k riziku a ve svém důsledku vedlo použití modelu k diverzifikaci portfolia.

Rozměr: px
Začít zobrazení ze stránky:

Download "k riziku a ve svém důsledku vedlo použití modelu k diverzifikaci portfolia."

Transkript

1 MARKOWITZŮV MODEL OPTIMÁLNÍ VOLBY PORTFOLIA PŘEDPOKLADY, DATA, ALTERNATIVY Jitka Dupačová - příprava k přednášce pro ČSOB a Analýze investic Za zakladatele moderní teorie portfolia je pokládán H. Markowitz (1952, 1959). Jeho model se týká především investic do portfolia akcií a využívá celé řady zjednodušujících předpokladů: Jde o ideální trh bez transakčních nákladů, bez arbitráže, s neomezenou možností investování i vypůjčovaní za stejnou bezrizikovou úrokovou míru a obchodování s neomezeně dělitelnými dokumenty; obchodují na něm malí racionální investoři, kteří dávají přednost vyšším výnosům před nižšími a menšímu riziku před větším rizikem, využívají shodných informací, a to hodnot očekávaných výnosností akcií a rozptylů a kovariancí těchto výnosností, a investují ve stejném čase pro jedno stejně dlouhé období. Přesto šlo o průlom v tom, že kromě hlediska maximálních výnosností byl zohledněn i investorův vztah k riziku a ve svém důsledku vedlo použití modelu k diverzifikaci portfolia. 1 Odvození základního modelu Uvažujeme investici do J akcií, jednotková investice do j-té z nich dává ve zvoleném období celkovou náhodnou výnosnost ρ j. Rozdělení vektoru ρ výnosností všech uvažovaných akcií je charakterizováno známým vektorem středních hodnot Eρ = r a varianční maticí V = [cov(ρ i, ρ j ), i, j = 1,... J] která obsahuje kovariance mezi výnosnostmi všech dvojic akcií a na hlavní diagonále má rozptyly výnosností jednotlivých akcií. Složení portfolia je určeno váhami x j, j = 1,..., J, které musí splňovat podmínku j x j = 1. Výnos portfolia s váhami x budeme chápat jako střední hodnotu jeho celkové výnosnosti r(x) = x j r j = r x j a riziko tohoto portfolia bude dáno hodnotou rozptylu jeho celkové výnosnosti σ 2 (x) = i,j [cov(ρ i, ρ j )]x i x j = x Vx Podle předpokladů dávají všichni investoři přednost portfoliu s vyšším výnosem a s nižším rizikem. V souladu s tím definujeme Definice 1.1. Portfolio s váhami x je eficientní vzhledem ke střední hodnotě a rozptylu (mean-variance efficient), jestliže neexistují jiné váhy x splňující podmínku j x j = 1, pro které je r(x) r(x ) a současně σ 2 (x) σ 2 (x ) a aspoň jedna z nerovností je ostrá. 1

2 Definice zůstává v platnosti, i když omezíme volbu vah dalšími podmínkami, např. nezáporností. Portfolia, která vyhovují této definici budeme stručně nazývat eficientní portfolia. Je celá řada možností, jak hledat eficientní portfolia, např. řešením optimalizačních úloh závisejících na parametrech max x X λr x 1 2 x Vx (1) kde λ 0 je parametr modelující investorův vztah k riziku, nebo za podmínek min x X x Vx (2) r x r p kde parametrem je nastavená minimální hodnota r p přijatelné (očekávané) výnosnosti portfolia. Množina X je definována požadavkem j x j = 1 a případně dalšími podmínkami na složení portfolia; my si odvodíme jednotlivá tvrzení pouze za platnosti zmíněného základního požadavku na váhy. Pokud je matice V regulární (to mj. znamená, že žádná akcie není bezriziková) a střední výnosnosti nejsou pro všechny akcie stejné, lze pomocí známých podmínek pro vázaný extrém funkce x Vx snadno odvodit řadu výsledků. Označme jako x G váhy, které minimalizují rozptyl výnosnosti portfolia bez ohledu na jeho očekávanou výnosnost, tj. x G = V V 1 1 a r min = r(x G ) = r x G odpovídající očekávanou výnosnost portfolia s váhami x G. Tvrzení 1.2. Nechť je V regulární, nechť jsou vektory r, 1 lineárně nezávislé a 1 Vr 0. Pak při libovolně zvolené hodnotě r p r min a) existuje vždy jediný vektor vah x(r p ), který minimalizuje rozptyl výnosnosti portfolia v úloze (2) V 1 r x(r p ) = µ 1 1 V 1 r + µ V (3) 1 V 1 1 b) vektor x(r p ) nutně splňuje podmínku r x r p jako rovnost. c) hodnoty Lagrangeových multiplikátorů µ 1, µ 2 lze vypočítat vyřešením soustavy omezení r x = r p, 1 x = 1 pro x = x(r p ). Zejména platí, že µ 1 + µ 2 = 1. 2

