B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: (a j b k a k b j ) 2

Rozměr: px
Začít zobrazení ze stránky:

Download "B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: (a j b k a k b j ) 2"

Transkript

1 1. A, e²te rekurenci Q 0 = 2 Q n = 2Q n 1 + (n + 2) 2, pro n > 0. B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: Q 0 = 1 Q n = nq n 1 + n!, pro n > A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 2 Q n = 2Q n cos(nπ), pro n > 0. tak, aby po et s ítání byl úm rný n. 1 j<k n (a j b k a k b j ) 2 3. A, e²te rekurenci B, e²te metodou suma ního faktoru Q 0 = π, Q 1 = 2π, Q n = 2Q n 1 Q n 2 + π, pro n > 1. T 0 = 5 2T n = nt n 1 + 3n!, pro n > 0.

2 4. A, e²te rekurenci Q 0 = π Q n = 6Q n 1 πn 2, pro n > 0. B, Dokaºte, ºe platí n 1 n 1 (a k+1 a k )b k = a n b n a 0 b 0 (b k+1 b k )a k A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = π, Q 1 = π 2, Q n = Q n 2 + (n + π) 2, pro n > 1. B, Vypo t te následující sumu metodou z kapitoly 2.5.5: k 2 2 k. 6. A, e²te rekurenci B, e²te sumu Q 0 = 0, Q 1 = 0, Q n = 2Q n 1 Q n 2 + 2n, pro n > 1. H k perturba ní metodou. Návod: Zkuste namísto H k dosadit kh k. 7. A, e²te rekurenci Q 0 = 5 Q n = 5Q n 1 + 5n + 5, pro n > 0. ( 1) n k k 2.

3 8. A, e²te rekurenci Q 0 = 0 Q n = Q n n + n, pro n > A, e²te rekurenci ( 2) k k 2. Q 0 = 5 Q n = 5Q n n 2, pro n > 0. ( ( 1) k k + k 2). 10. A, e²te rekurenci B, Vypo t te sumu Q 0 = 0 Q n = πq n 1 + πn 2, pro n > 0. k= n k([k > 0] [k < 0]). 11. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 1 Q n = 3Q n cos(nπ) + 9 sin(nπ), pro n > 0. B, Vyjád ete následující sumu pomocí j a n : 12. A, e²te rekurenci B, Dokaºte Lagrangeovu rovnici: Q 0 = 3 [1 j k n] k Q n = 3Q n 1 + 3n 3, pro n > 0. ( n ) ( (a j b k a k b j ) 2 n ) ( = a 2 n ) k b 2 2 k a k b k. 1 j<k n

4 13. A, e²te rekurenci Q 0 = 1, Q 1 = 3, Q n = 2Q n 1 Q n 2 + 3n + 3, pro n > 1. ) k ) k+1. ( 1 3 ( A, e²te rekurenci Q 0 = 4, Q 1 = 2, Q n = Q n 1 Q n 2 + 3, pro n > A, e²te rekurenci ( 1) n k 2 k. Q 0 = 2, Q 1 = 2, Q n = Q n 2 + (n + 1) 2, pro n > 1. 2 ( 1) k. k Nápov da: rozloºte na sumy pro lichá a sudá k. Uvaºte, ºe 1 k<2n k lich 1 k = H 2n 1 2 H n. 16. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n cos(nπ), pro n > 1. B, Dokaºte, ºe platí 17. A, e²te rekurenci 1 k<2n k lich 1 k = H 2n 1 2 H n. Q 0 = π, Q 1 = π, Q n = Q n 1 Q n 2 7n, pro n > 1.

5 B, Plo²né momenty p i po íta ovém rozpoznávání obrazu o rozm ru n n bod s jasovou funkcí f(i, j), 1 i, j n jsou denovány jako m rs = i r j s f(i, j). i=1 j=1 Centrální momenty vztaºené k t ºi²ti i t, j t jsou denovány jako kde µ rs = (i i t ) r (j j t ) s f(i, j), i=1 j=1 i t = m 10 m 00, j t = m 01 m 00. Dokaºte, ºe µ 01 = µ 10 = 0 pro libovolné n a f(i, j). 18. A, e²te rekurenci Q 0 = 2, Q 1 = 2 2, Q n = Q n 1 Q n 2 + 2, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k=2 1 k 2 1. Nápov da: 2/(k 2 1) = 1/(k 1) 1/(k + 1). 19. A, e²te rekurenci Q 0 = e, Q 1 = 2e, Q n = Q n 1 Q n 2 e, pro n > 1. Poznámka: íslo e je základ p irozeného logaritmu. 20. A, e²te rekurenci a k a j [j k]. j=1 g(1) = 1/3, g(2n + j) = 3g(n) + 33n + 333, pro j = 0, 1 a n > 0. Nápov da: e²te nejprve rekurenci bez lenu 33n, pak ji zobecn te a pouºijte repertoárovou metodu. (a k a j ) 2. j=1

