklus Clausius-Rankin arní turbíny: Diagram -:
83 Účinnost C-R cyklu arní turbíny: yšetření z diagramu -S: Q Q O P Q P Q Q P O
84 Účinnost C-R cyklu arní turbíny: yšetření z diagramu -S: 40% (!) Q Q O P Q P Q Q P O
85 Účinnost C-R cyklu arní turbíny: yšetření z diagramu i-s: l i a i e l i a i kd
86 Účinnost C-R cyklu arní turbíny: ýočet z diagramu i-s: a t i a a a 6.5 MPa, 430C 345 kj / kg i a t a
87 Účinnost C-R cyklu arní turbíny: Adiabatická exanze v turbíně: i a a t kd e 37C 6.4 kpa i e 040 kj / kg t a h h ad ad i a i 05 e kj / kg i e t kd
88 Účinnost C-R cyklu arní turbíny: Parametry kondenzátu: i i kd kd t kd c ikd 54.9 had i i kJ a kd kj / kg / kg 0.39
Termodynamika pro +EE1
ermodynamka ro +EE Možné zůsoby výroby elektrcké energe v současnost: termodynamcká řeměna energe jaderného alva a salování foslních alv v mechanckou energ a následně elektrckou - jaderné a klascké teelné
STRUKTURA A VLASTNOSTI PLYNŮ
I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly
Termodynamika ideálního plynu
Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu
Elektroenergetika 1. Termodynamika a termodynamické oběhy
Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:
Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5
IDEÁLNÍ PLYN. Stavová rovnice
IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale
Elektroenergetika 1. Termodynamika
Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR
HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.
Fyzikální chemie. 1.2 Termodynamika
Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály
Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
Zpracování teorie 2010/11 2011/12
Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit
přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D.
Elektrárny B1M15ENY přednáška č. 6 Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D. ČVUT FEL Katedra elektroenergetiky E-mail: spetlij@fel.cvut.cz Termodynamika:
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak páry po expanzi ve vysokotlaké části turbíny
V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :
Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku
VUT, FAST, Brno ústav Technických zařízení budov
Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou
Poznámky k semináři z termomechaniky Grafy vody a vodní páry
Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,
Energetika Osnova předmětu 1) Úvod
Osnova předmětu 1) Úvod 2) Energetika 3) Technologie přeměny 4) Tepelná elektrárna a její hlavní výrobní zařízení 5) Jaderná elektrárna 6) Ostatní tepelné elektrárny 7) Kombinovaná výroba elektřiny a tepla
Zákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený
Termomechanika 4. přednáška
ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
Stavová rovnice. Ve stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní parametry Y i
ermodynamický ostulát: Stavová rovnice e stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní arametry Y i určeny jako funkce všech vnějších arametrů X j a teloty Y i f
LOGO. Struktura a vlastnosti plynů Ideální plyn
Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu
Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze
ermodynamika par Fázové změny látky: Přivádíme-li pevné fázi látky teplo, dochází při jisté teplotě a tlaku ke změně pevné fáze na fázi kapalnou (tání) Jestliže spojíme body tání při různých tlacích, získáme
Teplota a její měření
Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná
Příklad 1: Bilance turbíny. Řešení:
Příklad 1: Bilance turbíny Spočítejte, kolik kg páry za sekundu je potřeba pro dosažení výkonu 100 MW po dobu 1 sek. Vstupní teplota a tlak do turbíny jsou 560 C a 16 MPa, výstupní teplota mokré páry za
TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy
ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
PROCESY V TECHNICE BUDOV 9
UNIVERZIA OMÁŠE BAI VE ZLÍNĚ FAKULA APLIKOVANÉ INFORMAIKY PROCESY V ECHNICE BUDOV 9 ermodynamika reálných plynů (2. část) Dagmar Janáčová, Hana Charvátová Zlín 2013 ento studijní materiál vznikl za finanční
STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování
Termodynamické zákony
Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce
Poznámky k cvičením z termomechaniky Cvičení 10.
Příklad 1 Topné těleso o objemu 0,5 [m 3 ], naplněné sytou párou o tlaku 0,15 [MPa], bylo odstaveno. Po nějaké době vychladlo na teplotu 30 C. Určete množství uvolněného tepla a konečný stav páry v tělese.
KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2
Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním
TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy
ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená
PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul
=, V = T * konst. =, p = T * konst. Termodynamika ideálních plynů
Termodynamika ideálních plynů 1. Definice uzavřené termodynamické soustav : Hmotnost procházející kontrolní plochou je nulová 2. Definice otevřené termodynamické soustav: Hmotnost procházející kontrolní
Teplovzdušné motory motory budoucnosti
Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Telovzdušné motory motory budoucnosti Text byl vyracován s odorou rojektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání
Parní turbíny Rovnotlaký stupe
Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost
Cvičení z termomechaniky Cvičení 7.
Příklad 1 Vypočítejte účinnost a výkon Humpreyoho spalovacího cyklu bez regenerace, když látkou porovnávacího oběhu je vzduch. Cyklus nakreslete v p-v a T-s diagramu. Dáno: T 1 = 300 [K]; τ = T 1 = 4;
III. Základy termodynamiky
III. Základy termodynamiky 3. ermodynamika FS ČU v Praze 3. Základy termodynamiky 3. Úvod 3. Základní ojmy 3.3 Základní ostuláty 3.4 Další termodynamické funkce volná energie a volná entalie 3.5 Kritérium
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,
Termodynamika 2. UJOP Hostivař 2014
Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc
Termodynamika ideálních plynů
Za správnost neručím, cokoli s jinou než černou barvou je asi špatně Informace jsou primárně z přednášek Termodynamika ideálních plynů 1. Definice uzavřené termodynamické soustavy - neprochází přes ni
Parní turbíny Rovnotlaký stupeň
Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
6. Stavy hmoty - Plyny
skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu
Kruhový děj s plynem
.. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch
TEPLO A TEPELNÉ STROJE
TEPLO A TEPELNÉ STROJE STROJE A ZAŘÍZENÍ ČÁSTI A MECHANISMY STROJŮ ENERGIE,, PRÁCE A TEPLO Energie - z řeckého energia: aktivita, činnost. Ve strojírenské praxi se projevuje jako dominantní energie mechanická.
SIMULACE STAVOVÝCH ZMĚN IDEÁLNÍHO PLYNU
SIMULACE SAOÝCH ZMĚN IDEÁLNÍHO PLYNU FILÍPEK Josef, CZ Resumé uzařené termodynamické soustaě se ohřeem, ochlazoáním a ůsobením nějších sil mění tři staoé eličiny objem, tlak a telota. Proto je hodné staoé
Výsledky úloh. Obsah KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku
ýsledky úloh C R, C R, κ 0, 0,088 0, 0,8 KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku 6 η 0,8 ( ){ { Obsah Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových
MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.
Elektrárny A1M15ENY. přednáška č. 8. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, 166 27 Praha 6
Elektrárny A1M15ENY řednáška č. 8 Jan Šetlík setlij@fel.cvut.cz -v ředmětu emailu ENY Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická, 166 7 Praha 6 První říad bez řihřívání: T = 1 MPa
Termodynamika. Martin Keppert. Katedra materiálového inženýrství a chemie
Termodynamika Martin Keppert Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz http://tpm.fsv.cvut.cz/ Co to je termodynamika Nauka o energii, jejích formách a přenosu Energie schopnost systému
Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =
Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv
Elektrárny A2B13PEL 2015 PEL 1
Elektrárny A2B13PEL 2015 PEL 1 Dělení a provoz výroben elektrické energie Dle typu technologie klasické tepelné (parní) elektrárny na fosilní paliva biomasu paro-plynové elektrárny (elny s PPC) jaderné
VUT, FAST, Brno ústav Technických zařízení budov
Termo realizaci inooaných technicko-ekonomických VUT, FAST, Brno ústa Technických zařízen zení budo GG . Úod Cykly lze cháat jako oběhy dějůd ři i kterých sledoaný objekt měním sůj j sta cestami, jež mají
Příklady k zápočtu molekulová fyzika a termodynamika
Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další
Otázky Termomechanika (2014)
Otázky Termomechanika (2014) 1. Základní pojmy a veličiny termomechaniky a. Makroskopický a mikroskopický popis systému, makroskopické veličiny b. Tlak: definice makroskopická a mikroskopické objasnění
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA
YSOKÉ UČENÍ ECHNICKÉ BRNĚ FAKULA SAEBNÍ PAEL SCHAUER APLIKOANÁ FYZIKA MODUL ERMODYNAMIKA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc. Pavel Schauer,
