B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: (a j b k a k b j ) 2

Rozměr: px
Začít zobrazení ze stránky:

Download "B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: (a j b k a k b j ) 2"

Transkript

1 1. A, e²te rekurenci Q 0 = 2 Q n = 2Q n 1 + (n + 2) 2, pro n > 0. B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: Q 0 = 1 Q n = nq n 1 + n!, pro n > A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 2 Q n = 2Q n cos(nπ), pro n > 0. tak, aby po et s ítání byl úm rný n. 1 j<k n (a j b k a k b j ) 2 3. A, e²te rekurenci B, e²te metodou suma ního faktoru Q 0 = π, Q 1 = 2π, Q n = 2Q n 1 Q n 2 + π, pro n > 1. T 0 = 5 2T n = nt n 1 + 3n!, pro n > 0.

2 4. A, e²te rekurenci Q 0 = π Q n = 6Q n 1 πn 2, pro n > 0. B, Dokaºte, ºe platí n 1 n 1 (a k+1 a k )b k = a n b n a 0 b 0 (b k+1 b k )a k A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = π, Q 1 = π 2, Q n = Q n 2 + (n + π) 2, pro n > 1. B, Vypo t te následující sumu metodou z kapitoly 2.5.5: k 2 2 k. 6. A, e²te rekurenci B, e²te sumu Q 0 = 0, Q 1 = 0, Q n = 2Q n 1 Q n 2 + 2n, pro n > 1. H k perturba ní metodou. Návod: Zkuste namísto H k dosadit kh k. 7. A, e²te rekurenci Q 0 = 5 Q n = 5Q n 1 + 5n + 5, pro n > 0. ( 1) n k k 2.

3 8. A, e²te rekurenci Q 0 = 0 Q n = Q n n + n, pro n > A, e²te rekurenci ( 2) k k 2. Q 0 = 5 Q n = 5Q n n 2, pro n > 0. ( ( 1) k k + k 2). 10. A, e²te rekurenci B, Vypo t te sumu Q 0 = 0 Q n = πq n 1 + πn 2, pro n > 0. k= n k([k > 0] [k < 0]). 11. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 1 Q n = 3Q n cos(nπ) + 9 sin(nπ), pro n > 0. B, Vyjád ete následující sumu pomocí j a n : 12. A, e²te rekurenci B, Dokaºte Lagrangeovu rovnici: Q 0 = 3 [1 j k n] k Q n = 3Q n 1 + 3n 3, pro n > 0. ( n ) ( (a j b k a k b j ) 2 n ) ( = a 2 n ) k b 2 2 k a k b k. 1 j<k n

4 13. A, e²te rekurenci Q 0 = 1, Q 1 = 3, Q n = 2Q n 1 Q n 2 + 3n + 3, pro n > 1. ) k ) k+1. ( 1 3 ( A, e²te rekurenci Q 0 = 4, Q 1 = 2, Q n = Q n 1 Q n 2 + 3, pro n > A, e²te rekurenci ( 1) n k 2 k. Q 0 = 2, Q 1 = 2, Q n = Q n 2 + (n + 1) 2, pro n > 1. 2 ( 1) k. k Nápov da: rozloºte na sumy pro lichá a sudá k. Uvaºte, ºe 1 k<2n k lich 1 k = H 2n 1 2 H n. 16. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n cos(nπ), pro n > 1. B, Dokaºte, ºe platí 17. A, e²te rekurenci 1 k<2n k lich 1 k = H 2n 1 2 H n. Q 0 = π, Q 1 = π, Q n = Q n 1 Q n 2 7n, pro n > 1.

5 B, Plo²né momenty p i po íta ovém rozpoznávání obrazu o rozm ru n n bod s jasovou funkcí f(i, j), 1 i, j n jsou denovány jako m rs = i r j s f(i, j). i=1 j=1 Centrální momenty vztaºené k t ºi²ti i t, j t jsou denovány jako kde µ rs = (i i t ) r (j j t ) s f(i, j), i=1 j=1 i t = m 10 m 00, j t = m 01 m 00. Dokaºte, ºe µ 01 = µ 10 = 0 pro libovolné n a f(i, j). 18. A, e²te rekurenci Q 0 = 2, Q 1 = 2 2, Q n = Q n 1 Q n 2 + 2, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k=2 1 k 2 1. Nápov da: 2/(k 2 1) = 1/(k 1) 1/(k + 1). 19. A, e²te rekurenci Q 0 = e, Q 1 = 2e, Q n = Q n 1 Q n 2 e, pro n > 1. Poznámka: íslo e je základ p irozeného logaritmu. 20. A, e²te rekurenci a k a j [j k]. j=1 g(1) = 1/3, g(2n + j) = 3g(n) + 33n + 333, pro j = 0, 1 a n > 0. Nápov da: e²te nejprve rekurenci bez lenu 33n, pak ji zobecn te a pouºijte repertoárovou metodu. (a k a j ) 2. j=1