6 21. A, e²te rekurenci B, Dokaºte, ºe platí 22. A, e²te rekurenci B, Dokaºte, ºe platí g(1) = 1, g(2n + j) = 3g(n) + sin(jπ/2), pro j = 0, 1 a n > 0. ( n )( (a k + b j ) 2 n 4 a k b j ). j=1 j=1 Q 0 = 7, Q 1 = 7, Q n = Q n 1 Q n 2 7n, pro n > 1. ( n ) n a 2 2 j a j. j=1 j=1 23. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): B, Dokaºte, ºe platí 24. A, e²te rekurenci Q 0 = 13, Q 1 = 21, Q n = Q n 2 + n 2, pro n > 1. ( n )( n (a 2 k + b 2 n k) 2 a k b j ). j=1 g(1) = 1/3, g(2n + j) = 3g(n) + cos(jπ), pro j = 0, 1 a n > 0. B, e²te perturba ní metodou sumu ( 1) n k k. 25. A, e²te následující rekurenci (vyuºijte obecné e²ení z p edná²ek): 26. A, e²te rekurenci B, Vypo t te sumu g(1) = 1/3, g(2n + j) = 3g(n) + 3, pro j = 0, 1 a n > 0. Q 0 = 2 k 1 i=1 j=1 a i (a k a j ). Q n = 4Q n 1 6n, pro n > 0. j=1 j 2 k.

7 27. A, e²te následující rekurenci 28. A, e²te rekurenci Q 0 = 2 Q n = 4Q n 1 6 cos(nπ), pro n > 0. a 2 i (a k a j ) 2. i=1 j=1 Q 0 = A, e²te následující rekurenci B, Dokaºte Cauchyho nerovnost Q n = 3Q n 1 + 5n 2 + 7n + 11, pro n > 0. a k a j (1 2[j < k]). j=1 Q 0 = 2, Q 1 = 3, Q n = Q n 2 + 5n + 8, pro n > 1. ( n a 2 k ) ( n b 2 k ) ( n ) 2 a k b k. Návod: pokuste se vyjád it rozdíl levé a pravé strany jako výraz, který je vºdy nezáporný. 30. A, e²te rekurenci Q 0 = 3 Q n = 6Q n 1 9n 2, pro n > 0. B, Vypo t te pomocí harmonických ísel sumu 2k + 1 k(k + 1). Návod: 1/k(k + 1) = 1/k 1/(k + 1). 31. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n sin((2n + 1) π ), pro n > 1. 2 B, Vypo t te pomocí harmonických ísel sumu k 4k 2 1. Návod: 4k/(4k 2 1) = 1/(2k 1) + 1/(2k + 1).

8 32. A, e²te následující rekurenci (uvaºujte zvlá² sudá a lichá n): Q 0 = 2, Q 1 = 3, Q n = Q n 2 + n 2, pro n > 1. B, e²te sumu 33. A, e²te rekurenci S n = kx k, x R. 0 k n B, e²te metodou suma ního faktoru Q 0 = 7, Q 1 = 77, Q n = 2Q n 1 Q n 2 + 2, pro n > 1. T 0 = 3 3T n = nt n 1 3n!, pro n > A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): B, Vypo t te perturba ní metodou: 35. A, e²te rekurenci Q 0 = 3, Q 1 = 3, Q n = Q n 2 + (n + sin(nπ)) 2, pro n > 1. k 2 2 k. Q 0 = 2 Q n = 2Q n 1 2n 2 + 2n + 2, pro n > 0. B, e²te perturba ní metodou (namísto kh k dosa te k 2 H k ): 36. A, e²te rekurenci kh k. Q 0 = 7 Q n = 2Q n n, pro n > 0. ) n k ) k. ( 1 3 ( 1 5

9 37. A, e²te následující rekurenci (p edpokládejte Q n 0 pro n 0): Q 0 = α, Q 1 = β, Q n = (1 + Q n 1 )/Q n 2, pro n > A, e²te rekurenci ( 2) k ( 3) n k. Q 0 = 5, Q 1 = 9, Q n = Q n 2 + 5n + 3, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k k 2 1. Nápov da: 2k/(k 2 1) = 1/(k 1) + 1/(k + 1). 39. A, e²te rekurenci Q 0 = 2, Q 1 = 0, Q n = Q n 2 + n 2, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu k 2 k 2 1. Nápov da: 2k/(k 2 1) = 1/(k 1) + 1/(k + 1). 40. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 7 Q n = 7Q n sin(nπ), pro n > j=1 k>j tak, aby po et s ítání byl lineární funkcí n. 41. A, e²te rekurenci Q 0 = 1 (c j d k c k d j ) 2 Q n = 11Q n 1 + n 1, pro n > 0. ( 1) k (n k) 2.