VY_32_INOVACE_G 21 17
Název a adresa škly: Střední škla růmyslvá a umělecká, Oava, řísěvkvá rganizace, Praskva 399/8, Oava, 7460 Název eračníh rgramu: OP Vzdělávání r knkurenceschnst, blast dry.5 Registrační čísl rjektu: CZ..07/.5.00/34.09
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
Výroba elektrické energie (BVEE)
Přednášející: doc. Ing. Petr Mastný, Ph.D. mastny@feec.vutbr.cz Základní pojmy z výroby elektrické energie Výroba elektrické energie (BVEE) e-power - Inovace výuky elektroenergetiky a silnoproudé elektrotechniky
FYZIKÁLNÍ CHEMIE chemická termodynamika
FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky
Poznámky k cvičením z termomechaniky Cvičení 4. Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou
Adiabatická změna: Při adiabatickém ději nedochází k výměně tepla s okolím, tedy platí: dq = 0; dq = 0 () Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou Pro její první tvar:
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 06_3_ Struktura a vlastnosti plynu Ing. Jakub Ulmann Obsažené učivo je teoretickým základem principu všech
Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky
Příklad 1 Plynová turbína pracuje dle Ericsson-Braytonova oběhu. Kompresor nasává 0,05 [kg.s- 1 ] vzduchu (individuální plynová konstanta 287,04 [J.kg -1 K -1 ]; Poissonova konstanta 1,4 o tlaku 0,12 [MPa]
IV. Fázové rovnováhy dokončení
IV. Fázové rovnováhy dokončení 4. Fázové rovnováhy Ústav rocesní a zracovatelské techniky 1 4.3.2 Soustava tuhá složka kaalná složka Dvousložková soustava s 2 Křivka rozustnosti T nenasycený roztok nasycený
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
TERMOMECHANIKA 4. První zákon termodynamiky
FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá
03 Návrh pojistného a zabezpečovacího zařízení
03 Návrh ojistného a zabezečovacího zařízení Roman Vavřička ČVUT v raze, Fakulta strojní Ústav techniky rostředí 1/14 htt://ut.fs.cvut.cz Roman.Vavricka@fs.cvut.cz ojistné zařízení chrání zdroj tela roti
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
Základy teorie vozidel a vozidlových motorů
Základy teorie vozidel a vozidlových motorů Předmět Základy teorie vozidel a vozidlových motorů (ZM) obsahuje dvě hlavní kaitoly: vozidlové motory a vozidla. Kaitoly o vozidlových motorech ukazují ředevším
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní
7. Fázové přeměny Separace
7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné
Tep e e p l e né n é str st o r j o e e z po p h o l h ed e u d u zákl zá ad a n d í n h í o h o kur ku su r su fyzi f ky 3. 3 Poznámky k přednášce
Tepelné stroje z pohledu základního kursu fyziky. Poznámky k přednášce osnova. Idealizované tepelné cykly strojů s vnitřním spalováním, Ottův cyklus, Dieselův cyklus, Atkinsonův cyklus,. Způsob výměny
11. Tepelné děje v plynech
11. eelné děje v lynech 11.1 elotní roztažnost a rozínavost lynů elotní roztažnost obje lynů závisí na telotě ři stálé tlaku. S rostoucí telotou se roztažnost lynů ři stálé tlaku zvětšuje. Součinitel objeové
Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn
Poznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
Termodynamické základy ocelářských pochodů
29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických
Cvičení z termodynamiky a statistické fyziky
Cvičení z termodynamiky a statistické fyziky 1 Matematické základy 1 Parciální derivace Necht F(x,y = xe x2 +y 2 Sočtěte F x, F y, 2 Úlný diferenciál I Bud 2 F x 2, 2 F x y, dω = A(x,ydx + B(x,ydy 2 F
Zásobování teplem. Cvičení Ing. Martin NEUŽIL, Ph. D Ústav Energetiky ČVUT FS Technická Praha 6
Zásobování teplem Cvičení 2 2015 Ing. Martin NEUŽIL, Ph. D Ústav Energetiky ČVUT FS Technická 4 166 07 Praha 6 Měření tlaku (1 bar = 100 kpa = 1000 mbar) x Bar Přetlak Absolutní tlak 1 Bar Atmosférický
1.4. II. věta termodynamiky
... věta termodynamiky Slovní formulace: homsonova formulace: Nelze sestrojit periodicky pracující stroj, který by konal práci, přičemž by ochlazoval jediné těleso, jehož teplota by byla všude stejná,
Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK
ermomechanika. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)
Kvantová a statistická fyzika 2 (ermodynamika a statistická fyzika) ermodynamika ermodynamika se zabývá zkoumáním obecných vlastností makroskoických systémů v rovnováze, zákonitostmi makroskoických rocesů,
VLHKÝ VZDUCH STAVOVÉ VELIČINY
VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve