Přehled. Motivace Úvod. Křivky a plochy počítačové grafiky. Závěr. Rozvoj počítačové grafiky Výpočetní geometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Přehled. Motivace Úvod. Křivky a plochy počítačové grafiky. Závěr. Rozvoj počítačové grafiky Výpočetní geometrie"

Transkript

1 Vývoj výpočetní geometrie Univerzita Karlova v Praze Matematicko-fyzikální fakulta

2 Přehled Motivace Úvod Rozvoj počítačové grafiky Výpočetní geometrie Křivky a plochy počítačové grafiky Vývoj konstruování křivek a ploch Příklady křivek a ploch počítačové grafiky Závěr

3 Motivace Podat přehled ve vývoji výpočetní geometrie a počítačové grafiky Zaměříme se na konstruování křivek a ploch metody vyvinuté pro lodní, letecký a automobilový průmysl Rozvoj výpočetní techniky tvorba matematického aparátu, který přinesl nové metody konstruování křivek a ploch (do té doby konstrukce spočívaly na metodách deskriptivní geometrie)

4 Rozvoj počítačové grafiky 60. léta 20. století - základy počítačové grafiky zpracování grafické informace na počítači otázky výstupu z počítače, vstup grafické informace do počítače vytváření, manipulace a popis grafické informace rychle vyvíjející se vědní obor 70. léta 20. století z počítačové grafiky se oddělují nové podobory př. výpočetní geometrie (Computational Geometry)

5 Výpočetní geometrie I Pojem výpočetní geometrie poprvé (1971) zavedl Archibald Forest absolvent strojního inženýrství na University of Edinburgh, zakládající člen Computer-aided Design Group, později profesor na University of East Anglia konzultant u Rolls-Royce, Boeing, General Motors a dalších Výpočetní geometrie zahrnovala geometrické teorie zabývající se transformacemi zobrazením prostoru do roviny týkající se konstruování křivek a ploch pomocí počítače a grafického výstupu

6 Výpočetní geometrie II V dnešním pojetí návrhy a analýza efektivních algoritmů pro řešení geometrických problémů určování vlastností a vztahů objektů v rovině a ve vícerozměrném prostoru tyto problémy mohou vycházet z aplikací například v počítačové grafice nebo v prostorovém modelování Hlavní oblasti kombinatorická výpočetní geometrie (Combinatorial Computational Geometry) numerická výpočetní geometrie - častěji známá pod pojmem geometrické modelování nebo Computer Aided Geometric Design (CAGD) předmětem našeho pojednání

7 Křivky a plochy I Vývoj konstruování křivek a ploch počátky geometrického modelování velmi staré kořeny (římské impérium) z počátku především v lodním stavitelství techniky používané při stavbě lodí nejvíce se zdokonalovaly ve století (hlavně v Itálii) k uchování základní geometrie lodi se používaly malé dřevěné modely žádné výkresy popisující tvar lodi první známé zmínky o konstruktivní geometrii, pomocí níž se definovaly křivky užité v lodním průmyslu r. 1752

8 Křivky a plochy II Novodobá historie geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace povrchu letounů

9 Křivky a plochy III v knize Analytical Geometry with Application to Aircraft poprvé klasické konstruování kombinované s výpočetními metodami poprvé zavedl mnohem účinnější metody jako první začal popisovat křivky numericky (konstruování křivek a ploch v minulosti spočívalo na metodách DG) nesporné výhody interpretace matematického popisu (na rozdíl od kresby) vždy správná veliký ohlas - brzy se rozšířilo do dalších amerických společností pro výrobu letadel

10 Křivky a plochy IV v lodním i leteckém průmyslu postupně se začínaly využívat kubiky (do té doby kružnice, kuželosečky) plochy se rozdělily na části (tzv. pláty) vše definováno pomocí matematických rovnic 60. léta 20. století James C. Ferguson analytik u amerického výrobce letadel Boeing matematicky popsal plochu s kubickými parametrickými křivkami, na místo ploch vytvářených do té doby graficky na základě oblouků kuželoseček