10 42. A, e²te rekurenci Q 0 = 2 0 Q n = Q n n+1 + n + 1, pro n > A, e²te rekurenci ( 3) n+k k. Q 0 = 13 Q n = 3Q n 1 + 3n 2, pro n > 0. ( ( 1) k k 2 (n k) ). 44. A, e²te rekurenci B, Vypo t te sumu Q 0 = π Q n = 2πQ n 1 + πn 2 + π 2, pro n > 0. k 2 (1 2[k < 0]). k= n 45. A, e²te následující rekurenci (uvaºujte zvlá²t sudá a lichá n): Q 0 = 1, Q 1 = 1, Q n = Q n cos((n 1)π), pro n > 1. B, Vyjád ete následující sumu pomocí H 2n a H n : 46. A, e²te rekurenci 1 2k 1. Q 0 = log 3, Q 1 = 3 log 3, Q n = Q n 1 Q n 2 + log 3, pro n > 1. B, Vyjád ete pomocí harmonických ísel H n sumu 1 2k 2 + 3k 2. Nápov da: 2/(2k 2 + 3k 2) = 1/(k + 2) 2/(2k 1).

11 47. A, e²te rekurenci Q 0 = 1 2, Q 1 = Q 2 0, Q n = Q n 1 Q n 2 Q 1, pro n > A, e²te rekurenci n+1 j=2 a k a j [j k + 1]. g(1) = 3, g(2n + j) = 3g(n) + 3n + 3g(1), pro j = 0, 1 a n > 0. Nápov da: e²te nejprve rekurenci bez lenu 3n, pak ji zobecn te a pouºijte repertoárovou metodu. (a k + a j ) 2. j=1

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a. TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její

Více

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - základní úrove obtíºnosti MAGZD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha.

Více

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE

ST2 - Cvi ení 1 STATISTICKÁ INDUKCE ST2 - Cvi ení 1 STATISTICKÁ INDUKCE P íklad 1.1 Po et závad jistého typu elektrospot ebi e b hem záru ní doby má Poissonovo rozd lení s parametrem λ = 0,2. Jaká je pravd podobnost, ºe po prodeji 75 spot

Více

ť Ú Á É Á Ů Š Č Š Š č ř č č ř ÚČ Ě É č č ř úč č ř ů č ř úč č č úč úč ú ž ů č č ň č č č ú ó ů č ž ř č ř ž ž č č ú ů ř č š ů ř ň řú ř ň ň ú ř č č š Ů ů č řš ř řš Úč č É úú úč ú ú ů ž úč ů ú ů Č ÚČ Ě É É

Více

Á ŘÁ É É Č ž Č ř ř ř Č ř ř Š ř řů ž š ú ů ý ř ř š ř ř ř ý ů řů ř ř Č Ů ř š ř ý ú ů ů ř ř ř ř ř ý ř ř ř ř ú řů ř ů ž Ž ř ř ř řů ř ř ř ř ř ž ř ř ř ř ž ř š ý š ř řů ř ž ř ř ř ž ř ř ž ž ř ž ř ů ř ý ů řů ř

Více

š Č ú ř úó ď ů ř ř ř ů ů š ů ů ů řš ř ů ř ů ř ó ř ú ů ů ů ú ů ů ů ů ř ů ů ú ú ř ů ř ů ř ň ř ů ř ř ř ř ň ř ů ř ř ř ř ř ů ř ú ř ř ř ř ř ř ř ř ú ř Ů ř ř Ó š ů š úó Č ó ř ú ú ř ů ř ó ň ú ů ú ř ř úó ů ř ů ó

Více

z nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další).

z nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další). 0. Tři věty o prvočíslech Martin Mareš Úvodem Při analýze algoritmů se často využívají různá tvrzení o prvočíslech. Většina z nich byla poprvé dokázána v 9. století velikány analytické teorie čísel (Pafnutij

Více

Měření momentu setrvačnosti z doby kmitu

Měření momentu setrvačnosti z doby kmitu Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných

Více

Obsah. Pouºité zna ení 1

Obsah. Pouºité zna ení 1 Obsah Pouºité zna ení 1 1 Úvod 3 1.1 Opera ní výzkum a jeho disciplíny.......................... 3 1.2 Úlohy matematického programování......................... 3 1.3 Standardní maximaliza ní úloha lineárního

Více

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2

Po etní geometrie. Výpo et délky p epony: c 2 = a 2 + b 2 Výpo et délky odv sny: a 2 = c 2 b 2, b 2 = c 2 a 2 Po etní geometrie Pythagorova v ta Obsah tverce nad p eponou je roven sou tu obsah tverc nad ob ma odv snami. Výpo et délky p epony: c = a + b Výpo et délky odv sny: a = c b, b = c a P íklad 1: Vypo t

