MASARYKOVA UNIVERZITA. Elasticita v ekonomii

Rozměr: px
Začít zobrazení ze stránky:

Download "MASARYKOVA UNIVERZITA. Elasticita v ekonomii"

Transkript

1 MASARYKOVA UNIVERZITA Přírodovědecká fakulta Elasticita v ekonomii Bakalářská práce Vedoucí práce: doc. RNDr. Bedřich Půža, CSc. Vypracovala: Kristýna Vozárová Brno, 2010

2

3 Děkuji doc. RNDr. Bedřichu Půžovi, CSc., za odborné vedení bakalářské práce, za rady a připomínky, bez kterých by tento text nevznikl a za čas, který mi věnoval při konzultacích. Prohlašuji, že jsem svou bakalářskou práci napsala samostatně a výhradně s použitím citovaných pramenů. V Brně dne 30. května

4 Název práce: Elasticita v ekonomii Autor: Kristýna Vozárová Ústav matematiky a statistiky Přírodovědecké fakulty MU Vedoucí bakalářské práce: doc. RNDr. Bedřich Půža, CSc. Abstrakt: Cílem této práce je pojednat o pojmu elasticita funkce jedné proměnné a výsledky přenést na vybrané ekonomické modely. Práce definuje základní pojmy související s elasticitou a to jak z matematického, tak z ekonomického hlediska. Dále popisuje jednotlivé druhy elasticit u poptávkové a nabídkové funkce, faktory, které je ovlivňují a využití elasticity v praxi. Klíčová slova: elasticita funkce, poptávka, elasticita poptávky, nabídka, elasticita nabídky Title: Elasticities in economics Author: Kristýna Vozárová Department od Mathematics and Statistics, Faculty of Science, MU Supervisor: doc. RNDr. Bedřich Půža, CSc. Abstract: The aim of this work is dealt with the concept of elasticity of functions of one variable and the results pass on selected economic models. Work defines the basic concepts related to the elasticity of both the mathematical and economically. Also describes the different types of elasticities of demand and supply functions, the factors that affect them and the use of elasticity in practice. Keywords: elasticity of function, demand, demand elasticity, supply, supply elasticity

5 Obsah 5 Obsah Úvod 6 1 Označení a převzatá tvrzení 7 2 Elasticita funkce Definice elasticity Vybraná pravidla pro výpočet elasticity Vybrané formule elasticity pro některé funkce Další výraz pro elasticitu Celkové, mezní a průměrné veličiny Základní ekonomické pojmy Poptávka Důchod spotřebitele a statky v ekonomii Nabídka Elasticita poptávkové funkce Cenová elasticita poptávky Rozdělení poptávky podle koeficientu cenové elasticity Monotonie funkce a elasticita Cenová elasticita a celkový příjem firmy Cenová elasticita a mezní příjem firmy Faktory ovlivňující cenovou elasticitu poptávky Řešené příklady Důchodová elasticita poptávky Křížová elasticita poptávky Vztah mezi elasticitami Elasticita nabídkové funkce Cenová elasticita nabídky Literatura 36

6 Úvod 6 Úvod Následující text se zabývá problematikou elasticity funkce a jejího využití v ekonomii. Výchozím zdrojem je monografie [1]. Základní literatura je doplněna a rozšířena matematickou i ekonomickou literaturou. Práce je rozdělena na dvě části. Matematickou část, tedy budování potřebného matematického aparátu, tvoří první dvě kapitoly. V první kapitole je uvedeno označení použité v práci a dále potřebné definice a věty převzaté z matematické literatury [2]. Na základě těchto tvrzení je ve druhé kapitole odvozen vzorec pro výpočet elasticity funkce. Obsahem druhé kapitoly jsou také vlastnosti elasticity z matematického hlediska, vybraná pravidla a formule pro výpočet elasticity funkce. Dále jsou vysvětleny pojmy celkových, mezních a průměrných veličin, které jsou v ekonomii hojně používány. Třetí kapitola tvoří úvod ekonomické části práce. Jejím obsahem je vysvětlení základních ekonomických pojmů, které souvisí s pojmem elasticita funkce v této práci. Zbylé kapitoly pak představují konkrétní aplikace elasticity v ekonomii, tedy elasticitu poptávky a nabídky. U poptávky je vysvětlena její cenová, důchodová a křížová elasticita a dále vzájemný vztah mezi nimi. Důraz je zde kladen na cenovou elasticitu, je vysvětleno rozdělení poptávky podle její cenové elasticity, vztah elasticity k příjmům firmy a v neposlední řadě také souvislosti mezi monotonií funkce a její elasticitou. Závěrem každého odstavce jsou uvedeny řešené příklady, ilustrující použití uvedených definic. U nabídky je vysvětlena její cenová elasticita. V ekonomické části práce vycházíme z literatury [3], [4], [5], [6] a [7].

7 1 Označení a převzatá tvrzení 7 1 Označení a převzatá tvrzení V matematické části práce je použito toto označení: R (, ) množina všech reálných čísel R + (0, ) množina všech kladných reálných čísel I otevřený interval kladných reálných čísel, tj. I R + D (f) definiční obor funkce f O(x 0 ) okolí bodu x 0 V ekonomické části práce je použito toto označení: D S Q P R I poptávka nabídka poptávané (nabízené) množství zboží tržní cena příjem firmy disponibilní důchod spotřebitele Následující předpoklady (P) jsou přirozeným požadavkem v ekonomii. V celé práci předpokládejme, že: 1. funkce f je definovaná pro každé x I a f (x) > 0, (P) 2. funkce f má konečnou 1. derivaci pro každé x I. Při odvozování základních výsledků budeme vycházet z pojmů diferenciálního počtu funkcí jedné proměnné, konkrétně z pojmů derivace, přírůstek neboli diference a diferenciál funkce. Proto nejprve uvedeme jejich definice (viz [2], str , ). Definice 1.1. Necht f je funkce a bod x 0 D (f). Existuje-li f (x) f (x 0 ) lim, (1) x x 0 x x 0 nazýváme tuto limitu derivací funkce f v bodě x 0 a značíme f (x 0 ). Je-li limita (1) vlastní, nazývá se číslo f (x 0 ) vlastní derivací funkce f v bodě x 0, je-li limita (1) nevlastní, nazývá se číslo f (x 0 ) nevlastní derivací funkce f v bodě x 0. Poznámka. Pro h x x 0 lze definici 1.1 psát ve tvaru f f (x 0 + h) f (x 0 ) (x 0 ) lim. h 0 h