6 21. A, e²te rekurenci B, Dokaºte, ºe platí 22. A, e²te rekurenci B, Dokaºte, ºe platí g(1) = 1, g(2n + j) = 3g(n) + sin(jπ/2), pro j = 0, 1 a n > 0. ( n )( (a k + b j ) 2 n 4 a k b j ). j=1 j=1 Q 0 = 7, Q 1 = 7, Q n = Q n 1 Q n 2 7n, pro n > 1. ( n ) n a 2 2 j a j. j=1 j=1 23. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): B, Dokaºte, ºe platí 24. A, e²te rekurenci Q 0 = 13, Q 1 = 21, Q n = Q n 2 + n 2, pro n > 1. ( n )( n (a 2 k + b 2 n k) 2 a k b j ). j=1 g(1) = 1/3, g(2n + j) = 3g(n) + cos(jπ), pro j = 0, 1 a n > 0. B, e²te perturba ní metodou sumu ( 1) n k k. 25. A, e²te následující rekurenci (vyuºijte obecné e²ení z p edná²ek): 26. A, e²te rekurenci B, Vypo t te sumu g(1) = 1/3, g(2n + j) = 3g(n) + 3, pro j = 0, 1 a n > 0. Q 0 = 2 k 1 i=1 j=1 a i (a k a j ). Q n = 4Q n 1 6n, pro n > 0. j=1 j 2 k.

7 27. A, e²te následující rekurenci 28. A, e²te rekurenci Q 0 = 2 Q n = 4Q n 1 6 cos(nπ), pro n > 0. a 2 i (a k a j ) 2. i=1 j=1 Q 0 = A, e²te následující rekurenci B, Dokaºte Cauchyho nerovnost Q n = 3Q n 1 + 5n 2 + 7n + 11, pro n > 0. a k a j (1 2[j < k]). j=1 Q 0 = 2, Q 1 = 3, Q n = Q n 2 + 5n + 8, pro n > 1. ( n a 2 k ) ( n b 2 k ) ( n ) 2 a k b k. Návod: pokuste se vyjád it rozdíl levé a pravé strany jako výraz, který je vºdy nezáporný. 30. A, e²te rekurenci Q 0 = 3 Q n = 6Q n 1 9n 2, pro n > 0. B, Vypo t te pomocí harmonických ísel sumu 2k + 1 k(k + 1). Návod: 1/k(k + 1) = 1/k 1/(k + 1). 31. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n sin((2n + 1) π ), pro n > 1. 2 B, Vypo t te pomocí harmonických ísel sumu k 4k 2 1. Návod: 4k/(4k 2 1) = 1/(2k 1) + 1/(2k + 1).

8 32. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n 2, pro n > 1. B, e²te sumu 33. A, e²te rekurenci S n = kx k, x R. 0 k n B, e²te metodou suma ního faktoru Q 0 = 7, Q 1 = 77, Q n = 2Q n 1 Q n 2 + 2, pro n > 1. T 0 = 3 3T n = nt n 1 3n!, pro n > A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): B, Vypo t te perturba ní metodou: 35. A, e²te rekurenci Q 0 = 3, Q 1 = 3, Q n = Q n 2 + (n + sin(nπ)) 2, pro n > 1. k 2 2 k. Q 0 = 2 Q n = 2Q n 1 2n 2 + 2n + 2, pro n > 0. B, e²te perturba ní metodou (namísto kh k dosa te k 2 H k ): 36. A, e²te rekurenci kh k. Q 0 = 7 Q n = 2Q n n, pro n > 0. ) n k ) k. ( 1 3 ( 1 5

