VLASTNOSTI NORMÁLNÍHO ROZDĚLENÍ A ODVOZENÁ ROZDĚLENÍ. N(0, 1) má tzv. standardizované normální rozdělení.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "VLASTNOSTI NORMÁLNÍHO ROZDĚLENÍ A ODVOZENÁ ROZDĚLENÍ. N(0, 1) má tzv. standardizované normální rozdělení."

Transkript

1 VLASTNOSTI NORMÁLNÍHO ROZDĚLENÍ A ODVOZENÁ ROZDĚLENÍ RNDR. MARIE FORBELSKÁ, PHD. Věta.Mějmenáhodnouveličinusnormálnímrozdělením X N(µ, σ.dálenechť a, b R,b jsoureálnékonstanty.potomnáhodnáveličina,kterájelineárnítransformacípůvodní,máopětnormálnírozdělení,ato Y a+bx N(a+bµ, b σ.speciálně náhodnáveličina U X µ σ N(, má tzv. standardizované normální rozdělení. Důkaz.Hustotanáhodnéveličiny X f X (x πσ e ( x µ σ.inverznítransformaceje tvaru h(y y a aabsolutníhodnotajejíderivacejerovna h (y.pakhustota b b transformované náhodné veličiny Y a+bx f Y (y f ( y a } b X b π b σ exp [y (a+bµ] b σ a odtud plyne tvrzení věty. Věta.Nechťnáhodnývektor X(X, X N (µ,σ mádvourozměrnénormální ( ( µ σ rozdělení s parametry µ aσ ρσ σ µ ρσ σ σ, tj. má hustotu tvaru [ ( ( ]} f (X,X (x, x πσ σ ρ exp x µ ( ρ σ ρ x µ x µ x σ σ + µ σ. Pak náhodná veličina Y X + X má také normální rozdělení a platí Y X + X N(µ + µ, σ+ρσ σ + σ. Důkaz.MějmenáhodnývektorY(Y, Y,kterýjedefinovántakto Vypočtěme inverzní zobrazení Y X + X g (X, X Y X g (X, X. x y y h (y, y x y h (y, y ajakobián J.SdruženáhustotanáhodnéhovektoruY(Y, Y je pak tvaru f (Y,Y (y, y f (X,X (y y, y a odtud pak marginální hustota f Y (y f (X,X (y y, y dy πσ σ ρ [ ( ( exp y y µ ( ρ σ ρ y y µ y µ y σ σ + µ σ ]}dy

2 VLASTNOSTI NORMÁLNÍHO ROZDĚLENÍ A ODVOZENÁ ROZDĚLENÍ a Mějme substituce f Y (y πσ σ ρ v y µ u y µ µ.pak u v y µ µ y +µ y y µ [ exp σ σ ( ρ σ (u v ρσ σ (u vv+ σ v]} dv. Položme σ σ ρ a.pak f Y (y πa πa exp a (σ σ uv+ σ v ρσ σ uv+ρσ σ v + σ v } dv exp a [(σ +ρσ σ + σ v +σ (σ + ρσ uv+ σ v ] } dv Dálepoložme σ +ρσ σ + σ b a σ (σ + ρσ uc.potom f Y (y πa [ (bv exp a c ( b c ]} + b σ u dv ( } exp σ πa a u c b exp ( } bv c/b dv. a Uvažujmesubstituci w bv c/b a,pak dv a b dwa f Y (y a b ( } πa exp σ a u c b ( } πb exp σ a u c. b π exp w} dw } } Protože σ u c b σ u [σ (σ + ρσ u] σ +ρσ σ + σ σ u (σ +ρσ σ + σ ρσ σ ρ σ σ +ρσ σ + σ a b u, paknáhodnáveličina Y Y máhustotu t.j. ( } f Y (y πb exp u b Tím je věta dokázána. σ u σ u (σ +ρσ σ + ρ σ σ +ρσ σ + σ exp π σ +ρσ σ +σ Y N ( µ + µ, σ +ρσ σ + σ σ σ ( ρ u σ +ρσ σ + σ } (y µ µ σ+ρσ σ + σ