8 1 Označení a převzatá tvrzení 8 Nyní uvedeme větu, která popisuje vztah mezi derivací a spojitostí funkce. Věta 1.1. Má-li funkce f v bodě x 0 vlastní derivaci, pak je v tomto bodě spojitá. Důkaz. Předpokládejme, že existuje f (x 0 ) ±. Podle definice spojitosti máme dokázat, že lim x x0 f (x) f (x 0 ). Platí lim f (x) lim (f (x) f (x 0 ) + f (x 0 )) x x 0 x x0 f (x) f (x 0 ) lim (x x 0 ) + lim f (x 0 ) x x0 x x 0 x x0 f (x) f (x 0 ) lim lim (x x 0 ) + f (x 0 ) x x0 x x 0 x x0 f (x 0 ) 0 + f (x 0 ) f (x 0 ). Definice 1.2. Necht funkce f je definovaná v okolí O(x 0 ) bodu x 0 a platí x 0 +h O(x 0 ). Potom číslo h nazýváme přírůstkem nezávisle proměnné a rozdíl f(x 0 )(h) f(x 0 + h) f(x 0 ) nazýváme přírůstkem funkce f v bodě x 0 s krokem h neboli přírůstkem závisle proměnné. Stručně můžeme značit f(x 0 ). Definice 1.3. Řekneme, že funkce f je diferencovatelná v bodě x 0 R, jestliže existuje okolí O(x 0 ) bodu x 0 tak, že pro všechny body x 0 + h O(x 0 ) platí f (x 0 + h) f (x 0 ) A h + τ (h), kde A je vhodné číslo a τ (h) je funkce taková, že lim h 0 τ(h) h 0. Je-li funkce f v bodě x 0 diferencovatelná, nazývá se výraz Ah diferenciál funkce f v bodě x 0 a značí se df (x 0 ) (h) nebo stručně df (x 0 ). Následující věta udává vztah mezi diferencovatelností funkce a její derivací. Věta 1.2. Funkce f má v bodě x 0 diferenciál právě tehdy, když existuje vlastní derivace f (x 0 ). Přitom pro konstantu A z definice 1.3 platí A f (x 0 ), a tedy df (x 0 ) (h) f (x 0 ) h.

9 1 Označení a převzatá tvrzení 9 Důkaz. Předpokládejme, že funkce f je diferencovatelná v bodě x 0. Existují tedy A a τ (h) takové, τ(h) že platí f (x 0 + h) f (x 0 ) Ah + τ (h) pro h ( δ, δ), δ > 0, kde lim 0. h 0 h Odtud plyne A + τ (h) takže f (x 0 + h) f (x 0 ) h f (x 0 + h) f (x 0 ) lim h 0 h tj. existuje vlastní derivace f (x 0 ) a je rovna A. h, ( lim A + τ (h) h 0 h ) A, Předpokládejme, že existuje f (x 0 ) A R. Cílem je dokázat, že výraz Ah je diferenciál funkce f v bodě x 0. Necht τ (h) : f (x 0 + h) f (x 0 ) Ah. Potom τ (h) lim h 0 h lim f (x 0 + h) f (x 0 ) Ah h 0 h takže f je diferencovatelná v bodě x 0. f (x 0 + h) f (x 0 ) lim A 0, h 0 h Poznámka. Z definice diferenciálu a z předchozí věty též plyne, že f (x 0 ) df(x 0) dx 0. Připomeňme také vztah mezi diferenciálem a diferencí. Věta 1.3. Platí f (x 0 ). df (x 0 ), přičemž Je-li f (x 0 ) 0, platí také f (x 0 ) df (x 0 ) lim h 0 h f (x 0 ) lim h 0 df (x 0 ) Důkaz. Necht existuje diferenciál df (x 0 ) funkce f v bodě x 0. Potom platí f (x 0 ) df (x 0 ) lim h 0 h lim h 0 f (x 0 + h) f (x 0 ) A h h f (x 0 + h) f (x 0 ) lim A f (x 0 ) f (x 0 ) 0. h 0 h Dále předpokládejme f (x 0 ) 0, potom platí f (x 0 ) lim h 0 df (x 0 ) lim f (x 0 + h) f (x 0 ) h 0 A h lim h 0 f (x 0 + h) f (x 0 ) h A f (x 0 ) f (x 0 ) 1.

10 2 Elasticita funkce 10 2 Elasticita funkce V této kapitole vysvětlíme, co je elasticita funkce, odvodíme vzorec pro její výpočet a zmíníme základní vlastnosti elasticity, které budeme dále využívat při její aplikaci v ekonomii. 2.1 Definice elasticity Uvažujme relativní přírůstky funkce f a její proměnné x, tj. f(x) a x např. vyjádřené f(x) x v %. Pak poměr těchto změn nazveme elasticitou funkce f v bodě x a označme ɛ. Tedy ɛ procentní změna f (x) procentní změna x f (x) f (x) x x S použitím tvrzení z předchozí kapitoly můžeme přistoupit k samotnému odvození vzorce pro výpočet elasticity. Necht nyní splňuje funkce f na intervalu I předpoklady (P), tj. že je definovaná pro každé x 0 I, f(x 0 ) > 0 a že má v každém bodě x 0 I konečnou 1. derivaci f (x 0 ). Potom podle definice 1.2, 1.3 a podle věty 1.2 platí f (x 0 ) (h) f (x 0 + h) f (x 0 ) f (x 0 ) h + τ (h), což v souladu s větou 1.3 můžeme napsat následovně f (x 0 ) (h) f (x 0 + h) f (x 0 ). f (x 0 ) h. (2) Položme např. h x 0. Po dosazení do rovnice (2) dostáváme vztah 100 ( x0 ) ( f (x 0 ) f x 0 + x ) 0 f (x 0 ). f x 0 (x 0 ) , (3) který vyjadřuje, o kolik se změní funkční hodnota funkce f, jestliže argument funkce vzroste z x 0 na x 0 + x 0, tj. o 1%. 100 Vynásobíme-li rovnici (3) hodnotou 100 f(x 0 ), dostáváme f ( x 0 + x 0 100) f (x0 ) 100. f (x 0 ) f (x 0 ) f (x 0 ) x 0. (4). Definice 2.1. Číslo na pravé straně rovnice (4) označme ɛ(f)(x 0 ) a nazývá se elasticita funkce f v bodě x 0, tj. ɛ (f) (x 0 ) f (x 0 ) f (x 0 ) x 0. Funkce ɛ(f)(x) pro x I nebo stručně ɛ(f) se nazývá elasticita funkce f.

11 2 Elasticita funkce 11 Věta 2.1. a) Jestliže elasticita funkce f je kladná v bodě x 0 I, tj. ɛ (f) (x 0 ) > 0, pak funkce f je v bodě x 0 rostoucí. b) Jestliže elasticita funkce f je kladná pro každé x I, tj. ɛ (f) (x) > 0, pak funkce f je rostoucí na celém intervalu I. Analogická tvrzení platí pro klesající funkce. Důkaz. a) Z předpokladu věty a z definice 2.1 plyne, že f (x 0 ) x f(x 0 ) 0 > 0. Protože však funkce f splňuje na intervalu I předpoklady (P), tak odtud plyne, že f (x 0 ) > 0, tj., v souladu s teorií funkcí jedné reálné proměnné, že funkce f v bodě x 0 roste. b) Bezprostředně plyne z části a). V následující větě uvedeme, jak se mění hodnota funkce f v závislosti na změně argumentu ve formě vhodné pro ekonomickou aplikaci. Věta 2.2. a 1 ) Jestliže elasticita funkce f je kladná v bodě x 0 I, tj. ɛ (f) (x 0 ) > 0, tak zvýšením (snížením) hodnoty argumentu z x 0 o 1%, vzroste (klesne) hodnota funkce f o ɛ (f) (x 0 ) %. a 2 ) Jestliže elasticita funkce f je kladná v každém bodě x I, tj. ɛ (f) (x) > 0, tak zvýšením (snížením) hodnoty argumentu z x o 1%, vzroste (klesne) hodnota funkce f o ɛ (f) (x) %. b 1 ) Jestliže elasticita funkce f je záporná v bodě x 0 I, tj. ɛ (f) (x 0 ) < 0, tak zvýšením (snížením) hodnoty argumentu z x 0 o 1%, klesne (vzroste) hodnota funkce f o ɛ (f) (x 0 ) %. b 2 ) Jestliže elasticita funkce f je záporná v každém bodě x I, tj. ɛ (f) (x) < 0, tak zvýšením (snížením) hodnoty argumentu z x 0 o 1%, klesne (vzroste) hodnota funkce f o ɛ (f) (x) %. Důkaz. Uvedená tvrzení bezprostředně plynou z definice 2.1 a jejího odvození v odstavci 2.1.