9 37. A, e²te následující rekurenci (p edpokládejte Q n 0 pro n 0): Q 0 = α, Q 1 = β, Q n = (1 + Q n 1 )/Q n 2, pro n > A, e²te rekurenci ( 2) k ( 3) n k. Q 0 = 5, Q 1 = 9, Q n = Q n 2 + 5n + 3, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k k 2 1. Nápov da: 2k/(k 2 1) = 1/(k 1) + 1/(k + 1). 39. A, e²te rekurenci Q 0 = 2, Q 1 = 0, Q n = Q n 2 + n 2, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k 2 k 2 1. Nápov da: 2k/(k 2 1) = 1/(k 1) + 1/(k + 1). 40. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 7 Q n = 7Q n sin(nπ), pro n > j=1 k>j tak, aby po et s ítání byl lineární funkcí n. 41. A, e²te rekurenci Q 0 = 1 (c j d k c k d j ) 2 Q n = 11Q n 1 + n 1, pro n > 0. ( 1) k (n k) 2.

10 42. A, e²te rekurenci Q 0 = 2 0 Q n = Q n n+1 + n + 1, pro n > A, e²te rekurenci ( 3) n+k k. Q 0 = 13 Q n = 3Q n 1 + 3n 2, pro n > 0. ( ( 1) k k 2 (n k) ). 44. A, e²te rekurenci B, Vypo t te sumu Q 0 = π Q n = 2πQ n 1 + πn 2 + π 2, pro n > 0. k 2 (1 2[k < 0]). k= n 45. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 1, Q 1 = 1, Q n = Q n cos((n 1)π), pro n > 1. B, Vyjád ete následující sumu pomocí H 2n a H n : 46. A, e²te rekurenci 1 2k 1. Q 0 = log 3, Q 1 = 3 log 3, Q n = Q n 1 Q n 2 + log 3, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu 1 2k 2 + 3k 2. Nápov da: 2/(2k 2 + 3k 2) = 1/(k + 2) 2/(2k 1).

11 47. A, e²te rekurenci Q 0 = 1 2, Q 1 = Q 2 0, Q n = Q n 1 Q n 2 Q 1, pro n > A, e²te rekurenci n+1 j=2 a k a j [j k + 1]. g(1) = 3, g(2n + j) = 3g(n) + 3n + 3g(1), pro j = 0, 1 a n > 0. Nápov da: e²te nejprve rekurenci bez lenu 3n, pak ji zobecn te a pouºijte repertoárovou metodu. (a k + a j ) 2. j=1

Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab.

Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Domácí úkol 2 Obecné pokyny Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Návod pro výpo et v Matlabu Jestliºe X Bi(n, p), pak

Více

e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody

e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody e²ení systém lineárních rovnic pomocí s ítací, dosazovací a srovnávací metody V praxi se asto setkávame s p ípady, kdy je pot eba e²it více rovnic, takzvaný systém rovnic, obvykle s více jak jednou neznámou.

Více

2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4

2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4 Pr b h funkce V této jednotce si ukáºeme jak postupovat p i vy²et ování pr b hu funkce. P edpokládáme znalost po ítání derivací a limit, které jsou dob e popsány v p edchozích letácích tohoto bloku. P

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe

Více

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost

1. (18 bod ) Náhodná veli ina X je po et rub p i 400 nezávislých hodech mincí. a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost (8 bod ) Náhodná veli ina X je po et rub p i nezávislých hodech mincí a) Pomocí ƒeby²evovy nerovnosti odhadn te pravd podobnost P ( X EX < ) (9 bod ) b) Formulujte centrální limitní v tu a pomocí ní vypo

Více

I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY

I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY I. VRSTEVNICE FUNKCE, OTEV ENÉ A UZAV ENÉ MNOšINY 1. Ur ete a nakreslete deni ní obor a vrstevnice funkcí: a) f(, y) = + y b) f(, y) = y c) f(, y) = 2 + y 2 d) f(, y) = 2 y 2 e) f(, y) = y f) f(, y) =

Více

P íklad 1 (Náhodná veli ina)

P íklad 1 (Náhodná veli ina) P íklad 1 (Náhodná veli ina) Uvaºujeme experiment: házení mincí. Výsledkem pokusu je rub nebo líc, ºe padne hrana neuvaºujeme. Pokud hovo íme o náhodné veli in, musíme p epsat výsledky pokusu do mnoºiny

Více

Rovnice a nerovnice. Posloupnosti.