11 Křivky a plochy V Steven Anson Coons profesor na Massachusetts Institute of Technology (MIT) ve strojním inženýrství, zaměstnanec u amerického výrobce letadel Chance Vought matematizace povrchů letounů popisy obecných plátů ploch zadávány libovolnými okrajovými křivkami jeho teorie základ pro definice ploch, které se dnes běžně užívají př. B-spline nebo NURBS plochy 60. léta 20. století výroba prvních počítačů, které se využívají ve strojírenství k řízení strojů, postupně se rozšiřují do dalších odvětví ještě však nejsou známy metody, jak počítačům předávat data v numerické podobě (Limingova metoda používána zpočátku jen v leteckém průmyslu)

12 Křivky a plochy VI Evropa k rozvoji geometrického modelování (a to právě v předávání dat počítači) nezávisle na sobě přispěli Francouzi Paul de Faget de Casteljau a Pierre Etienne Bézier Paul de Faget de Casteljau (*1930) pracoval pro francouzskou automobilovou firmu Citroën k zadávání křivek používal kontrolní polygon do té doby tato metoda nebyla nikdy použita v diferenciální geometrii existuje pojem kontrolního polygonu (od r. 1923) neuplatnilo se v praxi křivka se zadává pomocí blízkých bodů (ne body, které leží na křivce) změna křivky zajištěna změnou poloh bodů kontrolního polygonu, nemanipuluje se přímo s křivkou (totéž pro plochy)

13 Křivky a plochy VII postup, který používal dnes známý jako de Casteljau algoritmus firma Citroën jeho práci držela v tajnosti Casteljau své postupy navrhoval již v r. 1959, zveřejněny až na konci 70. let 20. století Pierre Etienne Bézier (1910 v Paříži v Paříži) pracoval pro francouzskou konkurenční automobilovou firmu Renault začátek 60. let 20. století vedoucí konstrukčního oddělení zabýval se tím, jak počítačově reprezentovat křivky a plochy

14 Křivky a plochy VIII lze dokázat, že křivky, které vyvinul shodné s těmi, které popsal de Casteljau nezávisle také objevil algoritmus de Casteljau Bézierova práce publikována R. A. Forrestem doplněna také o popis Bézierových křivek pomocí Bersteinových polynomů Casteljau používal Bersteinovy polynomy již v padesátých letech) díky tomu tyto křivky a plochy nesou jméno Béziera, přestože je Casteljau vyvinul mnohem dříve

15 Křivky a plochy IX většina významných objevů v oblasti geometrického modelování byla až do 70. let 20. století izolována nakonec tyto snahy vyvrcholily vznikem nové vědní disciplíny CAGD bez zavedení počítačů do výroby by se ale tato disciplína jistě nemohla rozvinout

16 Křivky a plochy X metody počítačového modelování velmi se zdokonalily dnes k dispozici velmi kvalitní matematický aparát výraznou změnu přineslo používání - racionálních Bézierových křivek a ploch a neuniformních racionálních B-spline křivek a ploch tzv. NURBS těmito metodami lze pomocí aproximace generovat klasické geometrické prvky kuželosečky, kulové plochy v posledních letech vývoj v oblasti geometrického modelování přinesl mnoho dalších typů křivek a ploch zaváděných k různým speciálním účelům

17

18 Příklady křivek a ploch I křivky a plochy explicitně, implicitně, parametricky volba reprezentace závisí na konkrétním účelu a aplikaci dva základní způsoby zpracování vstupní množiny řídících bodů interpolace a aproximace Bézierova křivka příklad aproximační křivky n - tého stupně zadána n + 1 řídícími body prochází prvním a posledním bodem řídícího polygonu, ostatní body pouze aproximuje nevýhoda - při změně polohy jednoho bodu řídícího polygonu, dojde ke změně tvaru celé křivky to se řeší dělením křivek na segmenty a jejich postupným napojováním P 0 P 1 Bt () P 2 P 3

19 Příklady křivek a ploch II další aproximační metody Coonsovy kubiky neprocházejí krajními body kontrolního polygonu B-spline křivky skládají se z více segmentů obecnější křivky NURBS (neuniformní racionální B-spline křivky) aparát konstruování křivek rozšiřitelné do vyšší dimenze interpolační (poměrně složité), aproximační plochy plochy modelujeme pomocí zadávání sítě řídících bodů, která tvoří vtrojrozměrném prostoru mnohostěn