12 2 Elasticita funkce Vybraná pravidla pro výpočet elasticity Vzhledem k tomu, že v definici 2.1 se vyskytuje derivace, lze odvodit pro výpočet elasticity funkce podobná pravidla, jak je známe pro výpočet derivací. Věta 2.3. Necht funkce f a g splňují na intervalu I předpoklady (P) a necht c R +. Potom platí následující vztahy: a) ɛ (cf) (x) xx0 ɛ (f) (x 0 ), b) ɛ (f g) (x) xx0 ɛ (f) (x 0 ) + ɛ (g) (x 0 ), c) je-li g (x 0 ) 0, pak ɛ ( ) f (x) ɛ (f) (x 0 ) ɛ (g) (x 0 ). g (x) xx 0 Důkaz. a) ɛ (cf) (x) xx0 cf (x) cf (x 0 ) lim x x 0 x x 0 cf (x 0 ) x 0 c lim x x0 f (x) f (x 0 ) x x 0 cf (x 0 ) x 0 ɛ (f) (x 0 ) b) ɛ (f g) (x) xx0 f (x) g (x) f (x 0 ) g (x 0 ) lim x x 0 x x 0 f (x 0 ) g (x 0 ) x 0 f (x) g (x) f (x 0 ) g (x) + f (x 0 ) g (x) f (x 0 ) g (x 0 ) lim x x 0 x x 0 f (x 0 ) g (x 0 ) x 0 f (x) f (x 0 ) g (x) g (x 0 ) lim g (x) lim + lim f (x 0 ) lim x x 0 x x0 x x 0 x x0 x x0 x x 0 f (x 0 ) g (x 0 ) x 0 g (x 0) f (x 0 ) + f (x 0 ) g (x 0 ) f (x 0 ) g (x 0 ) x 0 f (x 0 ) f (x 0 ) x 0 + g (x 0 ) g (x 0 ) x 0 ɛ (f) (x 0 ) + ɛ (g) (x 0 )

13 2 Elasticita funkce 13 c) ɛ ( ) f (x) g (x) xx 0 lim x x 0 f (x) g (x) f (x 0) g (x 0 ) x x 0 f (x 0 ) g (x 0 ) x 0 f (x) g (x 0 ) f (x 0 ) g (x) lim x x 0 (g (x) g (x 0 )) (x x 0 ) f (x 0 ) g (x 0 ) x 0 f (x) g (x 0 ) f (x 0 ) g (x 0 ) + f (x 0 ) g (x 0 ) f (x 0 ) g (x) lim x x 0 (g (x) g (x 0 )) (x x 0 ) f (x 0 ) g (x 0 ) lim g (x 0 ) f (x) f (x 0) x x 0 x x 0 lim x x0 f (x 0 ) g (x) g (x 0) x x 0 lim g (x) g (x 0 ) x x 0 f (x 0 ) g (x 0 ) g (x 0 ) f (x 0 ) f (x 0 ) g (x 0 ) g 2 (x 0 ) f (x 0 ) g (x 0 ) x 0 x 0 x 0 g (x 0) f (x 0 ) x 0 g (x 0 ) f (x 0 ) f (x 0) g (x 0 ) x 0 g (x 0 ) f (x 0 ) ɛ (f) (x 0 ) ɛ (g) (x 0 ) Poznámka. Analogická pravidla pro elasticitu součtu a rozdílu funkcí mají podstatně komplikovanější tvar, např. pro ɛ (f + g) (x) xx0 za nezbytného předpokladu kladnosti ɛ(f) a ɛ(g) platí ɛ (f + g) (x) xx0 ɛ (f) (x 0 ) + ɛ (g) (x 0 ). Důkaz. ɛ (f + g) (x) xx0 f (x) + g (x) f (x 0 ) g (x 0 ) lim x x 0 x x 0 f (x 0 ) + g (x 0 ) x 0 f (x) f (x 0 ) g (x) g (x 0 ) lim + lim x x 0 x x 0 x x0 x x 0 f (x 0 ) + g (x 0 ) x 0 f (x 0 ) x 0 + g (x 0 ) x 0 f (x 0 ) + g (x 0 ) f (x 0 ) x 0 f (x 0 ) + g (x 0 ) + g (x 0 ) x 0 f (x 0 ) + g (x 0 ) f (x 0 ) x 0 + g (x 0 ) x 0 f (x 0 ) g (x 0 ) ɛ (f) (x 0 )+ɛ (g) (x 0 )

14 2 Elasticita funkce Vybrané formule elasticity pro některé funkce Věta 2.4. Necht I R + a x 0 I je libovolný bod. Pak platí a) ɛ (c) (x) xx0 0, pro každé c R +, b) ɛ (x s ) (x) xx0 s, pro každé s R, c) ɛ (e x ) (x) xx0 x 0, d) ɛ (a x ) (x) xx0 x 0 ln a, pro každé a R +. A pro libovolné x 0 > 1 a a R + platí e) ɛ (ln x) (x) xx0 1 ln x 0, f) ɛ (log a x) (x) xx0 ln a log a x 0. Důkaz. V důkazu využijeme pravidla pro derivace příslušných funkcí, viz [2], str Bud x x 0 libovolné, pevně zvolené číslo vyhovující příslušným podmínkám, pak z definice derivace plyne: a) ɛ (c) (x 0 ) c c 0, b) c) d) e) f) ɛ (x s ) (x 0 ) (xs ) xx 0 x s 0 ɛ (e x ) (x 0 ) (ex ) xx 0 e x 0 ɛ (a x ) (x 0 ) (ax ) xx 0 a x 0 x 0 s xs 1 0 x s 0 x 0 s xs 0 x s 0 x 0 ex 0 e x 0 x 0 x 0, x 0 ax0 ln a a x 0 ɛ (ln x) (x 0 ) (ln x) xx 0 ln x 0 x 0 ɛ (log a x) (x 0 ) (log a x) xx 0 log a x 0 x 0 s, x 0 x 0 ln a, 1 x 0 x 0 1, ln x 0 ln x 0 1 x 0 ln a log a x 0 x 0 ln a log a x 0.

15 2 Elasticita funkce Další výraz pro elasticitu Za předpokladu, že funkce je tvaru y αx β, α, β > 0, x I, můžeme při výpočtu elasticity využít logaritmické funkce. Poznámka. Uvedená rovnice je rovnicí poptávkové křivky (viz odstavec 3.1) a v některých situacích je výhodné využít právě logaritmické funkce k výpočtu elasticity poptávkové funkce. Nejprve logaritmujeme obě strany rovnice y αx β, dostáváme ln y ln αx β ln α β ln x. (5) Pokud zavedeme substituci ŷ ln y, ˆx ln x a ˆα ln α, můžeme rovnici (5) přepsat do tvaru ŷ ˆα βˆx. Z toho plyne což je elasticita dané funkce. dŷ dˆx β nebo d ln y d ln x β, Obecně tento vztah můžeme odvodit následovně d ln y dy 1 y d ln y dy y, a d ln x dx 1 x d ln x dx x. Po dosazení do rovnice d ln y d ln x dostáváme d ln y d ln x dy/y dx/x dy dx x y ɛ(αx β ).