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

č ň ň Ž Í č Í Ů Ó č Š Č č ň Š Ť Ó ň ň Ó Ť ť ň ď ň ň Ť Ť Ú č č č č ň Ť ň ň č ň ň č č ň č č č ň Ý ť ň č č ň ť Ž Č č ň ň ť Č ň ť č Ž č ň ň ň Ž Ť ň Š č č č Í č Ž ň ň ď ň ť č ť č č ň Ž Č ť Ó č ň ň ň Í č Ť č

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Matematická logika cvi ení 47

Matematická logika cvi ení 47 Matematická logika cvi ení 47 Libor B hounek www.cs.cas.cz/behounek/teaching/malog12 LS 2012/13, P F OU, 4.25. 3. 2013 Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky

Více

Ě Á ý é č ř č ř č Š é š ý Č ý é ý é č č Ú ř č š ě ř ř č č ů ý é ů é ř ý é ř č é č č ř ž č ů ý é č ž é ěř ě č š ž ř ě ů ů č ě č č ě ř ž š ř é ú é š ý ř ě ě ú č ř ě ý ř č ž ě ě ňč č Ř ě ř Ř ě ř ř č Š ů ů

Více

11.12.2013, Brno ipravil: Tomáš Vít z Mechanika tekutin

11.12.2013, Brno ipravil: Tomáš Vít z Mechanika tekutin 11.12.2013, Brno ipravil: Tomáš Vít z Mechanika tekutin erpadla strana 2 erpadla - za ízení pro dopravu tekutin Doprava tekutin m že být uskute ována pomocí erpadel, - ventilátor, - kompresor. Tato za

Více

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Mgr. Věra Jeřábková, Mgr. Marie Chadimová Tematická oblast Matematika, Mnohoúhelníky, pokračování Ročník 2. Datum

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

ST1 - Úkol 1. [Minimáln 74 K /láhev]

ST1 - Úkol 1. [Minimáln 74 K /láhev] ST1 - Úkol 1 P íklad 1 Myslivecký spolek po ádá sv j tradi ní ples. Mimo jiné bylo nakoupeno lahvové víno podle rozpisu v Tabulce 1.1. P edpokládá se (podle historických zku²eností), ºe v²echny láhve budou

Více

č č ň Ž ť ň Ž č Í č Ž Í č Í ň č ň Ž č č Ď ň Í Š č ň č Ž ň ň ň ň ň č Ž č ť Ů č ň ň č Í č ň Ó č č ň č Í č č ň Ď ň č č ň ň Í č č č Ž Ž č Ž Ž ň Ž ň ň Ó č ň ň Ž č č č ň ď Ž ň Íč ť č Ů Ž č č č Í ň Í ň č č ň

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

( ) ( ) ( ) 2.9.24 Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919

( ) ( ) ( ) 2.9.24 Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919 .. Logaritmické nerovnice I Předpoklady: 08, 7, Pedagogická poznámka: Pokud mají studenti pracovat samostatně budou potřebovat na všechny příklady minimálně jeden a půl vyučovací hodiny. Pokud není čas,

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

Ó ú ú ž ř ů ř ž ú ž ř č š ř š Ž č Ž Ž ř ú Ž Ž ň š Ž Š Ž č Ž ň Ž č Ž Š ř řč Ú ř Š ř č č Ž Š č ÚŽ ř Ů Č š Ž Ž ň ř č ř š ř š ř ů Š ř ů ř Ž Ž ú Ó ž ď č š úž Š ů ď ř ř Š Š ď š Š ů ř Š Ž š Ž č ů Š Úč č ů č č

Více

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady

Státní maturita 2011 Maturitní testy a zadání jaro 2011 Matematika: didaktický test - základní úrove obtíºnosti MAMZD11C0T02 e²ené p íklady Státní maturita 0 Maturitní testy a zadání jaro 0 Matematika: didaktický test - základní úrove obtíºnosti MAMZDC0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 0. srpna 0 http://www.vachtova.cz/ Obsah Úloha

Více

l. 1 Úvodní ustanovení

l. 1 Úvodní ustanovení OBEC V EMYSLICE Obecn závazná vyhlá ka. 1 / 2015 o stanovení systému shroma ování, sb ru, p epravy, t íd ní, vyu ívání a odstra ování komunálních odpad a nakládání se stavebním odpadem na území obce V

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. VZPĚR VZPĚR

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. VZPĚR VZPĚR Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. ZÁŘÍ 2013 Název zpracovaného celku: VZPĚR VZPĚR U všech předcházejících druhů namáhání byla funkce součásti ohroţena překročením

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

10 je 0,1; nebo taky, že 256

10 je 0,1; nebo taky, že 256 LIMITY POSLOUPNOSTÍ N Á V O D Á V O D : - - Co to je Posloupnost je parta očíslovaných čísel. Trabl je v tom, že aby to byla posloupnost, musí těch čísel být nekonečně mnoho. Očíslovaná čísla, to zavání