20 Příklady křivek a ploch III Bézierova plocha příklad aproximační plochy m n - tého stupně zadána maticí řídících bodů velikosti okrajovými ( křivkami m+ 1) ( nplochy + 1) jsou Bézierovy křivky další příklady Coonsovy plochy B-spline plochy NURBS

21 Ukázky ukázky Bézierovy křivky ukázky napojování Bézierových plátů velmi zajímavá oblast týkající se modelování ploch - tzv. plátování přičemž se požadují různé stupně hladkosti plátování se využívá při konstrukci složitějších tvarů a výhody jsou obdobné jako u křivek změny poloh řídících bodů ovlivňují výsledný tvar pouze lokálně

22 Závěr geometrické modelování obor, který se neustále vyvíjí v současné době využívá počítačové modely prakticky každá oblast výroby rozvoj grafických editorů, tzv. CAD systémů, umožnil projektování na počítači v různých odvětvích průmyslu

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Počítačová geometrie I

Počítačová geometrie I 0 I RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Osnova předmětu Pojem výpočetní geometrie, oblasti

Více

PARAMETRICKÉ MODELOVÁNÍ A KONSTRUOVÁNÍ ÚVOD DO PARAMETRICKÉHO MODELOVÁNÍ A KONSTRUOVÁNÍ

PARAMETRICKÉ MODELOVÁNÍ A KONSTRUOVÁNÍ ÚVOD DO PARAMETRICKÉHO MODELOVÁNÍ A KONSTRUOVÁNÍ PARAMETRICKÉ MODELOVÁNÍ A KONSTRUOVÁNÍ ÚVOD DO PARAMETRICKÉHO MODELOVÁNÍ A KONSTRUOVÁNÍ Ing. Zdeněk Hodis, Ph.D. Úvod S rozvojem nových poznatků v oblasti technické grafiky je kladen důraz na jejich začlenění

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ

DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ UMT Tomáš Zajíc, David Svoboda Typy počítačové grafiky Rastrová Vektorová Rastrová grafika Pixely Rozlišení Barevná hloubka Monitor 72 PPI Tiskárna

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

1. Úvod do Systémů CAD

1. Úvod do Systémů CAD 1. Úvod do Systémů CAD Studijní cíl Tento blok kurzu je věnován CA technologiím. Po úvodním seznámení se soustředíme především na oblast počítačové podpory konstruování, tedy CAD. Doba nutná k nastudování

Více

Obr.1 Zařazení CAD do oblasti CA technologií

Obr.1 Zařazení CAD do oblasti CA technologií Systémy CAD CAD systémy (Computer Aided Design) jsou programové nástroje určené pro použití v úvodních etapách výrobního procesu, ve vývoji, konstrukci a technologické přípravě výroby. Oblast CAD je jen

Více

1. Blok 1 Úvod do Systémů CAD

1. Blok 1 Úvod do Systémů CAD 1. Blok 1 Úvod do Systémů CAD Studijní cíl Tento blok kurzu je věnován problematice tvorby technické dokumentace pomocí počítačové podpory. Doba nutná k nastudování 2 3 hodiny Průvodce studiem Pro studium

Více

Použití splinů pro popis tvarové křivky kmene

Použití splinů pro popis tvarové křivky kmene NAZV QI102A079: Výzkum biomasy listnatých dřevin Česká zemědělská univerzita v Praze Fakulta lesnická a dřevařská 9. února 2011 Cíl práce Cíl projektu: Vytvořit a ověřit metodiku pro sestavení lokálního

Více

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ Abstrakt Příspěvek se zabývá historií výuky deskriptivní geometrie na Vysokém učení technickém.

Více

Obsah. Úvod 9. Orientace v prostředí programu SolidWorks 11. Skica 29. Kapitola 1 11. Kapitola 2 29

Obsah. Úvod 9. Orientace v prostředí programu SolidWorks 11. Skica 29. Kapitola 1 11. Kapitola 2 29 Úvod 9 Kapitola 1 11 Orientace v prostředí programu SolidWorks 11 Pruh nabídky 12 Nabídka Možnosti 14 Nápověda 14 Podokno úloh 15 Zdroje SolidWorks 15 Knihovna návrhů 15 Průzkumník souborů 16 Paleta pohledů

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Úvod (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr. Eva Hrubešová, Ph.D.