Rovnice a nerovnice. Posloupnosti. .. Veronika Sobotíková katedra matematiky, FEL ƒvut v Praze, http://math.feld.cvut.cz/ 30. srpna 2018.. 1/75 (v reálném oboru) Rovnicí resp. nerovnicí v reálném oboru rozumíme zápis L(x) P(x), kde zna

Více

Binární operace. Úvod. Pomocný text

Binární operace. Úvod. Pomocný text Pomocný text Binární operace Úvod Milí e²itelé, binární operace je pom rn abstraktní téma, a tak bude ob as pot eba odprostit se od konkrétních p íklad a podívat se na v c s ur itým nadhledem. Nicmén e²ení

Více

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné

Více

Vnit ní síly ve 2D - p íklad 2

Vnit ní síly ve 2D - p íklad 2 Vnit ní síly ve D - p íkld Orázek 1: Zt ºoví shém. Úkol: Ur ete nlytiké pr hy vnit níh sil n konstruki vykreslete je. e²ení: Pro výpo et rekí je vhodné si spojité ztíºení nhrdit odpovídjíím náhrdním emenem.

Více

Post ehy a materiály k výuce celku Funkce

Post ehy a materiály k výuce celku Funkce Post ehy a materiály k výuce celku Funkce 1) Grafy funkcí Je p edloºeno mnoºství výukových materiál v programu Graph - tvary graf základních i posunutých funkcí, jejich vzájemné polohy, Precizní zápis

Více

Zkou²ková písemná práce. 1 z p edm tu 01MAB4

Zkou²ková písemná práce. 1 z p edm tu 01MAB4 Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVU v Praze Zkou²ková písemná práce. 1 z p edm tu 1MAB4 25/5/216, 9: 11: ➊ (11 bod ) Vypo ítejte abstraktní plo²nou míru mnoºiny M = (x, y) R 2

Více

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016 e²ení testu Mechania a ontinuu NAFY00 8. listopadu 06 P ílad Zadání: Eletron o ineticé energii E se srazí s valen ní eletrone argonu a ionizuje jej. P i ionizaci se ást energie nalétávajícího eletronu

Více

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0 Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.

Více

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a. TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její

Více

Práce s dokumentem. 1. Úvod do konstruování. 2. Statistické zpracování dat. 4. Analýza zatíºení a nap tí. Aktuální íslo revize: REV_40

Práce s dokumentem. 1. Úvod do konstruování. 2. Statistické zpracování dat. 4. Analýza zatíºení a nap tí. Aktuální íslo revize: REV_40 Aktuální íslo revize: REV_0 Práce s dokumentem Jednotlivé opravy (revize) jsou v dokumentu Errata ozna eny popiskem REV_a íslo revize ƒíslování revizí je provedeno chronologicky asov, tak jak p icházely

Více

Integrování jako opak derivování

Integrování jako opak derivování Integrování jako opak derivování V tomto dokumentu budete seznámeni s derivováním b ºných funkcí a budete mít moºnost vyzkou²et mnoho zp sob derivace. Jedním z nich je proces derivování v opa ném po adí.

Více

4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem

4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem 4 Určete definiční obor elementární funkce g jestliže g je definována předpisem a) g ( x) = x 16 + ln ( x) x 16 ( x + 4 )( x 4) Řešíme-li kvadratickou nerovnice pomocí grafu kvadratické funkce tj paraboly

Více

3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE

3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE 3.3. EXPONENCIÁLNÍ A LOGARITMICKÁ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak je definována eponenciální a logaritmická rovnice a nerovnice a jaká je základní strategie jejich řešení. Klíčová slova

Více

7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic

7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic 7 Algebrické nelgebrické rovnice nerovnice v C. Numerické (typy lgebrických rovnic zákldní metody jejich e²ení lineární, kvdrtické, reciproké rovnice rovnice vy²²ích ád, rovnice nerovnice nelgebrické s

Více

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) =

1. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) x cotg x 1. c) lim. g) lim e x 1. cos(x) = I. L'HOSPITALOVO PRAVIDLO A TAYLOR V POLYNOM. Spo t te limity (m ºete pouºívat l'hospitalovo pravidlo) a) lim tg sin ( + ) / e e) lim a a i) lim a a, a > P ipome me si: 3 tg 4 2 tg b) lim 3 sin 4 2 sin

Více

T i hlavní v ty pravd podobnosti

T i hlavní v ty pravd podobnosti T i hlavní v ty pravd podobnosti 15. kv tna 2015 První p íklad P edstavme si, ºe máme atomy typu A, které se samovolným radioaktivním rozpadem rozpadají na atomy typu B. Pr m rná doba rozpadu je 3 hodiny.