Více

Úvod. Matematická ekonomie 1. Jan Zouhar. 20. zá í 2011

Úvod. Matematická ekonomie 1. Jan Zouhar. 20. zá í 2011 Úvod Matematická ekonomie 1 Jan Zouhar 20. zá í 2011 Obsah 1 Organizace kurzu 2 Nápl kurzu 3 Motiva ní p íklad na úvod 4 Úvod do matematického programování 5 Úvod do lineárního programování 6 Základní

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla Moderní technologie ve studiu aplikované fyiky CZ.1.07/..00/07.0018 4. Komplexní čísla Matematickým důvodem pro avedení komplexních čísel ( latinského complexus složený), byla potřeba rošířit množinu (obor)

Více

ZNALECKÝ POSUDEK . 3329/09

ZNALECKÝ POSUDEK . 3329/09 ZNALECKÝ POSUDEK. 3329/09 O cen spoluvlastnického podílu o velikosti id. 1/2 na nemovitostech zapsaných na LV. 10021 pro katastrální území Janovická Lhota, obec Uhlí ské Janovice, okres Kutná Hora. Objednatel

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší

Více

Návod pro vzdálené p ipojení do sít UP pomocí VPN pro MS Windows 7

Návod pro vzdálené p ipojení do sít UP pomocí VPN pro MS Windows 7 Návod pro vzdálené p ipojení do sít UP pomocí VPN pro MS Windows 7 1. Úvod nezbytné kroky ne se p ipojíte 2. Jak si vytvo it heslo 3. Nastavení VPN p ipojení pro Windows 7 1. Úvod Slu ba VPN umo uje vstoupit

Více

MECHANIKA TUHÉ TĚLESO

MECHANIKA TUHÉ TĚLESO Projekt Efektivní Učení Reformou oblastí gymnaziálního vzělávání je spolufinancován Evropským sociálním fonem a státním rozpočtem České republiky. Implementace ŠVP MECHANIKA TUHÉ TĚLESO Učivo - Tuhé těleso

Více

Algoritmická matematika 3 Mgr. Petr Osička, Ph.D. ZS 2014. Rozděl a panuj

Algoritmická matematika 3 Mgr. Petr Osička, Ph.D. ZS 2014. Rozděl a panuj Algoritmická matematika 3 KMI/ALM3 Mgr. Petr Osička, Ph.D. ZS 2014 1 Základní princip Rozděl a panuj Technika rozděl a panuj je založená na následující myšlence. Z dané vstupní instance I vygenerujeme

Více

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost.

Úloha2.Naleznětevšechnydvojicereálnýchčísel(a,b)takové,žečísla10, a, b, abtvořívtomtopořadí aritmetickou posloupnost. Úloha. V Americe se pro měření teploty používají místo Celsiových stupňů stupně Fahrenheitovy. PřepočetzCelsiovýchstupňůnaFahrenheitovylzeprovéstpodlevzorce f = 9 5 c+32(cjsoustupně Celsiovy, f Farenheitovy).

Více

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h) Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

2 Rozvahové zm ny nevýsledkové a jejich zaú tování

2 Rozvahové zm ny nevýsledkové a jejich zaú tování 2 Rozvahové zm ny nevýsledkové a jejich zaú tování Cíl kapitoly Cílem p edkládané kapitoly je: pochopení podstaty základních ú etních transakcí a jejich promítnutí do rozvahy; pochopení základních pravidel

Více

ú ř ř ú ř ú Ň ú Ú ř ú ú ú ú ú ř ř ú ů ó ň ú ř ř ú ú ú ů Č ř ř ř ú ů ů ú ú ú Á Ů ř ř ú ř ú ř ú Čň ř ř ú ů ú ů ř ř Ý ú ú ř ú ř š Č ť ú Č Č ú ú ú ř ó ó ů ř ň ď ú ó ů ú ř ů ď ř ů ř ť ú ň ť ů ú Ž š ň ú Ú ř

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

Matematická analýza KMA/MA2I 3. p edná²ka Primitivní funkce

Matematická analýza KMA/MA2I 3. p edná²ka Primitivní funkce Matematická analýza KMA/MAI 3. p edná²ka Primitivní funkce Denice a základní vlastnosti P íklad Uvaºujme následující úlohu: Najd te funkci F : R R takovou, ºe F () R. Kdo zná vzorce pro výpo et derivací

Více

3.1.2 Ulice 3.1.6 íslo popisné. 3.1.3 Obec 3.1.7 íslo orienta ní. P íjmení Jméno Titul za jménem KN 2

3.1.2 Ulice 3.1.6 íslo popisné. 3.1.3 Obec 3.1.7 íslo orienta ní. P íjmení Jméno Titul za jménem KN 2 3 Údaje pro vy ádání zadávací dokumentace 3.1 Adresa pro vy ádání zadávací dokumentace 3.1.1 Obch. firma / název / p íjmení, jméno poskytovatele zadávací dokumentace 3.1.2 Ulice 3.1.6 íslo popisné 3.1.3