16 2 Elasticita funkce Celkové, mezní a průměrné veličiny Ekonomická teorie pracuje s veličinami celkovými, mezními a průměrnými. Níže uvedené definice a vlastnosti jsou odvozeny z ekonomických zdrojů, především [3], str a souvisí s aplikací těchto charakteristik v ekonomii. V následujících tvrzeních automaticky předpokládáme, že f je funkce splňující předpoklady (P). Definice 2.2. Celkovou veličinou funkce f bodě x 0 I rozumíme číslo T (f) (x 0 ) f (x 0 ). Funkce T (f)(x) pro x I nebo stručně T (f) se nazývá celková veličina funkce f. Poznámka. Celková veličina funkce f (v bodě x 0 ) je tedy sama funkce f (funkční hodnota funkce f v bodě x 0 ). Uvedený pojem je zaveden pro jeho přirozené používání v ekonomických aplikacích. Definice 2.3. Marginální, resp. mezní veličinou funkce f bodě x 0 I rozumíme číslo M (f) (x 0 ) f (x 0) x 0. Funkce M(f)(x) pro x I nebo stručně M(f) se nazývá mezní veličina funkce f. Věta 2.5. Pro mezní veličinu funkce f v bodě x 0 I platí lim M (f) (x 0) f (x 0 ). x 0 0 Pro mezní veličinu funkce f na intervalu I platí M (f) (x) f (x). Důkaz. Důkaz provedeme pro x 0 I, nebot důkaz pro každé x I je analogický. Označíme-li x 0 x x 0, pak platí lim M (f) (x f (x 0 ) f (x) f (x 0 ) 0) lim lim f (x 0 ). x 0 0 x 0 0 x 0 x 0 0 x x 0

17 2 Elasticita funkce 17 Hodnota mezní veličiny je dána směrnicí tečny ke grafu funkce v daném bodě a tedy platí následující věta o vztahu mezi celkovou a mezní veličinou. Poznámka. Vysvětlení pojmu směrnice tečny lze nalézt v [2], str Věta 2.6. a) Jestliže je celková veličina T (f) v bodě x 0 I rostoucí, pak je mezní veličina M(f) v bodě x 0 kladná, tj. M(f)(x 0 ) > 0. b) Jestliže je celková veličina T (f)(x) pro každé x I rostoucí, pak je mezní veličina M(f)(x) kladná na celém intervalu I, tj. M(f)(x) > 0. Analogická tvrzení platí pro klesající funkce. Důkaz. a) Bud x 0 I libovolná, pevně zvolená hodnota a T (f) v bodě x 0 rostoucí. Pak, podle definice 2.2 je f v bodě x 0 rostoucí a v souladu s teorií funkcí reálné proměnné a předpoklady (P), je f (x 0 ) > 0. Z věty 2.5 a v souladu s definicí 2.3 pak odtud plyne, že M(f)(x 0 ) > 0. b) Jestliže T (f)(x) roste v každém bodě x I, pak z části a) plyne tvrzení přímo. Věta 2.7. Jestliže celková veličina T (f) nabývá v bodě x 0 I lokálního extrému, pak se mezní veličina M(f) v bodě x 0 rovná nule, tj. M(f)(x 0 ) 0. Důkaz. Analogicky části a) důkazu věty 2.6 z předpokladů plyne, že sama funkce f má v bodě x 0 lokální extrém a v souladu s teorií funkcí jedné reálné proměnné je tento bod stacionárním bodem funkce f, tj. f (x 0 ) 0. Tvrzení plyne z věty 2.5. Poznámka. Definici a vlastnosti lokálních extrémů funkce lze nalézt v [2], str Definice 2.4. Průměrnou veličinou funkce f v bodě x 0 I rozumíme číslo A (f) (x 0 ) f (x 0) x 0. Funkce A(f)(x) pro x I nebo stručně A(f) se nazývá průměrná veličina funkce f. S použitím charakteristik marginální a průměrné veličiny můžeme vyjádřit koncept elasticity následujícím způsobem.

18 2 Elasticita funkce 18 Věta 2.8. Pro každé x 0 I platí Podobně pro každé x I platí ɛ (f) (x 0 ) ɛ (f) (x) M (f) (x 0 ) lim x 0 0 A (f) (x 0 ). M (f) (x) A (f) (x). Elasticita funkce f (v bodě x 0 ) je tedy poměr marginální a průměrné veličiny (v bodě x 0 ). Důkaz. Důkaz provedeme pro libovolné, pevně zvolené x 0 I, nebot důkaz tvrzení na intervalu I odtud bezprostředně plyne. Označíme-li x 0 x x 0, pak platí M (f) (x 0 ) lim x 0 0 A (f) (x 0 ) f (x 0 ) f (x 0 ) x 0 lim x 0 0 f (x 0 ) x 0 f (x 0 ) x 0 lim x 0 0 f (x 0 ) f (x 0 ) x 0 ɛ (f) (x 0 ). f (x) f (x 0 ) x x 0 f (x 0 ) x 0 Poznámka. Předchozí věta je rovněž v souladu s úvodem v odstavci 2.1, nebot ɛ f (x) f (x) x x f (x) x f (x) x M(f)(x) A(f)(x). Z věty 2.1 a s použitím charakteristik celkové, mezní a průměrné veličiny plynou následující důsledky. Důsledek. 1. Jestliže ɛ(f)(x) xx0 0, potom také M(f)(x) xx0 0 a bod x 0 je stacionárním bodem celkové veličiny (a tedy i funkce f). Tento bod je bodem extrému, jestliže ɛ(f)(x 0 ) mění znaménka, přičemž nabývá maxima, jestliže znaménko elasticity se mění z kladného na záporné a naopak nabývá minima, jestliže znaménko elasticity se mění ze záporného na kladné. 2. Jestliže ɛ(f)(x) xx0 > 0, potom také M(f)(x) xx0 > 0 a T (f) v bodě x 0 (a tedy i funkce f v bodě x 0 ) roste. 3. Jestliže ɛ(f)(x) xx0 < 0, potom také M(f)(x) xx0 < 0 a T (f) v bodě x 0 (a tedy i funkce f v bodě x 0 ) klesá.