3 VLASTNOSTI NORMÁLNÍHO ROZDĚLENÍ A ODVOZENÁ ROZDĚLENÍ 3 Věta3.Nechť X,..., X n jsounezávislénáhodnéveličinytakové,že X i N(µ i, σi, n i,...,n. Nechť a, a,..., a n R, a i >. Potom náhodná veličina i ( Y a + n a i X i N a + n a i µ i, n a iσi. i Důkaz. Provedeme matematickou indukcí. (Nechť n.pakzpředpokladůvětyje a azvětyplyne,že i i Y a + a X N(a + a µ, a σ. (Nechťtvrzenívětyplatíprolibovolnépřirozené n ax,...,x n+ jsounezávislé náhodné veličiny takové, že Je-li a n+,pakzřejmě Je-li a n+,pak X i N(µ i, σ i, i,..., n+. n+ n+ n+ Y a + a i X i N(a + a i µ i, a i σ i. i Y a + n a i X i i } } Y i i + a n+ X n+ }} Y Y + Y je součtem dvou nezávislých náhodných veličin. Prvnínáhodnáveličina Y mápodleindukčníhopředpokladunormálnírozdělení n n Y N(a + a i µ i, a i σ i i je-lialespoňjednozčísel a,..., a n různéodnuly,vopačnémpřípadějetvrzení zřejmé. Druhánáhodnáveličina Y mápodlevětynormálnírozdělení i Y N(a n+ µ n+, a n+ σ n+. Náhodnývektor(Y, Y vytvořenýzedvounezávislýchnormálníchnáhodnýchveličin má normální rozdělení (Y, Y N (µ,σ, kde tedy µ ( a + n a i µ i, a n+ µ n+ a Σ i ρ. n a iσi i a n+σ n+ Podle věty dostaneme ( n+ n+ Y Y + Y N a + a i µ i, a iσi. i i,

4 VLASTNOSTI NORMÁLNÍHO ROZDĚLENÍ A ODVOZENÁ ROZDĚLENÍ 4 Věta 4.Nechť náhodná veličina U N(,. Potom náhodná veličina K U χ ( má χ rozděleníostupnivolnosti. Důkaz. Označme distribuční funkci náhodné veličiny U jako a hustotu pravděpodobnosti F U (up(u u f U (u π exp u}. Vypočtěme nejprve distribuční funkci náhodné veličiny K y < F K (yp(k yp(u y P( U yf U ( y F U ( y y aodtudpakhustotupravděpodobnosti f K (yf K (y y < f K (y [ fu ( y+f y U ( y ] π y e y Γ( y e y y χ ( Věta5.Nechť K a K jsounezávislénáhodnéveličinya K i χ ( i, i,.pak náhodnáveličina K K + K χ ( + má χ rozdělenío + stupníchvolnosti. Důkaz.Hustotapravděpodobnostináhodnéveličiny K i jerovna x i < f Ki (x i Γ( i i x i i e x i x i MějmenáhodnývektorY(Y, Y,kterýjedefinovántakto Vypočtěme inverzní zobrazení x y y h (y, y x y h (y, y Y K + K g (K, K Y K g (K, K. a jakobián J. SdruženáhustotanáhodnéhovektoruY(Y, Y jepaktvaru f (Y,Y (y, y f (K,K (y y, y f K (y y f K (y aodtudpakmarginálníhustota f Y (y pro y <apro y jerovna f Y (y y f K (y y }} f K ( y }} Γ ( (y y dy + Γ ( ( Γ exp y exp (y y } Γ ( } y (y y y dy y exp y } dy