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

ř š ú š Č š ž ř š Š Š Í ú š ď ř š ú Š ů ú ř ř ř ř ů ř Ž š ů ú ů ř Š Š Š ř ů řň ň řň řň ů ř ř š Í ř ř ř ř ř ř ř ř Ž Ž ř ú ů ú ú š Ú ú ú Í Ž Ž ů Ž Ž Č ň Ú řš ř řš ú Ž ú ť ň Í ř ř ů ť š š ř Í řš ú Ý Í ť ú

Více

brmiversity: Um lá inteligence a teoretická informatika

brmiversity: Um lá inteligence a teoretická informatika brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 9 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Um lá inteligence 2 Neuronové sít 3 Evolu ní algoritmy 4 Datové struktury Strojové u

Více

Základní zapojení operačních zesilovačů

Základní zapojení operačních zesilovačů ákladní zapojení operačních zesilovačů ) Navrhněte a zapojte stejnosměrný zesilovač s operačním zesilovačem v invertjícím zapojení se zadanými parametry. ) Navrhněte a zapojte stejnosměrný zesilovač s

Více

Typové příklady ke zkoušce z Fyziky 1

Typové příklady ke zkoušce z Fyziky 1 Mechanika hmotného bodu Typové příklady ke zkoušce z Fyziky 1 1. Těleso padá volným pádem. V bodě A své trajektorie má rychlost v 4 m s -1, v bodě B má rychlost 16 m s -1. Určete: a) vzdálenost bodů A,

Více

Lineární harmonický oscilátor

Lineární harmonický oscilátor FYZIKÁLNÍ PRAKTIKUM I FJFI ƒvut v Praze Úloha #1 Harmonické oscilace, Pohlovo torzní kyvadlo Datum m ení: 25.1.213 Skupina: 7 Jméno: David Roesel Krouºek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasikace:

Více

FASÁDY. Investice do budoucnosti

FASÁDY. Investice do budoucnosti FASÁDY Investice do budoucnosti Vzhled dekorativních omítek, výhody odvětrávaných fasád Rodinný dům před sanací fasády Rodinný dům po sanaci fasády systémem vinytherm Kvalita a promyšlené detaily Fasádní

Více

Laserový eza 01. Funk ní vzorek

Laserový eza 01. Funk ní vzorek Laserový eza 01 Funk ní vzorek prof. Ing. P emysl Pokorný, CSc. Ing. Petr Zelený, Ph.D. Ing. Petr Keller, Ph.D. Ing. Martin Lachman, Ph.D. Ing. Ji í Šafka V Liberci dne 30. listopadu 2012 Oblast techniky

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY

Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY Statistika pro geografy Rozd lení etností DEPARTMENT OF GEOGRAPHY Faculty of Science Palacký University Olomouc t. 17. listopadu 1192/12, 771 46 Olomouc Pojmy etnost = po et prvk se stejnou hodnotou statistického

Více

Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci. Zde budou normové hodnoty vypsány do tabulky!!!

Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci. Zde budou normové hodnoty vypsány do tabulky!!! Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci jméno: stud. skupina: příjmení: pořadové číslo: datum: Materiály: Lepené lamelové dřevo třídy GL 36h : norma ČSN EN 1194 (najít si hodnotu modulu

Více

STŘIHAČKA ŘETĚZŮ S 16

STŘIHAČKA ŘETĚZŮ S 16 9.1.1.3 Střihačky STŘIHAČKA ŘETĚZŮ S 16 Stříhačka řetězů S 16 (dále jen střihačka) je určena ke stříhání řetězů, kulatiny, resp. jiných průřezově odpovídajících profilů z materiálu o pevnosti do 600 MPa.

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

Požadavky na v domosti a dovednosti, které mohou být ov ovány v rámci maturitní zkoušky z matematiky

Požadavky na v domosti a dovednosti, které mohou být ov ovány v rámci maturitní zkoušky z matematiky Požadavky na v domosti a dovednosti, které mohou být ov ovány v rámci maturitní zkoušky z matematiky ást A Kompetence O ekávané v domosti a dovednosti pro maturitní zkoušku z matematiky v rámci spole né

Více

Plasticita - ur ení parametr zpevn ní z tahové zkou²ky

Plasticita - ur ení parametr zpevn ní z tahové zkou²ky Plasticita - ur ení parametr zpevn ní z tahové zkou²ky Zpracoval Ctirad Novotný pro matmodel.cz 1 Postup p i ur ování parametr získání tahového diagramu p epo et na závislost nap tí - deformace (nebo plastická

Více

- 1 - Statut pro ud lení ocen ní "TOP VÍNO SLOVÁCKA"

- 1 - Statut pro ud lení ocen ní TOP VÍNO SLOVÁCKA - 1 - Statut pro ud lení ocen ní "TOP VÍNO SLOVÁCKA" VIII. ro ník 2015 - Slovácko, Zlínský kraj Ocen ní výrobku z odv tví zem d lství a potraviná ství Okresní agrární komora pro okres Uh. Hradi t a Zem

Více

Digitální modely terénu.