19 3 Základní ekonomické pojmy 19 3 Základní ekonomické pojmy Než se začneme věnovat aplikaci elasticity v ekonomii, je nutné objasnit několik základních ekonomických pojmů, které s elasticitou úzce souvisí. Definice těchto pojmů jsou převzaty z literatury [1], [5] a [7]. 3.1 Poptávka Definice 3.1. Poptávka představuje souhrn zamýšlených koupí. Její velikost je dána poptávaným množstvím a cenou, za kterou jsou kupující ochotni kupovat. Rozlišujeme poptávku: celkovou (agregátní), která je určena celkovým objemem produkce, který chtějí kupující zakoupit a cenami, za které jsou ochotni koupit, individuální, která je poptávkou jediného kupujícího, dílčí (tržní), která je poptávkou všech kupujících po jednom výrobku. Je nutné odlišovat pojmy poptávka a poptávané množství, protože vyjadřují různé souvislosti. Poptávka vyjadřuje funkci spojující určitá poptávaná množství s určitými cenami. Poptávané množství tedy je číslo, zatímco poptávka je funkce. Z toho vyplývá, že změna poptávaného množství je vyvolána změnou ceny sledovaného statku, ale poptávka se přitom nemění. Naproti tomu změna poptávky může být vyvolána celou řadou jiných faktorů, mezi které patří zejména: změna disponibilního důchodu spotřebitele, změna cen ostatních statků, změna preferencí spotřebitelů, např. v důsledku změny módního trendu. Křivka poptávky Vztah mezi poptávaným množstvím a cenou je nepřímo úměrný. Křivka poptávky je klesající, vyjadřuje souvislost označovanou jako zákon klesající poptávky, kdy s rostoucí cenou klesá poptávané množství a naopak. Vysvětlení proč tomu tak je, poskytují následující dva efekty. Důchodový efekt říká, že spotřebitel při vyšší ceně kupuje méně statku, protože mu původní částka nestačí na nákup původního množství. Substituční efekt vyjadřuje, že spotřebitel při zvýšení ceny statku nakupuje méně tohoto statku, protože jej substituuje (nahrazuje) jinými statky. V případě, že poptávka odráží cenu jako funkci množství, pak hovoříme o inverzní poptávkové křivce. Pro každou úroveň poptávky po daném statku, inverzní křivka poptávky ukazuje, jaká by musela být cena tohoto statku, aby si spotřebitel zvolil právě tuto úroveň spotřeby.

20 3 Základní ekonomické pojmy 20 Matematicky křivku poptávky můžeme vyjádřit lineární funkcí Q a bp, b > 0. Hodnota a vyjadřuje poptávané množství při ceně P 0, a hodnota b dq vyjadřuje dp množství, o které se změní poptávka v důsledku změny ceny. Hodnotu b tak můžeme ztotožnit se směrnicí poptávkové funkce, která je přirozeně záporná. Jiný funkční tvar poptávky, který je často používán k vyjádření vztahu mezi cenou a poptávaným množstvím, je exponenciální funkce Q αp β, α, β > 0. Zvláštní případy poptávkové křivky Poptávková křivka může být v určitých situacích rostoucí funkcí, kdy s růstem ceny roste poptávané množství. To může nastat ve dvou případech: u tzv. ostentativních statků, někdy hovoříme také o snobském efektu či efektu módy. Je to situace, kdy lidé chtějí být viděni, jak nakupují dražší zboží. u tzv. Giffenových statků, v tomto případě hovoříme o Giffenově paradoxu. Giffenův paradox uvažujeme pouze u méněcenného statku (viz definice 3.2), který: tvoří podstatnou část výdajů spotřebitele, slouží k uspokojení základních potřeb, nelze nahradit substituty v odpovídajících cenových relacích. Růst ceny Giffenova statku podstatně snižuje reálný důchod spotřebitele a snižuje tak spotřebu ostatních statků. Giffenův paradox může nastat pouze pro určitý omezený cenový interval a v realitě se vyskytuje velmi vzácně. 3.2 Důchod spotřebitele a statky v ekonomii Poptávku jsme definovali jako souhrn zamýšlených koupí. Pokud však hovoříme o zamýšlených koupích, máme na mysli nejen to, že někdo chce koupit, ale že také má peněžní prostředky, za které může koupi uskutečnit. Jedná se o disponibilní důchod spotřebitelů, který představuje částku, kterou mohou spotřebitelé plně využít k nákupu zboží. Je to důchod, se kterým ve skutečnosti disponují. Na základě vztahu mezi disponibilním důchodem spotřebitele a poptávaným množstvím můžeme rozdělit statky následovně. Definice 3.2. Řekneme, že statek je: normální, jestliže s rostoucím disponibilním důchodem roste poptávané množství tohoto statku. V rámci normálních statků dále rozlišujeme mezi statkem: nezbytným, u kterého s rostoucím důchodem roste poptávané množství, ale pomalejším tempem, než důchod, luxusním, u kterého s rostoucím důchodem roste poptávané množství, a to rychleji, než důchod. méněcenný, v tomto případě s rostoucím důchodem klesá poptávané množství.

21 3 Základní ekonomické pojmy 21 Dále můžeme statky rozlišit podle toho, jaký mají vzájemný vztah. Definice 3.3. Řekneme, že statky jsou: substituty, jestliže se vzájemně nahrazují ve spotřebě. Při zvýšení (snížení) ceny jednoho statku dochází ke zvýšení (snížení) poptávky po druhém statku. komplementy, jestliže se vzájemně doplňují ve spotřebě. Při zvýšení (snížení) ceny jednoho statku dochází ke snížení (zvýšení) poptávky po druhém statku. lhostejné, jestliže jsou na sobě nezávislé. 3.3 Nabídka Definice 3.4. Nabídkou rozumíme souhrn zamýšlených prodejů, se kterými přicházejí výrobci na trh. Její velikost je určena objemem výstupu výroby a cenou, ze kterou jsou výrobci ochotni prodat nabízené množství zboží. Rozlišujeme nabídku: celkovou (agregátní), která je určena objemem výroby všech tržních producentů a cenami, za které jsou ochotni prodat, individuální, která představuje nabídku jednotlivého výrobce, dílčí (tržní), která je nabídkou jediného výrobku od různých výrobců. Tak jako v případě poptávky, musíme i u nabídky odlišovat pojmy nabízené množství a nabídka. Nabídka je funkce, která vyjadřuje závislost nabízeného množství na ceně. Změna ceny je příčinou změny nabízeného množství, dochází tedy k posunu podél nabídkové křivky. Pokud se však změní jiné okolnosti, může to změnit nabídku, tj. posunout nabídkovou křivku. Jedná se především o tyto okolnosti: změny v technologii, kterou firma používá, změny cen vstupů, očekávání výrobců, jiné mimoekonomické vlivy, např. počasí. Křivka nabídky Křivka nabídky roste vpravo nahoru. Její tvar vyjadřuje, že s rostoucí cenou roste nabízené množství. Tato souvislost je označována jako zákon rostoucí nabídky. Tento vztah můžeme matematicky vyjádřit lineární funkcí Q a + bp, kde hodnota a vyjadřuje nabízené množství při ceně P 0, a hodnota b dq vyjadřuje množství, dp o které se změní nabídka v důsledku změny ceny. Hodnota b tak představuje kladnou směrnici nabídkové funkce. Nabídku můžeme také vyjádřit jako exponenciální funkci Q αp β, α, β > 0.