5 VLASTNOSTI NORMÁLNÍHO ROZDĚLENÍ A ODVOZENÁ ROZDĚLENÍ 5 Zaveďmesubstituci t y y,pak dy y dta f Y (y + Γ ( ( Γ exp y } + y Γ ( exp y } + + y + Položíme-li K Y,pak ( t t dt }} β(, Γ ( Γ( Γ( + f K (y y < + Γ( + e y y + y χ ( +. Věta 6.Nechť U,...,U n jsou nezávislé náhodné veličiny se standardizovaných normálním rozdělením, t.j. U i N(, pro i,...,n. Pak náhodná veličina K n Ui χ (n má χ rozděleníonstupníchvolnosti. i Důkaz.Náhodné veličiny U,...,U n jsou nezávislé a z věty 4 plyne, že U i χ ( pro i,...,n.odtudindukcípomocívěty5ihneddostávámetvrzenívěty. Věta7.Nechťnáhodnéveličiny U N(, a K χ ( jsounezávislé.paknáhodnáveličina T U t( mástudentovorozděleníostupníchvolnosti. K/ Důkaz.Hustotapravděpodobnostináhodnéveličiny Ujerovna f U (u π e u pro u R y < anáhodnéveličiny Kjetvaru f K (x Γ( x e x y. MějmenáhodnývektorY(K, K,kterýjedefinovántakto Y U g (U, K K/ Y K g (U, K. Vypočtěme inverzní zobrazení u y y / h (y, y x y h (y, y, u R x. Jakobián tohoto inverzního zobrazení je roven J y / y y y /. SdruženáhustotanáhodnéhovektoruY(Y, Y jepaktvaru f (Y,Y (y, y f (U,K (y y /, y y / f U (y y /f K (y y /

6 VLASTNOSTI NORMÁLNÍHO ROZDĚLENÍ A ODVOZENÁ ROZDĚLENÍ 6 a odtud dostaneme marginální hustotu f Y (y f Y (y y /f Y (y y /dy π exp } y y + Γ ( ( Γ Γ ( y exp y } y / dy ( } exp y + y y dy ( ( Zaveďmesubstituci t y y + y,pak dy + dta f Y (y + Γ( Γ( + Položíme-li T Y,pak f T (t Γ ( + Γ ( ( Γ ( y + + e t t + dt } } Γ( + (t Γ( ( y + Γ( Γ( + Věta8.Nechť K a K jsounezávislénáhodnéveličinya K i χ ( i, i,.pak náhodnáveličina F K/ K/ F(, máfisher-snedecorovo F rozdělenío a stupních volnosti. Důkaz.Hustotapravděpodobnostináhodnéveličiny K i jerovna x i < f Ki (x i Γ( i i x i i e x i x i MějmenáhodnývektorY(Y, Y,kterýjedefinovántakto Vypočtěme inverzní zobrazení x y y h (y, y x y h (y, y Y K/ K/ g (K, K Y K g (K, K. t(. a jakobián J y SdruženáhustotanáhodnéhovektoruY(Y, Y jepaktvaru y y f (Y,Y (y, y f (K,K (y y, y y y f K (y y f K (y aodtudpakmarginálníhustota f Y (y pro y <apro y jerovna f Y (y Γ( + Γ( Γ( ( ( } y y exp y y ( y exp Γ( y ( } y + y exp y + dy y. } y dy.