Digitální modely terénu. Digitální modely terénu. Polyedrický model. Rastrový model. Plátový model. Plátování. Tomá² Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartograe. P írodov decká fakulta UK. Tomá²

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

NEJČASTĚJŠÍ POCHYBENÍ PŘI PODÁNÍ ŽÁDOSTI O PODPORU V RÁMCI INTEGROVANÉHO REGIONÁLNÍHO OPERAČNÍHO PROGRAMU, SC 2.5, VÝZVA Č

NEJČASTĚJŠÍ POCHYBENÍ PŘI PODÁNÍ ŽÁDOSTI O PODPORU V RÁMCI INTEGROVANÉHO REGIONÁLNÍHO OPERAČNÍHO PROGRAMU, SC 2.5, VÝZVA Č NEJČASTĚJŠÍ POCHYBENÍ PŘI PODÁNÍ ŽÁDOSTI O PODPORU V RÁMCI INTEGROVANÉHO REGIONÁLNÍHO OPERAČNÍHO PROGRAMU, SC 2.5, VÝZVA Č. 16 ENERGETICKÉ ÚSPORY V BYTOVÝCH DOMECH S ohledem na zjištění učiněná při posuzování

Více

4. V p íprav odvo te vzorce (14) a (17) ze zadání [1].

4. V p íprav odvo te vzorce (14) a (17) ze zadání [1]. FYZIKÁLNÍ PRAKTIKUM II FJFI ƒvut v Praze Úloha #4 Balmerova série Datum m ení: 28.4.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace: 1 Pracovní úkoly 1.

Více

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Návod k montáži a předpisy pro manipulaci s pístovými ventily KLINGER. s bezazbestovým provedením kroužku ventilu Modul KX

Návod k montáži a předpisy pro manipulaci s pístovými ventily KLINGER. s bezazbestovým provedením kroužku ventilu Modul KX Strana 1 Návod k montáži a předpisy pro manipulaci s pístovými ventily KLINGER Konstrukční řada KVN DN 10-50 s bezazbestovým provedením kroužku ventilu Modul KX 1 Pouzdro 2 Horní část 3 Ruční kolečko 5

Více

DIGITÁLNÍ HRACÍ HODINY DGT 2000 FIDE OFICIÁLNÍ ŠACHOVÉ HODINY

DIGITÁLNÍ HRACÍ HODINY DGT 2000 FIDE OFICIÁLNÍ ŠACHOVÉ HODINY DIGITÁLNÍ HRACÍ HODINY DGT 2000 FIDE OFICIÁLNÍ ŠACHOVÉ HODINY Návod k použití Blahopřejeme Vám k výběru DGT. Doufáme a předpokládáme, že Vám přinesou celkové uspokojení a budou Vás těšit po mnoho let.

Více

1 Pracovní úkoly. 2 Vypracování. Datum m ení: 7.4.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace:

1 Pracovní úkoly. 2 Vypracování. Datum m ení: 7.4.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace: FYZIKÁLNÍ PRAKTIKUM II FJFI ƒvut v Praze Úloha #1 Kondenzátor, mapování elektrostatického pole Datum m ení: 7.4.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace:

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Ú Í Á É Í Á Í Ů Ž ř Á É Í ř Ú ř Í ů ř ú ú ú ů ř ú ů ů Ú Í Á É Í Á Í Ů Ž ř ř ř Í Ú ů Ú Í š ň ř ů ř ň ř Ú ř Ú š ů ů řš řú řš ú Í ú Ú ú Ú ů ú ů Ú ů Ú Ú Í Á É Í Á Í ů Ž ř Í ú úč ř ň ř ň Í ú ř ř Ú Í ř ř ř ú

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 S Á ČK Y NA PS Í E XK RE ME N TY SÁ ČK Y e xk re m en t. p o ti sk P ES C Sá čk y P ES C č er né,/ p ot is k/ 12 m y, 20 x2 7 +3 c m 8.8 10 bl ok

Více

14. Exponenciální a logaritmické rovnice

14. Exponenciální a logaritmické rovnice @148 14. Exponenciální a logaritmické rovnice Rovnicím, které obsahují exponencielu resp. logaritmus, říkáme exponenciální resp. logaritmické rovnice. Při řešení exponenciálních a logaritmických rovnic

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Zimní semestr akademického roku 2013/2014. 3. září 2014

Zimní semestr akademického roku 2013/2014. 3. září 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 03/04 3. září 04 Předmluva ii Rozjezd

Více

Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Základní praktikum laserové techniky