3 d) Získané váhy x(r p ) jsou lineární funkcí r p, takže odpovídající rozptyl výnosnosti portfolia σ 2 (x(r p )) je kvadratickou funkcí r p a očekávaná výnosnost portfolia r(x(r p )) je lineární funkcí r p. Důkaz je snadný a z tvrzení 1.2 plyne celá řada známých důsledků: V rovině dvojic [r(x), σ 2 (x)] leží minimální rozptyly výnosnosti portfolia na parabole. Její větev, na které leží maximální možné očekávané výnosnosti portfolia při dané hodnotě rozptylu, je t.zv. eficientní hranice (mean-variance efficient frontier); odpovídá hledaným eficientním portfoliím, resp. optimálním řešením úlohy (2) pro různé nastavené hodnoty r p r min ; viz obrázek 1. Pro dvě eficientní portfolia s váhami x p, xˆp minimalizujícími rozptyl výnosnosti portfolia při odlišných nastavených mezích očekávaných výnosností r p, rˆp platí, že i každá jejich lineární kombinace αx p + (1 α)xˆp je eficientní, a to při parametru αr p + (1 α)rˆp. Vzorec (3) spolu s uvedeným důsledkem mají svou ekonomickou interpretaci známou jako Tobinova věta o separaci (two-fund separation theorem, Tobin 1958): Všechna eficientní portfolia lze vyjádřit jako lineární kombinaci dvou eficientních portfolií x G = V V 1 1 a x 1 = V 1 r 1 V 1 r 2 Obměny základního modelu 1. Uvažujme navíc možnost investice do bezrizikového aktiva, j = 0, s výnosností r 0 a současně i možnost neomezeného vypůjčování za bezrizikovou úrokovou míru r 0. Váha bezrizikového aktiva v portfoliu bude x 0 = 1 J j=1 x j. Stačí tedy dosadit a pracovat jenom s váhami rizikových aktiv, x j, j = 1,..., J. Zavedeme rozdíly R j = r j r 0, R p = r p r 0 a uvědomíme si, že varianční matice rozdílů ρ j r 0, j = 1,..., J je opět V. Předpokládáme, že R p r min. Váhy rizikových aktiv v portfoliu dostaneme jako řešení úlohy min x Vx za podmínek J R j x j R p (4) j=1 (Podmínka na součet vah již v úloze není a pro optimální řešení bude podmínka na očekávanou výnosnost opět splněna jako rovnost.) Výsledné váhy jsou x = R pv 1 R R V 1 R 3

4 a x 0 = 1 j x j pro investice do bezrizikového aktiva. Odpovídající minimální rozptyl výnosnosti portfolia je a poměr R p σ P (x) σ 2 p(x ) = R 2 p R V 1 R je t. zv. Sharpova míra portfolia. Řešením odpovídající úlohy (4) o vázaném extrému zjistíme, že i v tomto případě lze eficientní portfolia representovat jako lineární kombinací dvou portfolií - bezrizikového (s váhami x 0 = 1 a x j = 0 pro j 0) a t.zv. tečného eficientního portfolia složeného pouze z akcií, tedy s váhami x T, které splňují dodatečnou podmínku J j=1 x j = 1. Odpovídající hodnota očekávané výnosnosti R p (nad danou bezrizikovou výnosnost r 0 ), kterou je třeba nastavit, a výsledný minimální rozptyl vyjdou jako R p = r(x T ) r 0 = R V 1 R R V 1 1 a σ 2 p(x T ) = R V 1 R (R V 1 1) 2 Pro eficientní portfolia s váhami x se graficky znázorňuje závislost směrodatné odchylky výnosnosti portfolia na nastavené hodnotě r p jako přímka kapitálového trhu (CML - capital market line) r(x) = r 0 + r(x T ) r 0 σ(x) σ(x T ) která prochází bodem odpovídajícím bezrizikovému portfoliu a bodem pro portfolio akcií s váhami x T ; viz obrázek 2. Pro toto portfolio platí, že dává maximální možnou Sharpovu míru portfolia a v rovnovážném modelu (např. CAPM) je lze interpretovat jako tržní portfolio. 2. Podmínky nezápornosti a případná další lineární omezení znamenají pouze složitější diskusi podmínek optimality, ale povaha výsledků se nemění. Pro diskusi výsledků je výhodnější pracovat s úlohou ve tvaru (1). Váhy je možné získat numericky použitím libovolného software pro úlohu kvadratického programování. Z hlediska dimenze řešené úlohy jsou nejmenší úlohy o alokaci prostředků mezi agregované třídy aktiv, dále pak vlastní úloha o volbě portfolia a největší úlohy vznikají při sledování tržního indexu. Doporučení, jak investovat, však není jednoznačné. Konečné rozhodnutí - volba jednoho z eficientních portfolií - je v rukou investora. 3 Vstupní data Možnost úspěšného použití Markowitzova modelu závisí na tom, jsou-li splněny předpoklady modelu, a také na vstupních datech, tedy na středních hodnotách výnosností akcií a na 4