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Technologie II. Strojní programování. Přednáška č. 7. Autor: doc. Ing. Martin Vrabec, CSc.

Technologie II. Strojní programování. Přednáška č. 7. Autor: doc. Ing. Martin Vrabec, CSc. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Projekt OPPA Systém elektronické podpory studia (SEPS) Řešen na FS ČVUT v Praze od 1. 4. 2011 Technologie II Strojní programování Přednáška

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Pokud Vám termíny nevyhovují, nebo máte zájem uspořádat specifické firemní školení, prosím obraťte se na Vaši BEKO kontaktní osobu.

Pokud Vám termíny nevyhovují, nebo máte zájem uspořádat specifické firemní školení, prosím obraťte se na Vaši BEKO kontaktní osobu. Vážení zákazníci, rostoucí zájem o podporu a školení systémů CATIA, ENOVIA, DELMIA, 3DVIA, nás přivedl na myšlenku, poskytovat nejenom specificky zaměřené firemní kurzy těchto systémů, ale také nabízet

Více

1 Studijní program: N2301 Strojní inženýrství

1 Studijní program: N2301 Strojní inženýrství 1 Obsah 1 N2301 Strojní inženýrství 2 1.1 2301T001-Dopravní a manipulační technika (prezenční)....................... 2 1.2 2302T040-Konstrukce zdravotnické techniky (prezenční).......................

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ V Úžlabině 320, Praha 10 Sbírka úloh z technického kreslení pracovní listy II. (AutoCAD) Praha 2012 Bc. Ing. Gabriela Uhlíková Sbírka úloh z technického kreslení

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

MANUÁL K DIDAKTICKÉMU TESTU Z MATEMATIKY PŘIJÍMAČKY MSK 2011

MANUÁL K DIDAKTICKÉMU TESTU Z MATEMATIKY PŘIJÍMAČKY MSK 2011 MANUÁL K DIDAKTICKÉMU TESTU Z MATEMATIKY PŘIJÍMAČKY MSK 2011 Didaktickým testem z matematiky budou ověřovány matematické dovednosti, které nepřesahují rámec dřívějších osnov ZŠ a jsou definované v Rámcovém

Více

1. IT_0F1 Základní obsluha MS Office 2010 MS Word, MS Excel, MS PowerPoint, MS Windows

1. IT_0F1 Základní obsluha MS Office 2010 MS Word, MS Excel, MS PowerPoint, MS Windows 1. IT_0F1 Základní obsluha MS Office 2010 MS Word, MS Excel, MS PowerPoint, MS Windows Hlavní náplní kurzu je seznámit účastníky se základními a středně pokročilými technikami vybraných produktů MS Office.

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Rastrová grafika. Grafický objekt je zaznamenán jednotlivými souřadnicemi bodů v mřížce. pixel ( picture element ) s definovanou barvou

Rastrová grafika. Grafický objekt je zaznamenán jednotlivými souřadnicemi bodů v mřížce. pixel ( picture element ) s definovanou barvou Rastrová grafika Grafický objekt je zaznamenán jednotlivými souřadnicemi bodů v mřížce. pixel ( picture element ) s definovanou barvou Kvalita je určena rozlišením mřížky a barevnou hloubkou (počet bitů

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Konstruování ve strojírenství CAD systémy

Konstruování ve strojírenství CAD systémy Projekt UNIV 2 KRAJE Proměna škol v centra celoživotního učení PROGRAM DALŠÍHO VZDĚLÁVÁNÍ Konstruování ve strojírenství CAD systémy Copyright: Ministerstvo školství, mládeže a tělovýchovy ČR 1 Obsah OBSAH...

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU

KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU Modelování součástí z plechu Autodesk Inventor poskytuje uživatelům vedle obecných nástrojů pro parametrické a adaptivní

Více

ARCHITEKTURA, GEOMETRIE A VÝPOČETNÍ TECHNIKA

ARCHITEKTURA, GEOMETRIE A VÝPOČETNÍ TECHNIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ARCHITEKTURY ÚSTAV NAVRHOVÁNÍ I. FACULTY OF ARCHITECTURE DEPARTMENT OF DESIGN I. ARCHITEKTURA, GEOMETRIE A VÝPOČETNÍ TECHNIKA ARCHITECTURE,