Základní praktikum laserové techniky Základní praktikum laserové techniky Fakulta jaderná a fyzikáln inºenýrská Úloha 4: Zna kování TEA CO 2 laserem a m ení jeho charakteristik Datum m ení: 1.4.2015 Skupina: G Zpracoval: David Roesel Kruh:

Více

Dne 12. 7. 2010 obdržel zadavatel tyto dotazy týkající se zadávací dokumentace:

Dne 12. 7. 2010 obdržel zadavatel tyto dotazy týkající se zadávací dokumentace: Dne 12. 7. 2010 obdržel zadavatel tyto dotazy týkající se zadávací dokumentace: 1. na str. 3 požadujete: Volání a SMS mezi zaměstnanci zadavatele zdarma bez paušálního poplatku za tuto službu. Tento požadavek

Více

Plánování výroby elekt iny a ízení rizik na liberalizovaném trhu

Plánování výroby elekt iny a ízení rizik na liberalizovaném trhu Plánování výroby elekt iny a ízení rizik na liberalizovaném trhu 23. listopadu 2011 prezentace k lánku Power Generation Planning and Risk Managment in a Liberalised Market Thor Bjorkvoll, Stein-Erik Fleten,

Více

Pracovní materiál pro

Pracovní materiál pro Pracovní materiál pro Úvodní kurz pro FELÁKY Temešvár u Písku, září 01 Úvodem Tento text má sloužit jako přehled středoškolských znalostí a dovedností, které jsou nezbytné při studiu matematiky na vysoké

Více

Úloha D - Signál a šum v RFID

Úloha D - Signál a šum v RFID 1. Zadání: Úloha D - Signál a šum v RFID Změřte úrovně užitečného signálu a šumu v přenosovém řetězci systému RFID v závislosti na čtecí vzdálenosti. Zjistěte maximální čtecí vzdálenost daného RFID transpondéru.

Více

ZNALECKÝ POSUDEK. č. 277/15

ZNALECKÝ POSUDEK. č. 277/15 ZNALECKÝ POSUDEK č. 277/15 o obvyklé ceně nemovité věci - pozemku p.č. 510/11 - orná půda, LV číslo 565, katastrální území Vávrovice, obec Opava, okres Opava a ocenění jednotlivých práv a závad spojených

Více

1 3Statistika I (KMI/PSTAT)

1 3Statistika I (KMI/PSTAT) 1 3Statistika I (KMI/PSTAT) Cvi 0 0en prvn aneb Suma 0 0n symbolika, vod do popisn statistiky Statistika I (KMI/PSTAT) 1 / 17 1 3Obsah hodiny Po dne 0 8n hodin byste m li b 0 5t schopni: spr vn pou 0 6

Více

KONTROLA HLADINY OLEJE u převodovek ALLISON řady 3000 a 4000

KONTROLA HLADINY OLEJE u převodovek ALLISON řady 3000 a 4000 KONTROLA HLADINY OLEJE u převodovek ALLISON řady 3000 a 4000 ÚVOD Tato stručná příručka popisuje postup kontroly hladiny oleje u převodovek Allison řady 3000 a 4000, tedy včetně odvozených verzí, jako

Více

Vnější vyjímatelné panty - použití

Vnější vyjímatelné panty - použití Vnější vyjímatelné panty - použití ze série 96 Nábytek: Skrytá montáž a možnost volby mezi montáží v jednom směru a nebo protisměrnou zajistí, že pant se bude hodit ke každému designu. Při protisměrné

Více

Výuka matematiky v 21. století na S technického typu Metodika - bude upravena po dokon ení testování modul v p ímé výuce

Výuka matematiky v 21. století na S technického typu Metodika - bude upravena po dokon ení testování modul v p ímé výuce Výuka matematiky v 21. století na S technického typu Metodika - bude upravena po dokon ení testování modul v p ímé výuce ƒeské Bud jovice, 2014 Obsah 1 Popis problematiky 2 1.1 Úvod..................................

Více

č ú č ů ř é č č ú Úč ř š ř Šč š ř š č Š č ř č ř ř ů č ů é č é ř é č č č ů š ř ů ů é é č ř ř éč ž ř č š č ů š ř č ů č é č ř ř é č é š é ř é ř č Ž ř Š ř š ř é é ř š ř ř ř Ž ř š ř š é é č ů é Ž č č ř ř é

Více

Rozměry zrnitost zrnitost zrnitost zrnitost v mm 220 320 400 600 1,6x6x100 0200 0300 0400 0600. 3x6x150 1201 1301 1401 1601

Rozměry zrnitost zrnitost zrnitost zrnitost v mm 220 320 400 600 1,6x6x100 0200 0300 0400 0600. 3x6x150 1201 1301 1401 1601 Brusné kameny TYP MF Velmi populární brusné kameny, měkké tzv. finišovaní ( zejména typy o vyšších zrnitostech ). Jsou vyrobeny na bázi karbidu křemíku. Měkká vazba umožňuje velmi rychlou práci vázaného

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více