5 varianční matici výnosností. Jisté je, že nelze pracovat jenom s rozptyly výnosností jednotlivých akcií, ale že právě hodnoty kovariancí mohou podstatně přispět k účinné diversifikaci portfolia. Pokud mají investoři k disposici dosti dlouhé časové řady výnosností sledovaného souboru akcií, nabízí se použití průměrných výnosností a také odhadů rozptylů a kovariancí z těchto pozorování. Pro kvalitní odhady momentů je třeba použít dosti dlouhé řady pozorování, dlouhé historické řady však často nejsou stacionární. Pro vysvětlení kovarianční struktury výnosností se proto někdy používá faktorových modelů. V takovém případě předpokládáme, že výnosnosti jednotlivých akcií se řídí modelem ρ j = α j + β j F + ɛ j (5) kde ɛ j jsou náhodné odchylky od modelu nekorelované s faktorem F, mají nulové střední hodnoty, rozptyly σɛj 2 a náhodné odchylky pro různé dvojice akcií jsou nekorelované. Základní představa, že korelace mezi výnosnostmi jsou způsobeny odezvou na situaci na celém trhu, vede k interpretaci faktoru F jako rozdílu výnosnosti trhu akcií a výnosnosti bezrizikového aktiva F = ρ M r 0. Výnosnosti jednotlivých akcií pak mají dvě složky - systematickou danou vazbou na výnosnost trhu a specifickou. Tato představa souhlasí s modelem CAPM. Na základě modelu (5) a uvedených statistických předpokladů dostaneme snadno střední hodnoty, rozptyly a kovariance (r M, σm 2 značí střední výnosnost a rozptyl výnosnosti tržního portfolia): r j r 0 = α j + β j (r M r 0 ), σ 2 j = varρ j = β 2 j σ 2 M + σ 2 ɛj (6) kde r M r 0 se interpretuje jako prémie za riziko trhu (market risk premium) a v jk = cov(ρ j, ρ k ) = β j β k σ 2 M, cov(ρ j, ρ M ) = β j σ 2 M Odtud plyne β j = cov(ρ j, ρ M ) σ 2 M Koeficienty β j, α j a rozptyly se odhadují z dat, výnosnost trhu je representována výnosností vhodného indexu. Pro rovnovážný stav trhu jsou v (5) míry nerovnovážnosti α j = 0 pro všechny akcie a závislost středních výnosností akcie na střední výnosnosti tržního portfolia se znázorňuje graficky jako přímka trhu cenných papírů (SML - security market line). Odhadnuté hodnoty β se používají pro charakterizaci rizika akcií vzhledem k tržnímu riziku i k samotné konstrukci portfolia. Faktorový model také objasňuje, proč nelze očekávat, že diversifikace portfolia bude neomezeně snižovat riziko: na výnosnosti akcií působí také vliv trhu, tržní riziko, které Markowitzův model neeliminuje. Riziko trhu však lze snížit vhodnou volbou portfolia s ohledem na hodnoty β. Pokud dostupná informace nestačí pro dosti přesné odhady středních hodnot výnosností, jejich rozptylů a kovariancí ani pro faktorový model, navrhují se někdy zjednodušené postupy. Tak na příklad lze z předpokládaných hodnot minimálních a maximálních možných 5

6 výnosností r j,min, r j,max odhadnout střední výnosnost jako r j = 1/2[r j,min + r j,max ], rozptyl jako σj 2 = 1/16[r j,min r j,max ] 2 a kovariance spočítat z expertních odhadů korelací a z odhadnutých rozptylů. Ukazuje se však, že výsledky Markowitzova modelu jsou velmi citlivé vzhledem ke středním hodnotám výnosností, méně již vzhledem k jejich varianční matici (Chopra a Ziemba 1993, Dupačová 1996). Příčina souvisí s chováním optimálních řešení úloh kvadratického programování (1) nebo (2) v závislosti na parametrech. Uvažujme úlohu odpovídající úloze (1) max x X p x 1/2x Vx (7) kde p je parametr, V je pozitivně definitní matice a X je neprázdná polyedrická množina, např. X = { x R+ Ax J b }. (V našem speciálním případě je p = λr.) Množinu X lze rozložit na konečný počet relativně otevřených stěn, které jsou definovány množinami indexů aktivních omezení; vnitřek množiny X je chápán jako otevřená stěna odpovídající prázdné množině indexů. Parametrický prostor R J vektorů p lze odpovídajícím způsobem rozložit na konečný počet disjunktních množin stability charakterizovaních tím, že pro libovolný prvek p dané množiny stability leží optimálmí řešení x(p) úlohy (7) ve stejné stěně množiny X. Přitom v dané množině stability je x(p) lineární funkce parametru p a je diferencovatelná ve všech vnitřních bodech této množiny. Pro p, které leží na hranici některé množiny stability, optimální řešení x(p) již diferencovatelné není. Optimální hodnota ϕ(p) účelové funkce v (7) je počástech lineární a kvadratická funkce parametru p a díky předpokladu o pozitivní definitnosti matice V je i diferencovatelná s výjimkou případu, kdy by koeficienty aktivních omezení byly lineárně závislé. Tento výsledek vysvětluje relativní stabilitu optimální hodnoty i v případech, kdy je optimální řešení velmi citlivé na malé změny parametru: To jsou právě případy, kdy parametr p leží na hranici některé množiny stability. Podobnou možnost nelze vyloučit ani ve speciálním případě, kdy p = λr při pevném vektoru r a parametru λ 0, tedy při sledování eficientní hranice. Příklad 3.1. Uvažujme jednoduchou úlohu kvadratického programování max { } p 1 x 1 + p 2 x 2 1/2x 2 1 x 1 x 2 x 2 2 na množině X = {x 1, x 2 x 1 0, x 2 0, x 1 + x 2 1}. Množinu X lze rozložit na relativně otevřené stěny Σ 1,..., Σ 7, viz obrázek 3. Odpovídající množiny stability σ(σ k ), k = 1,..., 7 jsou znázorněny na obrázku 4. Uvažujme nyní p 1 = p 2 = 1. Pro tuto hodnotu parametru leží optimální řešení ve vrcholu Σ 3, ale malé změny souřadnic způsobí, že se posune do přilehlých stěn Σ 6 nebo Σ 7, případně dovnitř množiny X - tj. do stěny Σ 1. Odpovídající změny optimální hodnoty a první souřadnice x 1 (p) optimálního řešení jsou znázorněny pro p 1 = 1 a p 2 0 na obrázku 5. Podobná situace nastává i pro dvojici p 1 = 1, p 2 = 2. Z hlediska investora může jít o nestabilní chování optimálních vah - extrémní rozhodnutí investovat vše do prvního aktiva (vrchol Σ 3 nebo Σ 4 ) se může snadno změnit v investování do obou rizikových aktiv (stěna Σ 7 ) nebo v investování do obou rizikových aktiv i do bezrizikového aktiva (stěna Σ 1 ). 6

7 S ohledem na vliv výchozích předpokladů modelu a na problémy při získávání dat to znamená, že rozhodování založené na váhách získaných řešením Markowitzova modelu je třeba navíc detailně analyzovat. Problémy narůstají, pokud se podle Markowitzova modelu hledá celá posloupnost rozhodování v čase. Markowitzův model je statický a numerické studie dokumentují, že na něm založené výsledky se zhoršují s rostoucím horizontem pro rozhodování a také s rostoucím počtem časových intervalů, na které je aplikován; viz např. případová studie Cariñho et al. (1994). 4 Alternativní přístupy 1. V souvislosti s Markowitzovým modelem se často diskutují i asymetrické míry rizika, např. King (1993) nebo kvadratická semivariance. Jejich význam je zřetelný zvláště při snaze použít Markowitzův model pro rozhodování o portfoliu aktiv a pasiv, kde se za výnosnost pokládá rozdíl mezi výnosností aktiv a výnosností pasiv. Někteří autoři uvažují také aplikace podobného postupu na obligace; tam však nelze očekávat příliš velký efekt, protože trh obligací se chová odlišně; zejména lze jen stěží počítat s negativní korelací výnosností. Další zajímavou otázkou jsou důsledky investic velkých investorů, které mohou ovlivnit střední hodnoty a výnosnosti jednotlivých akcií. 2. Konno a Yamazaki (1991) navrhli a aplikovali model, který kvantifikuje riziko portfolia pomocí střední absolutní odchylky od očekávané výnosnosti a tím se mj. vyhýbá problému odhadování varianční matice. Model můžeme zapsat analogicky jako (2) (případně (4)) min E ρ j x j r j x j (8) x X j j za podmínek r j x j r p j Toto kriterium dá teoreticky shodné složení portfolia jako při minimalizaci rozptylu výnosnosti (úloha (2)), pokud se výnosnosti akcií řídí normálním rozdělením. Autoři navrhují odhadovat střední hodnoty průměry z historických pozorování; pak je možné vzniklou úlohu řešit jako úlohu lineárního programování. Situace se nezmění, ani tehdy, rozlišují-li se odchylky nad/pod střední výnosnost, platí obdoba věty o separaci a i v tomto modelu lze zkonstruovat přímku trhu cenných papírů. Jednodušší struktura vstupních dat i sama metoda řešení se zdají být velmi slibné. Dosud však zřejmě nebyla testována citlivost výsledků na vstupní data. 3. Současně s Markowitzem se zabýval zahrnutím rizika do finančních rozhodování také Roy (1952). Navrhl maximalizovat pro x X pravděpodobnost P (ρ x r p ), 7