22 4 Elasticita poptávkové funkce 22 4 Elasticita poptávkové funkce V případě poptávky nás bude zajímat její cenová, důchodová a křížová elasticita. Vysvětlení těchto pojmů je obsahem této kapitoly. V následujícím textu budeme používat označení, které je obvyklé v ekonomické literatuře. 4.1 Cenová elasticita poptávky V předchozí kapitole jsme vysvětlili, že existuje nepřímo úměrný vztah mezi změnou ceny a změnou poptávaného množství. Spotřebitelé však na cenové změny reagují různě, tedy s různou mírou citlivosti. Právě tento problém řeší cenová elasticita poptávky. Cenová elasticita poptávky (ɛ P D ) nám říká, o kolik procent se změní poptávané množství daného statku, jestliže se jeho cena změní o 1%. Oblouková cenová elasticita poptávky a její odvození Oblouková cenová elasticita poptávky se týká viditelných posunů po poptávkové křivce. Je to průměrná elasticita poptávky mezi dvěma body na poptávkové křivce. Mějme dva body (Q 1, P 1 ) a (Q 2, P 2 ) na poptávkové křivce. Průměrná procentuální změna ceny mezi těmito body je % P P 2 P 1 (P 2 + P 1 ) / A průměrná procentuální změna poptávaného množství mezi body je % Q Q 2 Q 1 (Q 2 + Q 1 ) / Při odvození postupujeme následovně % Q % P Q 2 Q 1 (Q 2 + Q 1 ) /2 100 P 2 P 1 (P 2 + P 1 ) /2 100 Q 2 Q 1 Q 2 + Q 1 P 2 P 1. (6) P 2 + P 1 Definice 4.1. Číslo na pravé straně rovnice (6) se nazývá koeficient obloukové cenové elasticity poptávky, tj. Q 2 Q 1 Q ɛ P D ( ) 2 + Q 1. P 2 P 1 P 2 + P 1 Poznámka. Vzhledem k nepřímo úměrnému vztahu mezi cenou a poptávaným množstvím je cenová elasticita poptávky záporné číslo. V ekonomické literatuře je obvyklé, že se před vzorec pro výpočet elasticity zavádí navíc znaménko minus a uvažujeme tak kladnou hodnotu elasticity.

23 4 Elasticita poptávkové funkce 23 Cenová elasticita poptávky v bodě a její odvození Pro cenovou elasticitu v bodě je charakteristické to, že jsou zde posuzovány nekonečně malé změny ceny a poptávaného množství statku. Pro odvození elasticity v bodě bereme limitu koeficientu obloukové elasticity a současně předpokládáme, že P 0 a pak i Q 0, tedy lim ( ) P 0 Q 2 Q 1 Q 2 + Q 1 P 2 P 1 P 2 + P 1 lim ( ) Q 2 Q 1 P1 ( ) dq P 0 P 2 P 1 Q 1 dp P1. (7) Q 1 Definice 4.2. Číslo na pravé straně rovnice (7) se nazývá koeficient cenové elasticity poptávky v bodě, tj. ɛ P D ( ) dq dp P Q Rozdělení poptávky podle koeficientu cenové elasticity Nyní uvedeme specifikaci poptávky podle koeficientu cenové elasticity, s ohledem na oba způsoby výpočtu. V dalším textu však budeme pro jednoduchost pracovat s kladnou hodnotou cenové elasticity poptávky, pokud nebude řečeno jinak. Definice 4.3. Řekneme, že poptávka je jednotkově elastická, jestliže ɛ P D 1, resp. ɛ P D 1. Procentní změna ceny tak vyvolá stejnou procentní změnu objemu poptávaného množství. neelastická, jestliže ɛ P D ( 1, 0), resp. ɛ P D (0, 1). Procentní změna ceny tak vyvolá menší procentní změnu objemu poptávaného množství. elastická, jestliže ɛ P D (, 1), resp. ɛ P D (1, ). Procentní změna ceny tak vyvolá větší procentní změnu objemu poptávaného množství. dokonale elastická, jestliže ɛ P D, resp. ɛ P D. Změny poptávaného množství jsou vyvolány jinými faktory, než cenou. Poptávka má tvar horizontály. dokonale neelastická, jestliže ɛ P D 0. Poptávané množství je konstantní, se změnou ceny se nemění. Taková poptávka má tvar vertikály. V případě, že uvažujeme výpočet elasticity bez přidaného znaménka minus, potom jestliže ɛ P D > 0, křivka poptávky je rostoucí funkcí. Jedná se o Giffenův paradox a jsou tedy poptávány méněcenné statky. Jestliže naopak ɛ P D 0, jsou poptávány normální statky Monotonie funkce a elasticita Elasticita poptávky se projeví také v grafickém vyjádření, a sice ve sklonu (též směrnici) křivky poptávky. Můžeme říci, že čím větší je sklon křivky poptávky, tím méně je poptávka elastická.

24 4 Elasticita poptávkové funkce 24 Musíme však zdůraznit, že sklon křivky poptávky není dán procentní změnou, ale absolutní změnou. Sklon funkce záleží na zvolených jednotkách, ve kterých měříme cenu a množství, ale elasticita je nezávislá na použitých jednotkách. Cenovou elasticitu poptávky můžeme spojovat, ne však zaměňovat, se sklonem křivky poptávky. U poptávek, které mají po celé délce konstantní sklon, se mění jejich cenová elasticita. Naopak u poptávky s proměnlivým sklonem se její cenová elasticita měnit nemusí. Na příkladu elasticity v bodě se o tom můžeme přesvědčit. Pro lineární tvar poptávkové funkce Q a bp, b > 0, dostáváme ɛ P D dq dp P Q b P Q, odkud vidíme, že sklon lineární poptávkové funkce je konstantní, ale její elasticita nikoliv. Pro funkci poptávky ve tvaru Q αp β, α, β > 0 platí opačný závěr, tj. mění se sklon funkce, ale její elasticita je konstantní. Uvažujme nejprve případ, pro který β 1, tj. Q α P ɛ P D αp 2 P Q 1 αp 1. αp 1 Vidíme, že elasticita je konstantní hodnota rovna 1 v každém bodě poptávkové funkce. Pro obecný tvar poptávkové funkce Q αp β dostaneme následující výsledek ɛ P D dq dp P Q αβp β 1 P Q Uvedených souvislostí si můžeme všimnout na obrázku 1. β αβp β. αp β P P єpd > 1 єpd 1 єpd < 1 єpd 1 D Q D Q Obrázek 1: Proměnlivá a konstantní elasticita poptávky Poznámka. Při kreslení křivky poptávky platí zásada, že cena P se nanáší na svislou a množství Q na vodorovnou osu a takto budou i osy označeny.

25 4 Elasticita poptávkové funkce Cenová elasticita a celkový příjem firmy Celkový příjem firmy můžeme definovat jako součin ceny určitého statku a prodaného množství tohoto statku, tedy T R P Q. Bude nás zajímat, jaký význam má cenová elasticita pro firmu ve vztahu k jejímu celkovému příjmu. Předpokládejme, že došlo ke zvýšení ceny statku. Jaký to bude mít dopad na celkový příjem firmy? Obecně platí, že vyšší cena znamená vyšší příjem z každé prodané jednotky, současně ale klesá počet prodaných jednotek kvůli vyšší ceně. Který z těchto efektů převáží, závisí právě na cenové elasticitě poptávky. Budeme-li uvažovat změnu ceny na P + P a změnu množství na Q+ Q, dostaneme nový příjem T R T R (P + P ) (Q + Q) P Q + Q P + P Q + P Q. Odečtením T R od T R dostaneme T R Q P + P Q + P Q. (8) Pro malé hodnoty P a Q je možné poslední člen rovnice (8) neuvažovat, tedy Nyní vydělíme rovnici (9) výrazem P a získáme vztah T R Q P + P Q. (9) T R P Q + P Q P, který vyjadřuje míru změny příjmu připadajícího na cenovou změnu. Abychom zjistili, kdy je změna celkového příjmu firmy kladná při nárůstu ceny, je nutné řešit následující rovnici Q + P Q P > 0. Po úpravě dostaneme P Q Q < 1. (10) P Levá strana rovnice (10) je přibližně rovna ɛ P D, takže platí ɛ P D <1. Celkový příjem firmy se v případě nárůstu ceny zvýší tehdy, jestliže koeficient cenové elasticity poptávky je menší, než 1. Tedy v případě neelastické poptávky. Ke stejnému výsledku dospějeme také následujícím způsobem T R P Q + P Q ( P Q 1 + P Q Q ) Q (1 ɛ P D ). (11) P Také v rovnici (11) lze vidět, že je-li koeficient cenové elasticity menší, než 1, pak je podíl kladný. T R P