Více

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA 17. listopadu 15/2172, 708 33 Ostrava - Poruba tel.: 597 321 111, fax: 596 918 507, http://www.vsb.cz http://www.spravnavyska.cz FAKULTA BEZPEČNOSTNÍHO

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice TECHNOLOGICKÉ POSTUPY S PODPOROU POČÍTAČA Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu

Více

Úvod, rozdělení CAD systémů Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Karel Procházka

Úvod, rozdělení CAD systémů Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Karel Procházka Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Ladislav Drs Použití samočinných počítačů a automatického kreslení v deskriptivní geometrii Pokroky matematiky, fyziky a astronomie, Vol. 17 (1972), No. 4, 199--203

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

UIVERZITÍ STUDIJÍ PROGRAMY

UIVERZITÍ STUDIJÍ PROGRAMY UIVERZITÍ STUDIJÍ PROGRAMY Adresa: 17. listopadu 15/2172, 708 33 Ostrava-Poruba, http://www.usp.vsb.cz anotechnologie Nanotechnologie (P) Mechatronika Mechatronické systémy (PK) Automobilová elektronika

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Vektorová grafika. Způsob ukládání obrazových informací. Vnímání. Výhody a nevýhody. obraz reprezentován pomocí geometrických objektů

Vektorová grafika. Způsob ukládání obrazových informací. Vnímání. Výhody a nevýhody. obraz reprezentován pomocí geometrických objektů VEKTOROVÉ FORMÁTY Vektorová grafika Způsob ukládání obrazových informací obraz reprezentován pomocí geometrických objektů body, přímky, křivky, polygony, text Vnímání lidské oko pracuje na principu bitmapové

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

SYSTÉMY CAD. Přednáška č.1

SYSTÉMY CAD. Přednáška č.1 SYSTÉMY CAD Přednáška č.1 Úvod Přednášky, cvičení Ing. Zbyněk KOPECKÝ, zbynek.kopecky@upce.cz FEI Univerzita Pardubice Úkoly předmětu seznámit posluchače se zásadami tvorby technické dokumentace, zejména

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra informatiky Akademický rok: 2008-09

Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra informatiky Akademický rok: 2008-09 Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra informatiky Akademický rok: 2008-09 Studijní obor: Výpočetní technika a informatika Technologie SVG aktuální standard webové vektorové

Více

Vysoká škola báňská Technická univerzita Ostrava

Vysoká škola báňská Technická univerzita Ostrava Vysoká škola báňská Technická univerzita Ostrava Kooperace v přípravě CIM učební text doc. Ing. Josef Novák, CSc. Vytvořeno za podpory projektu: Consulting point pro rozvoj spolupráce v oblasti řízení

Více

Projektově orientovaná výuka ve strojírenství

Projektově orientovaná výuka ve strojírenství Projektově orientovaná výuka ve strojírenství Koutný, D. Paloušek, D. We learn by example and by direct experience because there are real limits to the adequacy of verbal instruction. Malcolm Gladwell,

Více

INFORMATIKA. Jindřich Kaluža. Ludmila Kalužová

INFORMATIKA. Jindřich Kaluža. Ludmila Kalužová INFORMATIKA Jindřich Kaluža Ludmila Kalužová Recenzenti: doc. RNDr. František Koliba, CSc. prof. RNDr. Peter Mikulecký, PhD. Vydání knihy bylo schváleno vědeckou radou nakladatelství. Všechna práva vyhrazena.

Více

Vysoké učení technické v Brně. Fakulta stavební

Vysoké učení technické v Brně. Fakulta stavební Vysoké učení technické v Brně Ing. Jiří Apeltauer Ing. Iva Krčmová Ing. Martin Všetečka apeltauer.t@fce.vutbr.cz krcmova.i@fce.vutbr.cz vsetecka.m@fce.vutbr.cz Vysoké učení technické v Brně Fakulta strojního

Více

PEPS. CAD/CAM systém. Cvičebnice DEMO. Modul: Drátové řezání

PEPS. CAD/CAM systém. Cvičebnice DEMO. Modul: Drátové řezání PEPS CAD/CAM systém Cvičebnice DEMO Modul: Drátové řezání Cvičebnice drátového řezání pro PEPS verze 4.2.9 DEMO obsahuje pouze příklad VII Kopie 07/2001 Blaha Technologie Transfer GmbH Strana: 1/16 Příklad