8 kde r p značí minimální uvažovanou výnosnost portfolia. Pro ρ N (r, V) lze úlohu převést na tvar r(x) r p max ; x X σ(x) odvoďte a porovnejte s maximalizací Sharpovy míry portfolia! Další používané kriterium má tvar max {r(x) P x X (ρ x r p ) 1 α}, pro dané α (0, 1) a r p. Pro ρ N (r, V) má tato úloha tvar Kvantilové kriterium max {r(x) r(x) + x X Φ 1 (α)σ(x) r p }. maximalizovat r p za podmínek x X, P (ρ x r p ) 1 α pro zvolené α (0, 1) je příbuzné s kvantifikací rizika pomocí value at risk, VaR. Odvoďte jeho tvar za předpokladu ρ N (r, V)! 4. Konkurencí pro uvedené typy modelů jsou přístupy založené na uznávaném kriteriu maximalizace středního užitku z výnosnosti portfolia. Takový model má tvar max x X E u( j ρ j x j ) kde u je investorem zvolená užitková funkce. Maximalizace středního užitku z výnosnosti portfolia má řadu výhod před postupy, které vycházejí z Markowitzova modelu: Lze ji použít pro různá rozdělení, pro různé druhy cenných papírů, zahrnout transakční náklady, zobecnit pro dynamické modely, respektovat vazbu aktiv a pasiv, atp. Optimální portfolio zde však závisí na volbě užitkové funkce a pro její volbu nelze dát obecný návod. Pochopitelně se studovala otázka, kdy dává (8) eficientní portfolia ve smyslu Markowitzově (viz např. Elton a Gruber 1987, Müller 1994): Je tomu tak zejména v případě, že výnosnosti mají normální rozdělení a užitková funkce je neklesající a konkávní, nebo pro kvadratickou užitkovou funkci. Pokud jsou výrazné odchylky od normálního rozdělení, výsledky se liší. V takovém případě však (na rozdíl od maximalizace středního užitku z výnosnosti) Markowitzův model odhlíží od informace o momentech vyššího řádu vypovídajících např. o asymetrii rozdělení výnosností a přirozeně pak jeho výsledky nelze přeceňovat. 8

9 Literatura D. R. Cariño et al., The Russell - Yasuda Kassai model: An asset/liability model for a Japanese insurance company using multistage stochastic programming. Interfaces 24 (1994) W. K. Chopra a W. T. Ziemba, The effect of errors in means, variances and covariances on optimal portfolio choice. J. Portfolio Mgt. 19 (1993) T. Cipra, Praktický průvodce finanční a pojistnou matematikou, Edice HZ, Praha G. M. Constantinides a A. G. Malliaris, Portfolio theory. In: Finance, Vol 9 of Handbooks in OR & MS (ed. R. Jarrow et al.), Elsevier 1995, p J. Dupačová, Stochastické optimalizační modely v bankovnictví, Ekonomicko - Matematický Obzor 27 (1991) J. Dupačová, Uncertainty about input data in portfolio management. In: Modelling techniques for financial markets and bank management (M. Bertocchi et al., eds.), Physica Verlag 1996, pp E. J. Elton a M. J. Gruber, Modern Portfolio Theory and Investment Analysis. Wiley, New York 1987 (3. vydání). A. J. King, Asymmetric risk measures and tracking models for portfolio optimization under uncertainty. Annals of Oper. Res. 45 (1993) H. Konno a H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Sci. 37 (1991) H. M. Markowitz, Portfolio Selection. J. of Finance 7 (1952) H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investments. Wiley, New York, H. H. Müller, Modern portfolio theory: Some main results. ASTIN Bulletin 19 (1994) A. D. Roy, Safety-first and the holding of assets. Econometrica 20 (1952) J. Tobin, Liquidity preference as behavior toward risk. Review of Economic Studies 25 (1958)