Více

Vektory. Vektorové veli iny

Vektory. Vektorové veli iny Vektor je veli ina, která má jak velikost tak i sm r. Ob tyto vlastnosti musí být uvedeny, aby byl vektor stanoven úpln. V této ásti je návod, jak vektory zapsat, jak je s ítat a od ítat a jak je pouºívat

Více

Dolní odhad síly pro ztrátu stability obecného prutu

Dolní odhad síly pro ztrátu stability obecného prutu ƒeské vysoké u ení technické v Praze 9. února 216 Vedoucí seminární práce: doc. RNDr. Ivana Pultarová, Ph.D. prof. Ing. Milan Jirásek, DrSc. Osnova 1 2 Cíl práce Cíl práce Nalézt velikost síly, která zp

Více

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A st eda 19. listopadu 2015, 11:2013:20 ➊ (3 body) Pro diferenciální operátor ˆL je mnoºina W q denována p edpisem W q = { y(x) Dom( ˆL) : ˆL(y(x))

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

1 Spo jité náhodné veli iny

1 Spo jité náhodné veli iny Spo jité náhodné veli in. Základní pojm a e²ené p íklad Hustota pravd podobnosti U spojité náhodné veli in se pravd podobnost, ºe náhodná veli ina X padne do ur itého intervalu (a, b), po ítá jako P (X

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Reálná ísla a posloupnosti Jan Malý

Reálná ísla a posloupnosti Jan Malý Reálná ísla a posloupnosti Jan Malý Obsah 1. Reálná ísla 1 2. Posloupnosti 2 3. Hlub²í v ty o itách 4 1. Reálná ísla 1.1. Úmluva (T leso). Pod pojmem t leso budeme v tomto textu rozum t pouze komutativní

Více

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce. b) D =N a H je množina všech kladných celých čísel, Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (

Více

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot

Více

Skalární sou in. Úvod. Denice skalárního sou inu

Skalární sou in. Úvod. Denice skalárního sou inu Skalární sou in Jedním ze zp sob, jak m ºeme dva vektory kombinovat, je skalární sou in. Výsledkem skalárního sou inu dvou vektor, jak jiº název napovídá, je skalár. V tomto letáku se nau íte, jak vypo

Více

Zkou²ková písemná práce. 1 z p edm tu 01MAB4

Zkou²ková písemná práce. 1 z p edm tu 01MAB4 Zkou²ková písemná práce. 1 z p edm tu 1MAB4 29/5/218, 9: 11: ➊ (8 bod ) Pro parametry a > a b R vypo t te ur itý integrál e ax2 cos(bx2 ) 1 x Uºijte v tu o derivaci integrálu s parametrem. Spln ní p edpokladu

Více

Obsah. Pouºité zna ení 1

Obsah. Pouºité zna ení 1 Obsah Pouºité zna ení 1 1 Úvod 3 1.1 Opera ní výzkum a jeho disciplíny.......................... 3 1.2 Úlohy matematického programování......................... 3 1.3 Standardní maximaliza ní úloha lineárního

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

1 1 3 ; = [ 1;2]

1 1 3 ; = [ 1;2] Soustavy lineárních rovnic - Příklady k procvičení ) + y= y= [ ; ] ) + y= = ) y= y 0 y ; + = [ ;] ) y= + y= [ ;] ) + y= = ; ) y= = y ) y = y= 8) y= + y= 9) = 8 y 0) y=, y= ) a+ = a b ) = y 9 ) u ( ) v

Více

Měření momentu setrvačnosti z doby kmitu

Měření momentu setrvačnosti z doby kmitu Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných

Více

kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost

kuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost . cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot

Více

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 28. listopadu 2017, 9:2011:20 ➊ (8 bod ) Lze nebo nelze k rozhodnutí o stejnom rné konvergence ady ( 1) n+1 x ln(n) n 6 + n 2 x 4 na intervalu

Více

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e)

Logaritmus, logaritmická funkce, log. Rovnice a nerovnice. 3 d) je roven číslu: c) -1 d) 0 e) 3 c) je roven číslu: b) -1 c) 0 d) 1 e) Logaritmus, logaritmická funkce, log. Rovnice a nerovnice ) Výraz log log +log není správná 0 - žádná z předchozích odpovědí ) Číslo log 8 6 je rovno číslu: ) Výraz log log +log - 0 ) Číslo log 6 6 je

Více

Co je to tensor... Vektorový prostor

Co je to tensor... Vektorový prostor Vektorový prostor Co je to tensor... Tato ást je tu jen pro p ipomenutí, pokud nevíte co je to vektorový prostor, tak tení tohoto textu ukon ete na konci této v ty, neb zbytek textu by pro Vás nebyl ni

Více

Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu.

Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu. Jméno: P íjmení: Datum: 7. ledna 28 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu. Rotující nádoba Otev ená válcová nádoba napln ná do poloviny vý²ky

Více

ť Ú Á É Á Ů Š Č Š Š č ř č č ř ÚČ Ě É č č ř úč č ř ů č ř úč č č úč úč ú ž ů č č ň č č č ú ó ů č ž ř č ř ž ž č č ú ů ř č š ů ř ň řú ř ň ň ú ř č č š Ů ů č řš ř řš Úč č É úú úč ú ú ů ž úč ů ú ů Č ÚČ Ě É É

Více

Á ŘÁ É É Č ž Č ř ř ř Č ř ř Š ř řů ž š ú ů ý ř ř š ř ř ř ý ů řů ř ř Č Ů ř š ř ý ú ů ů ř ř ř ř ř ý ř ř ř ř ú řů ř ů ž Ž ř ř ř řů ř ř ř ř ř ž ř ř ř ř ž ř š ý š ř řů ř ž ř ř ř ž ř ř ž ž ř ž ř ů ř ý ů řů ř

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

Cvi ení 7. Docházka a testík - 15 min. Distfun 10 min. Úloha 1

Cvi ení 7. Docházka a testík - 15 min. Distfun 10 min. Úloha 1 Cvi ení 7 Úkol: generování dat dle rozd lení, vykreslení rozd lení psti, odhad rozd lení dle dat, bodový odhad parametr, centrální limitní v ta, balí ek Distfun, normalizace Docházka a testík - 15 min.

Více

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - základní úrove obtíºnosti MAGZD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha.

Více

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web: Pravd podobnost a statistika - cvi ení Simona Domesová simona.domesova@vsb.cz místnost: RA310 (budova CPIT) web: http://homel.vsb.cz/~dom0015 Cíle p edm tu vyhodnocování dat pomocí statistických metod

Více

š Č ú ř úó ď ů ř ř ř ů ů š ů ů ů řš ř ů ř ů ř ó ř ú ů ů ů ú ů ů ů ů ř ů ů ú ú ř ů ř ů ř ň ř ů ř ř ř ř ň ř ů ř ř ř ř ř ů ř ú ř ř ř ř ř ř ř ř ú ř Ů ř ř Ó š ů š úó Č ó ř ú ú ř ů ř ó ň ú ů ú ř ř úó ů ř ů ó

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady

- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady Vzorové řešení domácího úkolu na 6. 1. 1. Integrály 1 1 x2 dx, ex2 dx spočítejte přibližně následují metodou - funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte.

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

p írodní zdroje energie a surovin odpady globální problémy ochrana p írody a krajiny nástroje spole nosti na ochranu životního

p írodní zdroje energie a surovin odpady globální problémy ochrana p írody a krajiny nástroje spole nosti na ochranu životního charakterizuje p sobení životního prost edí na lov ka a jeho zdraví; charakterizuje p írodní zdroje surovin a energie z hlediska jejich obnovitelnosti, posoudí vliv jejich využívání na prost edí; popíše

Více

se nazývá charakter grupy G. Dále budeme uvaºovat pouze kone né grupy G. Charaktery tvo í také grupu, s násobením denovaným

se nazývá charakter grupy G. Dále budeme uvaºovat pouze kone né grupy G. Charaktery tvo í také grupu, s násobením denovaným Charaktery a Diskrétní Fourierova transforace Nejd leºit j²í kvantový algorite je Diskrétní Fourierova transforace (DFT) D vody jsou dva: DFT je pro kvantové po íta e exponenciáln rychlej²í neº pro po

Více

Definiční obor funkce

Definiční obor funkce Vlastnosti funkcí Definiční obor funkce Konstantní funkce D f = R Lineární funkce D f = R Kvadratická funkce D f = R Exponenciální funkce D f = R Logaritmická funkce D f = 0, + Nepřímá úměrnost D f = R

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Spojka RPX. z tabulky 1 ní e, vyberte koeficient provozu, který je vhodný pro pou ití