Více

Technické novinky. AutoCAD. Mechanical 2011

Technické novinky. AutoCAD. Mechanical 2011 AutoCAD Mechanical 2011 2 Představujeme AutoCAD Mechanical 2011 Obsah Knihovna obsahu... 2 Obecná vylepšení... 2 Vylepšení podpory mezinárodních norem...2 Selektivní aktualizace obsahu...2 Publikování

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Analytická

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

BR 52 Proudění v systémech říčních koryt

BR 52 Proudění v systémech říčních koryt BR 52 Proudění v systémech říčních koryt Přednášející: Ing. Hana Uhmannová, CSc., doc. Ing. Jan Jandora, Ph.D. VUT Brno, Fakulta stavební, Ústav vodních staveb 1 Přednáška Úvod do problematiky Obsah: 1.

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

PRACOVNÍCH LISTŮ DO MATEMATIKY II

PRACOVNÍCH LISTŮ DO MATEMATIKY II ZKUŠENOSTI S PŘÍPRAVOU A VYUŽITÍM PRACOVNÍCH LISTŮ DO MATEMATIKY II Petra Schreiberová, Petr Volný VŠB - Technická univerzita Ostrava Abstrakt: V letošním roce na Katedře matematiky a deskriptivní geometrie

Více

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Povinností žáka je napsat seminární práci nejpozději ve 3.ročníku (septima) v semináři (dle zájmu žáka). Práce bude ohodnocena

Více

Voroného konstrukce na mapě světa

Voroného konstrukce na mapě světa na mapě světa Jan Ústav matematiky, FSI VUT, 7. 6. 2011 na mapě světa Jan Ústav matematiky, FSI VUT, 7. 6. 2011 Základní myšlenka Je dána konečná množina M bodů v rovině X (obecně v metrickém prostoru).

Více

Teorie bezkontaktního měření rozměrů

Teorie bezkontaktního měření rozměrů Teorie bezkontaktního měření rozměrů Zpracoval: Petr Zelený Pracoviště: KVS Tento materiál vznikl jako součást projektu In-TECH 2, který je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Komplexní správa technických dat. PDM základní pojmy. Ing. Martin Nermut, 2012

Komplexní správa technických dat. PDM základní pojmy. Ing. Martin Nermut, 2012 Komplexní správa technických dat PDM základní pojmy Ing. Martin Nermut, 2012 Projektování - konstrukční a technologické procesy součást životního cyklu výrobku (PLM - Product Lifecycle Management) Nárůst

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

PLM řešení pro průmysl výroby strojů a strojního zařízení

PLM řešení pro průmysl výroby strojů a strojního zařízení PLM řešení pro průmysl výroby strojů a strojního zařízení Silní v době krize investují a v současné době je vhodná doba na to, aby se firma věnovala optimalizaci vnitřních procesů a činností s cílem posílit

Více

Sada (všech) počítačových programů, které provádějí nějakou činnost

Sada (všech) počítačových programů, které provádějí nějakou činnost Software Software (též programové vybavení) Sada (všech) počítačových programů, které provádějí nějakou činnost První teorie softwaru byla navržena Alanem Turingem v eseji Computable Numbers with an Application

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ V Úžlabině 320, Praha 10 Sbírka úloh z technického kreslení pracovní listy I. Praha 2011 Ing. Gabriela Uhlíková Sbírka úloh z technického kreslení Tato sbírka

Více

VOLITELNÉ A NEPOVINNÉ PŘEDMĚTY

VOLITELNÉ A NEPOVINNÉ PŘEDMĚTY VOLITELNÉ A NEPOVINNÉ PŘEDMĚTY Příloha č. 1 ke Školnímu vzdělávacímu programu pro gymnaziální vzdělávání Gymnázium, Uničov, Gymnazijní 257 1 Obsah Základní informace...4 Možná struktura volitelných předmětů...5

Více

5.2.1. Matematika pro 2. stupeň

5.2.1. Matematika pro 2. stupeň 5.2.1. Matematika pro 2. stupeň Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět matematika se vyučuje jako samostatný předmět v 6., 8. a 9. ročníku 4 hodiny