7 Zaveďmesubstituci t f Y (y VLASTNOSTI NORMÁLNÍHO ROZDĚLENÍ A ODVOZENÁ ROZDĚLENÍ 7 + Γ( Γ( Γ( + Γ( Γ( Položíme-li F Y,pak f F (y ( y + y,pak dy ( y + ( y ( + y +. ( y + dta ( + y + y < ( Γ( + ( Γ( Γ( y + y+ y e t t + dt } } Γ( + F(,. Věta9.Nechťnáhodnývektor X(X,...,X n N n (µ,σ má n rozměrnénormální rozděleníabjeregulárnímaticereálnýchčíseltypu n naa R n.potomnáhodnývektor Ya+BX N n (a+bµ,b ΣB. Důkaz. Hustota pravděpodobnosti náhodného vektoru X je tvaru f X (x(π n Σ exp (X µ Σ (X µ }. InverznítransformacektransformaciYa+BXjerovnaXB (Y a,přičemžjakobiántétoinverznítransformacejeroven J B B.Pakhustotutransformované náhodnéhovektoruya+bxlzevyjádřittakto f Y (yf X (B (Y a B (π n Σ B exp [B (y a µ] Σ [B (y a µ] } (π n B ΣB exp (y a Bµ B ΣB (y a Bµ }. Věta.Nechť X,...,X n jsounezávislénáhodnéveličinytakové,že X i N(µ i, σ, i,...,n.abjeortonormálnímaticetypu n n.položmex(x,...,x n a Y(Y,...,Y n B (X µ,kde µ(µ,...,µ n.potom Y j jsounezávislénáhodné veličinya Y j N(, σ. Důkaz.Protože X,...,X n jsounezávislénáhodnéveličinysrozdělením X i N(µ i, σ,má náhodný vektor X hustotu n [ ( f X (x exp xi µ i } ] } n (π ( n πσ σ exp xi µ i N σ n (µ,σ, i kdeσσ I n.je-libortonormálnímatice(tj.b B,pakzvěty9plyne,ženáhodný vektor i YB (X µ N n (O,B ΣB, přičemž B ΣBσ B Bσ I n s hustotou tvaru n [ ( f Y (Y exp yj } ] n f πσ σ Yj (y j. Odtud plyne tvrzení věty. j j

8 VLASTNOSTI NORMÁLNÍHO ROZDĚLENÍ A ODVOZENÁ ROZDĚLENÍ Hustoty N(µ,σ µ; σ.5 Distribucni funkce N(µ,σ µ; σ µ; σ µ; σ µ3; σ.5 µ5; σ.6.4. µ; σ µ3; σ.5 µ; σ µ5; σ Hustoty χ ( Distribucni funkce χ ( Hustoty 4 t( Distribucni funkce t( Hustoty F(, Distribucni funkce F(,.5 4; 5 4; 5 5;.8.5 5; 3; ; 3 5; 3. 3; Obrázek. Ukázky normálních a odvozených rozdělení.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

Radka Picková Transformace náhodných veličin

Radka Picková Transformace náhodných veličin Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Radka Picková Transformace náhodných veličin Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Mgr Zdeněk

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

Zápočtová písemka z Matematiky III (BA04) skupina A

Zápočtová písemka z Matematiky III (BA04) skupina A skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Náhodné vektory Vilém Vychodil KMI/PRAS, Přednáška 8 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 8) Náhodné vektory Pravděpodobnost a statistika

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Deskriptivní statistické metody II. Míry polohy Míry variability

Deskriptivní statistické metody II. Míry polohy Míry variability Deskriptivní statistické metody II. Míry polohy Míry variability Jana Vránová, 3.lékařská fakulta UK, Praha Náhodný výběr všechny prvky výběru {x i }, i = 1, 2,, n, se chápou jako náhodné veličiny, které

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Poznámky k předmětu Aplikovaná statistika, 5.téma

Poznámky k předmětu Aplikovaná statistika, 5.téma Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

Statistika, Biostatistika pro kombinované studium. Jan Kracík

Statistika, Biostatistika pro kombinované studium. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

5. B o d o v é o d h a d y p a r a m e t r ů

5. B o d o v é o d h a d y p a r a m e t r ů 5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Přednáška IV. Náhodná veličina, rozdělení pravděpodobnosti a reálná data