Spojka RPX. z tabulky 1 ní e, vyberte koeficient provozu, který je vhodný pro pou ití pojka RPX z tabulky 1 ní e, vyberte koeficient provozu, který je vhodný pro pou ití Vynásobte spot ebovaný p íkon ízeného stroje, v kw, koeficientem provozu, z kroku 1) k získání plánovaného výkonu. Pokud

Více

na za átku se denuje náhodná veli ina

na za átku se denuje náhodná veli ina P íklad 1 Generujeme data z náhodné veli iny s normálním rozd lením se st ední hodnotou µ = 1 a rozptylem =. Rozptyl povaºujeme za známý, ale z dat chceme odhadnout st ední hodnotu. P íklad se e²í v následujícím

Více

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39

Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39 Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá

Více

e²ení 4. série Binární operace

e²ení 4. série Binární operace e²ení 4. série Binární operace Úloha 4.1. V Hloup tínské jaderné elektrárn do²lo jednoho dne k úniku radioaktivního zá ení. Obyvatelé byli pro tento p ípad kvalitn vy²koleni v obran proti záke ným ásticím,

Více

Vektor náhodných veli in - práce s více prom nnými

Vektor náhodných veli in - práce s více prom nnými Vektor náhodných veli in - práce s více prom nnými 12. kv tna 2015 N kdy k popisu n jaké situace pot ebujeme více neº jednu náhodnou veli inu. Nap. v k, hmotnost, vý²ku. Mezi t mito veli inami mohou být

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

Vzorové e²ení 4. série

Vzorové e²ení 4. série Vzorové e²ení 4. série Úloha 4.1 Kouma koupil Œoumovi k Vánoc m Rubikovu kostku. Strana kostky m í 10 cm. Kdyº mu ji v²ak cht l zabalit do váno ního papíru, zjistil, ºe má k dispozici pouze tvercový papír

Více

Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A

Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A Zápo tová písemná práce. 1 z p edm tu 01MAB4 varianta A 18. dubna 2016, 11:2013:20 ➊ (1 bod) Nalezn te kritický bod soustavy generujících rovnic e x 6y 6z 2 + 12z = 13, 2e 2x 6y z 3 = 6. Uºijte faktu,

Více

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok.

DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok. DMA Přednáška Rekurentní rovnice Rekurentní rovnice či rekurzivní rovnice pro posloupnost {a n } je vztah a n+1 = G(a n, a n 1,..., a n m ), n n 0 + m, kde G je nějaká funkce m + 1 proměnných. Jejím řešením

Více

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem

Více

4. Lineární (ne)rovnice s racionalitou

4. Lineární (ne)rovnice s racionalitou @04 4. Lineární (ne)rovnice s racionalitou rovnice Když se řekne s racionalitou, znamená to, že zadaná rovnice obsahuje nějaký zlomek a neznámá je ve jmenovateli zlomku. Na co si dát pozor? u rovnic je

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Exponenciální a logaritmická funkce

Exponenciální a logaritmická funkce Variace 1 Exponenciální a logaritmická funkce Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Exponenciální

Více

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2 Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t

Více

tatistické rozdelenia

tatistické rozdelenia FYZ-230/00 Algoritmy vedeckotechnických výpo tov tatistické rozdelenia 1 Obsah Úvod, vlastnosti rozdelení pravdepodobnosti Rovnomerné rozdelenie Trojuholníkové rozdelenie Binomické rozdelenie Poissonovo

Více

QR, b = QS, c = QP. Dokaºte ºe vzdálenost bodu P od roviny spl uje. a (b c) d =

QR, b = QS, c = QP. Dokaºte ºe vzdálenost bodu P od roviny spl uje. a (b c) d = . cvi ení -Opakování geometrie IR n, p íklady () Najd te velikost úhlu mezi hlavní diagonálou krychle a diagonálou jedné ze stran, která s ní má spole ný vrchol. (2) Dokaºte ºe x y = y x. (3) Dokaºte ºe

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.0/1.5.00/34.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

l. 1 Úvodní ustanovení

l. 1 Úvodní ustanovení OBEC V EMYSLICE Obecn závazná vyhlá ka. 1 / 2015 o stanovení systému shroma ování, sb ru, p epravy, t íd ní, vyu ívání a odstra ování komunálních odpad a nakládání se stavebním odpadem na území obce V

Více

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A

Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A Zápo tová písemná práce. 1 z p edm tu 01MAB3 varianta A úterý 6. prosince 2016, 13:2015:20 ➊ (8 bod ) Vy²et ete stejnom rnou konvergenci ady na mnoºin R +. n=2 x n 1 1 4n 2 + x 2 ln 2 (n) ➋ (5 bod ) Detailn