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

4) Vztah mezi ČSN, EN a ISO

4) Vztah mezi ČSN, EN a ISO Obsah: VÝZNAM TEK A NORMALIZACE 1. Co je to technické kreslení? 2. Cíle výuky TEK. 3. Druhy platných norem v ČR 4. Vztah mezi ČSN, EN a ISO 5. Druhy technických výkresů 6. Formáty výkresů 7. Povinná výbava

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Úvod do problematiky. Význam počítačové grafiky. Trochu z historie. Využití počítačové grafiky

Úvod do problematiky. Význam počítačové grafiky. Trochu z historie. Využití počítačové grafiky Přednáška 1 Úvod do problematiky Význam počítačové grafiky Obrovský přínos masovému rozšíření počítačů ovládání počítače vizualizace výsledků rozšíření možnosti využívání počítačů Bouřlivý rozvoj v oblasti

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

MODELOVÁNÍ MATEMATICKÝCH PLOCH V CAD SYSTÉMECH

MODELOVÁNÍ MATEMATICKÝCH PLOCH V CAD SYSTÉMECH VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav matematiky Mgr. Jana Procházková MODELOVÁNÍ MATEMATICKÝCH PLOCH V CAD SYSTÉMECH Modeling of mathematical surfaces in CAD systems ZKRÁCENÁ

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

2. Základní informace o počítačové grafice

2. Základní informace o počítačové grafice 2. Základní informace o počítačové grafice Počítačová grafika je obor, který se ve výpočetní technice rozvíjí velmi dynamicky. Není to zase až tak dávno, kdy nebylo možné na osobním počítači editovat v

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Informační systémy ve výuce na PEF Information Systems in teaching at the FEM

Informační systémy ve výuce na PEF Information Systems in teaching at the FEM Informační systémy ve výuce na PEF Information Systems in teaching at the FEM Edita Šilerová, Čestmír Halbich, Jana Hřebejková Cíle Předmět Informační systémy je postupně od roku 1994 zařazován na všechny

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE 1. Mechanické vlastnosti materiálů, zkouška pevnosti v tahu 2. Mechanické

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Programování v jazyku LOGO - úvod

Programování v jazyku LOGO - úvod Programování v jazyku LOGO - úvod Programovací jazyk LOGO je určen pro výuku algoritmizace především pro děti školou povinné. Programovací jazyk pracuje v grafickém prostředí, přičemž jednou z jeho podstatných

Více

l: I. l Tento projekt je spolufinancován Evropskou unií a státním rozpočtem České republiky.

l: I. l Tento projekt je spolufinancován Evropskou unií a státním rozpočtem České republiky. Vysoké učení technické v Brně Fakulta strojního inženýrství Ústav strojírenské technologie Odbor technologie obrábění Téma: 1. cvičení - Základní veličiny obrábění Inovace studijních programů bakalářských,

Více

NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH... 2 SEMINÁŘ Z JAZYKA ČESKÉHO A LITERATURY... 6

NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH... 2 SEMINÁŘ Z JAZYKA ČESKÉHO A LITERATURY... 6 NÁPLŇ VOLITELNÝCH PŘEDMĚTŮ - DVOULETÝCH... 2 SEMINÁŘ Z JAZYKA ČESKÉHO A LITERATURY... 2 SEMINÁŘ A CVIČENÍ ZE ZEMĚPISU... 2 KONVERZACE V RUSKÉM JAZYCE... 2 DĚJINY UMĚNÍ - PRAKTICKÉ... 2 SEMINÁŘ A CVIČENÍ

Více

1) Specializační studium písemné a elektronické komunikace a sekretářských prací projekt UNIV 2 KRAJE

1) Specializační studium písemné a elektronické komunikace a sekretářských prací projekt UNIV 2 KRAJE Stručná anotace jednotlivých programů. UNIV2 1) Specializační studium písemné a elektronické komunikace a sekretářských prací projekt UNIV 2 KRAJE Pojetí a cíle vzdělávacího programu Program je koncipován

Více

7. Geografické informační systémy.

7. Geografické informační systémy. 7. Geografické informační systémy. 154GEY2 Geodézie 2 7.1 Definice 7.2 Komponenty GIS 7.3 Možnosti GIS 7.4 Datové modely GIS 7.5 Přístup k prostorovým datům 7.6 Topologie 7.7 Vektorové datové modely 7.8

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více