Přednáška IV. Náhodná veličina, rozdělení pravděpodobnosti a reálná data Přednáška IV. Náhodná veličina, rozdělení pravděpodobnosti a reálná data Náhodná veličina Rozdělení pravděpodobnosti náhodných veličin Normální rozdělení a rozdělení příbuzná Transformace náhodných veličin

Více

2 ab. ), (ii) (1, 2, 3), (iii) ( 3α+8,α+12,6α 16

2 ab. ), (ii) (1, 2, 3), (iii) ( 3α+8,α+12,6α 16 Řešení úloh... Hroch dostane 80 mg prvního a 80 mg druhého přípravku.. V hospodě je 0 čtyřmístných šestimístných a osmimístné stoly.. i) pro ab právě jedno řešení: x = 5b ab y = a+5 ab pro a = 5 ab = nekonečně

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

1. Klasická pravděpodobnost

1. Klasická pravděpodobnost Příklady 1. Klasická pravděpodobnost 1. Házíme dvakrát kostkou. Jaká je pravděpodobnost, že padne alespoň jedna šestka? 2. Základy teorie pravděpodobnosti vznikly v korespondenci mezi dvěma slavnými francouzskými

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

NÁHODNÝ VEKTOR. 4. cvičení

NÁHODNÝ VEKTOR. 4. cvičení NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Matice lineárních zobrazení

Matice lineárních zobrazení Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2 PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd. ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu

Více

Asymptotické testy. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Katedra pravděpodobnosti a matematické statistiky

Asymptotické testy. Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Jakub Pečánka Asymptotické testy Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Prof. RNDr. Marie

Více

ˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE

ˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE PŘEDNÁŠKA 9 DALŠÍ METODY INTEGRACE 1 9.1. Věta o substituci Věta 1 (O substituci) Necht je ϕ(x) prosté regulární zobrazení otevřené množiny X R n na množinu Y R n. Necht je M X, f(y) funkce definovaná

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

ú ň ň ů ý ů ů ů ň Í ů ý ů ý ý ý ň ú ý ů ú ň ý ú ý ů ú ů ý ý ů ď ď ň ú ů ý ů ý ý ý ý ů ý ý ý ý ý ý ó ť ý ů ý ů ý ý ý ý ý ď ý ý ý ý ů ý ů ý ý ý ý ů ý ý ý ý ů Í ů ď ý ý ů Ť ý ý ý ý ý ý ý ú ý ů ú ú Í Ť ú ú

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č. 1 z předmětu 01MAB4 pondělí 25. května 2015, 9:00 11:00 Vypočítejte integrál y d(, y), kde Ω Objekt Ω načrtněte do obrázku! Ω = { (, y) R 2 :, y 0 4 + y 4 1 ( 4 + y 4 ) 3 16

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 7.

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 7. Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/200 Michal Marvan 7 Determinanty Determinant je jistá hodnota přiřazená čtvercové matici Geometricky

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Bootstrap - konfidenční intervaly a testy

Bootstrap - konfidenční intervaly a testy 9. prosince 2008 Konfidenční intervaly obecně Máme data X 1...X n F,(iid), kde F neznáme. Konfidenční intervaly obecně Máme data X 1...X n F,(iid), kde F neznáme. Chceme odhadnout θ = t(f), např. t(f)

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

PRAVDĚPODOBNOST A STATISTIKA. Odhady parametrů Postačující statistiky

PRAVDĚPODOBNOST A STATISTIKA. Odhady parametrů Postačující statistiky PRAVDĚPODOBNOS A SAISIKA Odhady parametrů SP3 Připomenutí pojmů Připomenutí pojmů z S1P a SP2 odhady Nechť X,, je náhodný výběr z rozdělení s distribuční funkcí. 1 X,, X ) ( 1 n Statistika se nazývá bodovým

Více

Akademie věd České republiky Ústav teorie informace a automatizace RESEARCH REPORT. Hustoty rozdělení pravděpodobnosti pro odhady ukazatele C pk