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e Téma 8: Chování cen akcií a investiční management Struktura přednášky: 1. Chování cen akcií fundamentální a technická analýza a teorie efektivních trhů. Riziko a výnos Markowitzův model 3. Kapitálový trh

Více

Hodnocení pomocí metody EVA - základ

Hodnocení pomocí metody EVA - základ Hodnocení pomocí metody EVA - základ 13. Metoda EVA Základní koncept, vysvětlení pojmů, zkratky Řízení hodnoty pomocí EVA Úpravy účetních hodnot pro EVA Náklady kapitálu pro EVA jsou WACC Způsob výpočtu

Více

Cvičení z optimalizace Markowitzův model

Cvičení z optimalizace Markowitzův model Cvičení z optimalizace Markowitzův model Vojtěch Franc, 29 1 Úvod V tomto cvičení se budeme zabývat aplikací kvadratického programování v ekonomii a sice v úloze, jejímž cílem bude optimalizovat portfolio

Více

CAPM atd. Martin Šmíd, martin@klec.cz, www.klec.cz/martin. listopad 2005

CAPM atd. Martin Šmíd, martin@klec.cz, www.klec.cz/martin. listopad 2005 CAPM atd. Martin Šmíd, martin@klec.cz, www.klec.cz/martin ÚTIA AV ČR listopad 2005 Obsah 1. Výběr portfolia 2. CAPM s bezrizikovým aktivem 3. Empirické ověření CAPM Domácí úkol Literatura E. Barucci. Financial

Více

Optimalizace portfolia a míry rizika. Pavel Sůva

Optimalizace portfolia a míry rizika. Pavel Sůva Základní seminář 6. října 2009 Obsah Úloha optimalizace portfolia Markowitzův model Míry rizika Value-at-Risk Conditional Value-at-Risk Drawdown míry rizika Minimalizační formule Optimalizační modely Empirická

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Příručka k měsíčním zprávám ING fondů

Příručka k měsíčním zprávám ING fondů Příručka k měsíčním zprávám ING fondů ING Investment Management vydává každý měsíc aktuální zprávu ke každému fondu, která obsahuje základní informace o fondu, jeho aktuální výkonnosti, složení portfolia

Více

Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv. Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni.

Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv. Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni. Finanční trhy Investiční instrumenty a portfolio výnos, riziko, likvidita Úvod do finančních aktiv Ing. Gabriela Oškrdalová e-mail: oskrdalova@mail.muni.cz Tento studijní materiál byl vytvořen jako výstup

Více

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné.

III) Podle závislosti na celkovém ekonomickém vývoji či na vývoji v jednotlivé firmě a) systematické tržní, b) nesystematické jedinečné. Měření rizika Podnikatelské riziko představuje možnost, že dosažené výsledky podnikání se budou kladně či záporně odchylovat od předpokládaných výsledků. Toto riziko vzniká např. při zavádění nových výrobků

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

KMA/MAB. Kamila Matoušková (A07142) Plzeň, 2009 EFEKTIVNÍ PORFÓLIO V MARKOWITZOVĚ SMYSLU

KMA/MAB. Kamila Matoušková (A07142) Plzeň, 2009 EFEKTIVNÍ PORFÓLIO V MARKOWITZOVĚ SMYSLU EFEKTIVNÍ PORFÓLIO V MARKOWITZOVĚ SMYSLU KMA/MAB Kamila Matoušková (A07142) Plzeň, 2009 Obsahem práce je vytvoření efektivního portfolia v Markowitzově smyslu.z akcií obchodovaných na SPADu. Dále je uvažována

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Kvantitativní řízení rizik 7.11.2014

Kvantitativní řízení rizik 7.11.2014 Kvantitativní řízení rizik 7.11.2014 Ekonomický kapitál ekonomický kapitál- kapitál potřebný k zajištění schopnosti splnit v daném časovém horizontu převzaté závazky s danou pravděpodobností L- riziko,

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

Charakteristika rizika

Charakteristika rizika Charakteristika rizika Riziko je možnost, že se dosažené výsledky podnikání budou příznivě či nepříznivě odchylovat od předpokládaných výsledků. Odchylky od předpokladu jsou: a) příznivé b) nepříznivé

Více

Téma 2: Časová hodnota peněz a riziko. 2. Riziko ve finančním rozhodování. 1. Časová hodnota peněz ve finančním rozhodování podniku

Téma 2: Časová hodnota peněz a riziko. 2. Riziko ve finančním rozhodování. 1. Časová hodnota peněz ve finančním rozhodování podniku Téma 2: Časová hodnota peněz a riziko ve finančním rozhodování 1. Časová hodnota peněz ve finančním rozhodování podniku 2. Riziko ve finančním rozhodování - rizika systematická a nesystematická - podnikatelské