26 4 Elasticita poptávkové funkce 26 V souladu s předešlými výsledky platí následující definice o vztahu cenové elasticity poptávky a celkového příjmu firmy. Definice 4.4. V případě elastické poptávky platí, že pokles (růst) ceny vyvolá takový růst (pokles) objemu realizované produkce, že celkový příjem vzroste (klesne). V případě neelastické poptávky je pokles (růst) ceny doprovázen takovým zvýšením (snížením) realizované produkce, že celkový příjem klesne (vzroste). Pokud je poptávka jednotkově elastická, tak pokles (růst) ceny je doprovázen zvýšením (snížením) množství realizované produkce, ale celkový příjem se nezmění. Takže pokud chce firma efektivně zvýšit své tržby, měla by se zajímat o cenovou elasticitu poptávky statku, který produkuje. Předpokládejme, že má firma k dispozici dobrý odhad křivky poptávky po výrobku, který prodává a chce stanovit jeho cenu tak, že bude maximalizovat svůj zisk (rozdíl mezi výnosy a náklady). Potom by měla být cena tohoto výrobku stanovena na takové úrovni, která zajistí, aby poptávka po takovém výrobku byla elastická. V oblasti, kde je křivka poptávky neelastická, zvýšení ceny výrobku způsobí, že celkový příjem vzroste. Současně však klesne množství prodaných výrobků a musí se tak snížit výrobní náklady, resp. nemohou se zvýšit. Proto se zvyšuje celkový zisk firmy a z toho vyplývá, že pohyb v oblasti, kde je křivka poptávky neelastická, nemůže přinášet maximální zisk Cenová elasticita a mezní příjem firmy V této části se budeme zajímat o to, jak se změní příjem firmy v případě, kdy dojde ke změně množství určitého statku. Tato otázka je aktuální zejména v situacích, kdy uvažujeme produkční rozhodnutí firem. Mezní příjem představuje změnu celkového příjmu firmy v důsledku realizace dodatečné jednotky produkce. V předchozí části jsme odvodili, že pro malé změny ceny a množství je změna příjmu dána rovnicí (8). Jestliže vydělíme obě strany této rovnice výrazem Q, získáme vztah pro mezní příjem MR T R Q P + Q P Q. (12) Rovnici (12) lze upravit na následující vztah T R Q P ( 1 ( Q P )), P Q jehož druhý člen uvnitř závorky je přibližně reciproká hodnota elasticity 1 ɛ P D 1 P Q Q P Q P P Q.

27 4 Elasticita poptávkové funkce 27 Potom výraz pro mezní příjem dostane podobu T R Q P ( 1 1 ɛ P D To znamená, že je-li ɛ P D 1, mezní příjem je nulový a celkový příjem se v případě ( nárůstu ) produkce nezmění. Pokud by poptávka byla neelastická, potom bude výraz 1 1 ɛ P D a tedy také mezní příjem záporný. Uvedené výsledky jsou shrnuty v následující definici a znázorněny na obrázku 2. Definice 4.5. V případě elastické poptávky platí, že mezní příjem je kladný a pokles (růst) realizovaného množství způsobí pokles (růst) celkového příjmu. V případě neelastické poptávky platí, že mezní příjem je záporný a pokles (růst) realizovaného množství je doprovázen růstem (poklesem) celkového příjmu. V případě jednotkově elastické poptávky je mezní příjem nulový a celkový příjem dosahuje maxima. P ). єpd > 1 єpd 1 єpd < 1 MR D Q TR TRmax MR>0 MR<0 Obrázek 2: Vztah příjmů a elasticity Q

28 4 Elasticita poptávkové funkce 28 Příklad: Lafferova křivka Vztah elasticity a příjmů lze v ekonomii aplikovat také v oblasti politických zájmů, např. při úvahách, do jaké míry se změní daňový příjem, dojde-li ke změně daňové sazby. Křivka, která v ekonomii odráží vztah daňových sazeb a daňových příjmů se nazývá Lafferova křivka a je znázorněna na obrázku 3. Je-li daňová sazba nulová, také daňové příjmy jsou nulové. Je-li daňová sazba rovna 1, nikdo nebude mít zájem požadovat nebo nabízet uvažovaný statek, takže daňový příjem je také nulový. Na Lafferově křivce je vidět, že v případě dostatečně vysoké daňové sazby má její další zvyšování za následek snižování vybraných daní. Tzn. je-li překročena daňová sazba t, tak se zdanění ocitá v tzv. zakázané zóně a daňový příjem klesá. Výše daňové sazby se projevuje jako faktor utlumující ekonomickou aktivitu. daňový příjem maximální daňový příjem Obrázek 3: Lafferova křivka daňová sazba Faktory ovlivňující cenovou elasticitu poptávky Nyní vysvětlíme, na čem cenová elasticita poptávky závisí. Mezi nejvýznamnější faktory, které ovlivňují cenovou elasticitu poptávky patří: Povaha potřeb, které statek uspokojuje. Elasticita poptávky po statcích nezbytných, tedy takových, které uspokojují základní životní potřeby, je nižší, než elasticita poptávky po luxusních statcích. Podíl výdajů na určitý statek v rozpočtu domácnosti. Čím je podíl vyšší, tím vyšší je elasticita poptávky po tomto statku. Existence a dostupnost blízkých substitutů. Čím dostupnější jsou substituty, tím je elasticita poptávky vyšší. Vymezení trhu. Úzce vymezené trhy mají více substitutů, a tedy elastičtější poptávku. Časový horizont. S prodlužováním časového horizontu se zvyšuje elasticita poptávky.