Akademie věd České republiky Ústav teorie informace a automatizace RESEARCH REPORT. Hustoty rozdělení pravděpodobnosti pro odhady ukazatele C pk Akademie věd České republiky Ústav teorie informace a automatizace Academy of Sciences of the Czech Republic Institute of Information Theory and Automation RESEARCH REPORT Jiří Michálek: Hustoty rozdělení

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Determinanty / 8 Matematika 2 pro PEF PaE 3 Determinanty Přemysl Jedlička Katedra matematiky, TF ČZU Permutace Determinanty Výpočet determinantu z definice 2 / 8 Permutací množiny {,, n} rozumíme prosté

Více

!!! #!! # % & ()!+ %& #( ) +,,!,!!./0./01 2 34 % 00 (1!#! #! #23 + )!!,,5,!+ 4)!005!! 6 )! %,76!,8, )! 44 %!! #! #236!!1 1 5 6 5+!!1 ( 9 9!5 6 + /+ # % 7 8 % : 4; 2,/! = %

Více

Jan Hamhalter. 1. Náhodná veličina je dána maximem počtu ok při šesti hodech hrací kostkou. Určete pravděpodobnostní funkci a střední hodnotu. j.

Jan Hamhalter. 1. Náhodná veličina je dána maximem počtu ok při šesti hodech hrací kostkou. Určete pravděpodobnostní funkci a střední hodnotu. j. M6C Některé příklady z přednášky a cvičení 24. února 2006 Jan Hamhalter 1 Náhodné veličiny 1. Náhodná veličina je dána maximem počtu ok při šesti hodech hrací kostkou. Určete pravděpodobnostní funkci a

Více

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,

Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí

Více

Algoritmy komprese dat

Algoritmy komprese dat Algoritmy komprese dat Úvod do teorie informace Claude Shannon (1916 2001) 5.11.2014 NSWI072-7 Teorie informace Informace Co je to informace? Můžeme informaci měřit? Existují teoretické meze pro délku

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

5. Odhady parametrů. KGG/STG Zimní semestr

5. Odhady parametrů. KGG/STG Zimní semestr Základní soubor Výběr, výběrový (statistický) soubor Náhodný výběr Princip Odhad neznámých parametrů základního souboru na základz kladě charakteristik výběru. Přecházíme z části na celek, zevšeobec eobecňujeme

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách 13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních

Více

Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 10 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

STATISTICKÉ METODY PRO VYHODNOCOVÁNÍ SENZORICKÝCH DAT STATISTICAL METHODS FOR EVALUATION OF SENSORIAL DATA

STATISTICKÉ METODY PRO VYHODNOCOVÁNÍ SENZORICKÝCH DAT STATISTICAL METHODS FOR EVALUATION OF SENSORIAL DATA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNíHO INŽENÝRSTVí ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS STATISTICKÉ METODY PRO VYHODNOCOVÁNÍ

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Přijímací zkouška na navazující magisterské studium 2012/13

Přijímací zkouška na navazující magisterské studium 2012/13 Přijímací zkouška na navazující magisterské studium 0/3 Příklad (5 bodů) Studijníprogram: atematika Studijní obor: Finanční a pojistná matematika Načrtněte množinu omezenou křivkami Varianta A y =x+, y

Více

Rotace ve 3D a kvaterniony. Eva Blažková a Zbyněk Šír (MÚ UK) - Rotace ve 3D a kvaterniony 1 / 16

Rotace ve 3D a kvaterniony. Eva Blažková a Zbyněk Šír (MÚ UK) - Rotace ve 3D a kvaterniony 1 / 16 Rotace ve 3D a kvaterniony Eva Blažková a Zbyněk Šír MÚ UK Eva Blažková a Zbyněk Šír (MÚ UK) - Rotace ve 3D a kvaterniony 1 / 16 Eulerovy úhly http://www.youtube.com/watch?v=upsmnytvqqi Eva Blažková a

Více