Více

Asset Management: smíšená portfolia

Asset Management: smíšená portfolia Asset Management: smíšená portfolia Výnos Riziko a výnos S větším potencionálním výnos vždy riziko roste Riziko se projevuje kolísáním výnosů (VOLATILITA) Riziko ALE... RIZIKO LZE STRUKTUROVAT strukturované

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR)

Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR) Metodické listy pro kombinované studium předmětu INVESTIČNÍ A FINANČNÍ ROZHODOVÁNÍ (IFR) (Aktualizovaná verze 04/05) Úvodní charakteristika předmětu: Cílem jednosemestrálního předmětu Investiční a finanční

Více

Pojem investování a druhy investic

Pojem investování a druhy investic Investiční činnost Pojem investování a druhy investic Rozhodování o investicích Zdroje financování investic Hodnocení efektivnosti investic Metody hodnocení investic Ukazatele hodnocení efektivnosti investic

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Přímka kapitálového trhu

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Přímka kapitálového trhu Finanční anageent Příka kapitálového trhu, odel CAPM, systeatické a nesysteatické riziko Příka kapitálového trhu Čí vyšší e sklon křivky, tí vyšší e nechuť investora riskovat. očekávaný výnos Množina všech

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP

Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP Hodnocení ekonomické efektivnosti projektů Průměrný výnos z investice, doba návratnosti, ČSH, VVP Investice je charakterizována jako odložená spotřeba. Podnikové investice jsou ty statky, které nejsou

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Vybrané poznámky k řízení rizik v bankách

Vybrané poznámky k řízení rizik v bankách Vybrané poznámky k řízení rizik v bankách Seminář z aktuárských věd Petr Myška 7.11.2008 Obsah přednášky Oceňování nestandartních instrumentů finančních trhů Aplikace analytických vzorců Simulační techniky

Více

Pojem investování. vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba

Pojem investování. vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba Investiční činnost Pojem investování vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba Druhy investic 1. Hmotné investice vytvářejí

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Markowitzův model. Optimalizace II s aplikací ve financích.

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Markowitzův model. Optimalizace II s aplikací ve financích. Univerzita Karlova v Praze Matematicko-fyzikální fakulta Markowitzův model Optimalizace II s aplikací ve financích Lucia Jarešová léto 2006 Obsah 1 Zadání úlohy 3 2 Markowitzův model 4 3 Výběr titulů 5

Více

Mezinárodní finanční trhy

Mezinárodní finanční trhy Úvod Ing. Jan Vejmělek, Ph.D., CFA jan_vejmelek@kb.cz Investiční bankovnictví Náplň kurzu Úvod do mezinárodních finančních trhů Devizový trh a jeho instrumenty Mezinárodní finanční instituce Teorie mezinárodního

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo

Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo Determination Value at Risk via Monte Carlo simulation Stanovení Value at Risk pomocí metody simulace Monte Carlo Kateřina Zelinková 1 Abstract The financial institution, namely securities firms, banks

Více

Základy teorie finančních investic

Základy teorie finančních investic Ing. Martin Širůček, Ph.D. Katedra financí a účetnictví sirucek.martin@svse.cz sirucek@gmail.com Základy teorie finančních investic strana 2 Úvod do teorie investic Pojem investice Rozdělení investic a)

Více

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti...

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti... Poznámky k ekonomickému ukazateli IRR (Remarks on the economic criterion the Internal Rate of Return ) Carmen Simerská IRR... vnitřní míra výnosnosti, vnitřní výnosové procento, výnos do splatnosti...

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní

I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní Náklady na kapitál I) Vlastní kapitál 1) Základní jmění /upsaný kapitál/ 2) Kapitálové fondy: - ážio/disážio - dary - vklady společníků 3)Fondy ze zisku: - rezervní fond - statutární a ostatní fondy 4)

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Analýza návratnosti investic/akvizic JAN POJAR ČVUT V PRAZE STAVEBNÍ MANAGEMENT 2014/2015

Analýza návratnosti investic/akvizic JAN POJAR ČVUT V PRAZE STAVEBNÍ MANAGEMENT 2014/2015 Analýza návratnosti investic/akvizic JAN POJAR ČVUT V PRAZE STAVEBNÍ MANAGEMENT 2014/2015 Obsah prezentace: definice Investice akvizice dělení investic rozdělení metod klady a zápory metod definice Investice:

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Analýza návratnosti investic/akvizic