Více

TROJFÁZOVÝ OBVOD SE SPOT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU

TROJFÁZOVÝ OBVOD SE SPOT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU TROJFÁZOVÝ OBVOD E POT EBI EM ZAPOJENÝM DO HV ZDY A DO TROJÚHELNÍKU Návod do m ení Ing. Vít zslav týskala, Ing. Václav Kolá Únor 2000 poslední úprava leden 2014 1 M ení v trojázových obvodech Cíl m ení:

Více

č ň ň Ž Í č Í Ů Ó č Š Č č ň Š Ť Ó ň ň Ó Ť ť ň ď ň ň Ť Ť Ú č č č č ň Ť ň ň č ň ň č č ň č č č ň Ý ť ň č č ň ť Ž Č č ň ň ť Č ň ť č Ž č ň ň ň Ž Ť ň Š č č č Í č Ž ň ň ď ň ť č ť č č ň Ž Č ť Ó č ň ň ň Í č Ť č

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. VZPĚR VZPĚR

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. VZPĚR VZPĚR Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. ZÁŘÍ 2013 Název zpracovaného celku: VZPĚR VZPĚR U všech předcházejících druhů namáhání byla funkce součásti ohroţena překročením

Více

Seminá e. Ing. Michal Valenta PhD. Databázové systémy BI-DBS ZS 2010/11, sem. 1-13

Seminá e. Ing. Michal Valenta PhD. Databázové systémy BI-DBS ZS 2010/11, sem. 1-13 Seminá e Ing. Michal Valenta PhD. Katedra softwarového inºenýrství Fakulta informa ních technologií ƒeské vysoké u ení technické v Praze c Michal Valenta, 2010 Databázové systémy BI-DBS ZS 2010/11, sem.

Více

Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g

Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně

Více

z nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další).

z nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další). 0. Tři věty o prvočíslech Martin Mareš Úvodem Při analýze algoritmů se často využívají různá tvrzení o prvočíslech. Většina z nich byla poprvé dokázána v 9. století velikány analytické teorie čísel (Pafnutij

Více

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A

pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy

Více

Matematická logika cvi ení 47

Matematická logika cvi ení 47 Matematická logika cvi ení 47 Libor B hounek www.cs.cas.cz/behounek/teaching/malog12 LS 2012/13, P F OU, 4.25. 3. 2013 Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky

Více

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.

Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo. Logaritmus Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým umocníme základ a, abychom dostali číslo. Platí tedy: logax = y a y = x ( Dekadický logaritmus základ 10 označení

Více

11.12.2013, Brno ipravil: Tomáš Vít z Mechanika tekutin

11.12.2013, Brno ipravil: Tomáš Vít z Mechanika tekutin 11.12.2013, Brno ipravil: Tomáš Vít z Mechanika tekutin erpadla strana 2 erpadla - za ízení pro dopravu tekutin Doprava tekutin m že být uskute ována pomocí erpadel, - ventilátor, - kompresor. Tato za

Více

MECHANIKA TUHÉ TĚLESO

MECHANIKA TUHÉ TĚLESO Projekt Efektivní Učení Reformou oblastí gymnaziálního vzělávání je spolufinancován Evropským sociálním fonem a státním rozpočtem České republiky. Implementace ŠVP MECHANIKA TUHÉ TĚLESO Učivo - Tuhé těleso

Více

Matice a e²ení soustav lineárních rovnic

Matice a e²ení soustav lineárních rovnic Úvod Tato sbírka úloh z lineární algebry je ur ena student m Fakulty elektrotechniky a informatiky V B - Technické univerzity Ostrava T mto student m je p edev²ím ur eno skriptum profesora Zde ka Dostála

Více

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha

Více

Konceptuální modelování

Konceptuální modelování Konceptuální modelování Ing. Michal Valenta PhD. Katedra softwarového inºenýrství Fakulta informa ních technologií ƒeské vysoké u ení technické v Praze c Michal Valenta, 2010 Databázové systémy BI-DBS

Více

1 P ílohy. 1.1 Dopln ní na tverec

1 P ílohy. 1.1 Dopln ní na tverec 1 P ílohy 1.1 Dopln ní na tverec Pouºívá se pro minimalizaci kvadratického výrazu nebo pro integraci v konvoluci dvou normálních rozd lení (tady má význam rozkladu normální sdruºené hp na podmín nou a

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více