Analýza návratnosti investic/akvizic Analýza návratnosti investic/akvizic Klady a zápory Hana Rýcová Charakteristika investice: Investice jsou ekonomickou činností, kterou se subjekt (stát, podnik, jednotlivec) vzdává své současné spotřeby

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Semestrální práce z předmětu MAB

Semestrální práce z předmětu MAB Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu MAB Modely investičního rozhodování Helena Wohlmuthová A07148 16. 1. 2009 Obsah 1 Úvod... 3 2 Parametry investičních

Více

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2

Varianta Pravděpodobnost Výnos A 1 Výnos A 2 1 0,1 1% 0,1 3% 0,3 2 0,2 12% 2,4 28% 5,6 3 0,3 6% 1,8 14% 4,2 Dobrý den. Kladno, 22. 3. 2007 21:35 Chtěl bych se všem omluvit za ten závěr přednášky. Bohužel mě chyba v jednom z příkladů vykolejila natolik, že jsem se již velice těžko soustředil na svůj výkon. Chtěl

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Čistá současná hodnota a vnitřní výnosové procento

Čistá současná hodnota a vnitřní výnosové procento Čistá současná hodnota a vnitřní výnosové procento Co je to čistá současná hodnota? Čistá současná hodnota představuje rozdíl mezi diskontovanými peněžními příjmy z určité činnosti a výdaji na tuto činnost.

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Manažerská ekonomika KM IT

Manažerská ekonomika KM IT KVANTITATIVNÍ METODY INFORMAČNÍ TECHNOLOGIE (zkouška č. 3) Cíl předmětu Získat základní znalosti v oblasti práce s ekonomickými ukazateli a daty, osvojit si znalosti finanční a pojistné matematiky, zvládnout

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Cíl: seznámení s pojetím peněz v ekonomické teorii a s fungováním trhu peněz. Peníze jako prostředek směny, zúčtovací jednotka a uchovatel hodnoty.

Cíl: seznámení s pojetím peněz v ekonomické teorii a s fungováním trhu peněz. Peníze jako prostředek směny, zúčtovací jednotka a uchovatel hodnoty. Vysoká škola finanční a správní, o. p. s. Akademický rok 2006/07, letní semestr Kombinované studium Předmět: Makroekonomie (Bc.) Metodický list č. 3 7) Peníze a trh peněz. 8) Otevřená ekonomika 7) Peníze

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM

České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská OKRUHY. ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd 1. Vektorový prostor R n 2. Podprostory 3. Lineární zobrazení 4. Matice 5. Soustavy lineárních rovnic

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Polemika o významu dividendové politiky

Finanční management. Nejefektivnější portfolio (leží na hranici) dle Markowitze: Polemika o významu dividendové politiky Finanční management Dividendová politika, opce, hranice pro cenu opce, opční techniky Nejefektivnější portfolio (leží na hranici dle Markowitze: existuje jiné s vyšším výnosem a nižší směrodatnou odchylkou

Více

Téma: Investice do akcií společnosti ČEZ

Téma: Investice do akcií společnosti ČEZ Matematika a byznys Téma: Investice do akcií společnosti ČEZ Alena Švédová A07146 Investice do akcií společnosti ČEZ ÚVOD Tímto tématem, které jsem si pro tuto práci zvolila, bych chtěla poukázat na to,

Více

Lineární programování

Lineární programování 24.9.205 Lineární programování Radim Farana Podklady pro výuku pro akademický rok 203/204 Obsah Úloha lineárního programování. Formulace úlohy lineárního programování. Typické úlohy lineárního programování.

Více

Střední absolutní odchylka jako míra rizika

Střední absolutní odchylka jako míra rizika Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Petra Janouchová Střední absolutní odchylka jako míra rizika Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Obligace II obsah přednášky

Obligace II obsah přednášky Obligace II obsah přednášky 1) Durace obligace 2) Durace portfolia 3) Obchodování obligací kurzovní lístky Durace definice Durace udává střední dobu splatnosti obligace (tento pojem zavedl v roce 1938

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ

ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LII 6 Číslo 3, 2004 Gasser-Müllerův odhad J. Poměnková Došlo: 8.

Více

Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu.

Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu. 1. Cena kapitálu Náklady kapitálu představují pro podnik výdaj, který musí zaplatit za získání různých forem kapitálu (tj. za získání např. různých forem dluhů, akciového kapitálu, nerozděleného zisku

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Fakta a mýty o investování i riziku. Monika Laušmanová Radek Urban

Fakta a mýty o investování i riziku. Monika Laušmanová Radek Urban Fakta a mýty o investování i riziku Monika Laušmanová Radek Urban 1 Mýtus: Mezi investováním a utrácením není skoro žádný rozdíl Utrácení - koupě kabelky 35 000 30 000 Cena kabelky 25 000 20 000 15 000

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více