29 4 Elasticita poptávkové funkce Řešené příklady Příklad 4.1. Funkce daná vztahem P Q vyjadřuje poptávku po oceli, kde Q představuje poptávané množství oceli měřené v tunách a P je cena oceli vyjádřená v dolarech za tunu. Původní úroveň cenové hladiny je P 1 100$ a nová cena P 2 200$. Vypočítejte cenovou obloukovou elasticitu poptávky mezi body (Q 1, P 1 ) a (Q 2, P 2 ). Dále konstatujte, o jaký typ poptávky se jedná a co byste doporučili producentovi oceli, jestliže chce zvýšit své tržby a jeho prodejní cena oceli je P 1 100$? Řešení. Nejprve vyjádříme Q jako funkci P, po úpravě dostaneme Q 10 0, 02P. Dále dopočítáme množství Q 1 a Q 2 příslušející cenám P 1 a P 2 Q , 02P 1 8 a Q , 02P 2 6. Máme tedy body (Q 1, P 1 ) (8, 100) a (Q 2, P 2 ) (6, 200) a budeme počítat elasticitu mezi těmito body podle definice 4.1 ɛ P D Q 2 Q 1 Q 2 + Q 1 : P 2 P 1 P 2 + P : , 429. Koeficient cenové obloukové poptávky po oceli je roven přibližně 0, 429, což je hodnota patřící do intervalu (0, 1) a proto se podle definice 4.3 jedná o neelastickou poptávku. Jestliže chce producent oceli zvýšit své tržby, pak podle definice 4.4 by měl zvýšit cenu oceli, nebot zvýšení ceny vyvolá pokles poptávaného množství, který však u neelastické poptávky nebude nijak dramatický a celkové tržby tak vzrostou. Graf poptávky po oceli můžeme vidět na obrázku 4. P 500 Q10-0,02P (Q2, P2) (Q1, P1) Q Obrázek 4: Poptávka po oceli

30 4 Elasticita poptávkové funkce 30 Příklad 4.2. Vypočítejte cenovou elasticitu poptávkové funkce Q 60 3P, při ceně P 12. Pro jaké hodnoty ceny je poptávka elastická a pro jaké neelastická? Řešení. Hodnotu cenové elasticity v bodě určíme podle definice 4.2 ɛ P D dq dp P Q 3P Q 3P 60 3P , 5. K určení, pro jaké hodnoty ceny je poptávka elastická, resp. neelastická, využijeme definice 4.3. Pro ɛ P D 1 máme 3P 60 3P 1 P 10, takže poptávka je jednotkově elastická při ceně P 10. Dále pro ɛ P D 0 máme a pro ɛ P D 3P 60 3P 0 P 0 3P 60 3P P 20. Můžeme tedy říci, že poptávka je neelastická pro P 0, 10), přičemž při ceně P 0 je dokonale neelastická. A poptávka je elastická pro P (10, 20, přičemž při ceně P 20 je dokonale neelastická. Graf poptávky můžeme vidět na obrázku 5. P 20 Q60-3P єpd > 1 10 єpd 1 єpd < Q Obrázek 5: Poptávka a její cenová elasticita

31 4 Elasticita poptávkové funkce Důchodová elasticita poptávky Nyní se budeme zabývat tím, jak změna disponibilního důchodu spotřebitele ovlivní poptávané množství určitého statku. Důchodová elasticita poptávky (ɛ ID ) nám říká, o kolik procent se změní poptávané množství daného statku, jestliže se změní disponibilní důchod spotřebitele o1%. Vztah pro její výpočet lze odvodit analogicky, jako v případě cenové elasticity poptávky. Mějme tedy Q 1, představující původně poptávané množství, kterému odpovídá původní úroveň disponibilního důchodu I 1 a Q 2, představující nově poptávané množství s odpovídající úrovní disponibilního důchodu I 2. Definice 4.6. Koeficient obloukové důchodové elasticity poptávky je roven ɛ ID Q 2 Q 1 Q 2 + Q 1. I 2 I 1 I 2 + I 1 Definice 4.7. Koeficient důchodové elasticity poptávky v bodě je roven ɛ ID dq di I Q. Důchodová elasticita poptávky má vypovídací schopnost, která spočívá v určení charakteru statků. Definice 4.8. Řekneme, že statek je: normální, jestliže ɛ ID > 0, nezbytný, jestliže 0 < ɛ ID < 1, luxusní, jestliže ɛ ID > 1, méněcenný, jestliže ɛ ID < 0. Dále platí, že součet důchodových elasticit všech spotřebovávaných statků vynásobených jejich podílem na důchodu spotřebitele je roven jedné. Nakupuje-li tedy spotřebitel luxusní statek, nutně musí nakupovat i statek nezbytný nebo méněcenný. Uvažujme pro jednoduchost dva statky X a Y. Dále předpokládáme, že veškerý disponibilní důchod spotřebitele je vynakládán na nákup těchto statků, resp. že spotřebitel nevytváří úspory. Označme P X jako cenu statku X a P Y cenu statku Y. Podobně Q X množství statku X a Q Y množství statku Y. Potom platí Rovnici (13) zderivujeme podle proměnné I a dostáváme P X Q X + P Y Q Y I. (13) P X dq X di + P Y dq Y di 1. (14)

32 4 Elasticita poptávkové funkce 32 Rovnici (14) lze upravit na tvar a tedy P X Q X I dq X di I + P Y Q Y Q X I dq Y di I 1. Q Y kde výrazy P X Q X I spotřebitele. P X Q X I a P Y Q Y I ɛ ID statku X + P Y Q Y I ɛ ID statku Y 1, představují podíl statků X a Y na disponibilním důchodu Význam důchodové elasticity tedy můžeme shrnout následovně. Může pomoci stanovit, které zboží se má vyrábět nebo skladovat, např. při růstu ekonomiky by se firmy mohly chtít vyhnout méněcennému zboží. Při růstu ekonomiky, a tím růstu příjmů, může pomoci firmám při plánování výroby a tím i počtu pracovníků. Může pomoci firmám odhadnout potenciální změny poptávky, např. roste-li v zahraničí příjem, lze uvažovat o expanzi na nové trhy. Příklad 4.3. Hodnota důchodové elasticity poptávky je ɛ ID 1, 5. Disponibilní důchod spotřebitele vzrostl o 20%, jak se změní poptávané množství statku? Řešení. Při výpočtu využijeme faktu, že důchodová elasticita představuje poměr procentní změny poptávaného množství vzhledem k procentní změně důchodu, tedy ɛ ID % Q % I Poptávané množství statku vzrostlo o 30%. 1, 5 % Q 20 % Q 30. Příklad 4.4. Individuální poptávka spotřebitele ve tvaru Q P + 0, 02I vyjadřuje poptávku po statku X. Cena tohoto statku je P 1500 a důchod spotřebitele I Vypočítejte hodnotu koeficientu bodové důchodové elasticity poptávky a určete vlastnost statku X. Řešení. Při výpočtu použijeme definici 4.7 ɛ ID dq di I Q 0, 02I P + 0, 02I. 0, 052. Koeficient bodové důchodové elasticity poptávky je přibližně roven 0, 052 a podle definice 4.8 se jedná o nezbytný statek.

33 4 Elasticita poptávkové funkce Křížová elasticita poptávky Posledním typem elasticity poptávkové funkce je křížová elasticita, která vyjadřuje citlivost reakce spotřebitele na změnu ceny jiného statku. Křížová elasticita poptávky (ɛ CD ) nám říká, o kolik procent se změní poptávané množství statku X, jestliže se cena statku Y změní o 1%. Koeficient křížové elasticity poptávky lze opět snadno odvodit. Mějme P Y 1 představující cenu statku Y, kterému odpovídá poptávané množství statku X, Q X1, vše před změnou. A P Y 2 s Q X2 představující cenu statku Y a odpovídající poptávané množství statku X po změně. Definice 4.9. Koeficient obloukové křížové elasticity poptávky je roven ɛ CD Q X2 Q X1 Q X2 + Q X1. P Y 2 + P Y 1 P Y 2 + P Y 1 Definice Koeficient křížové elasticity poptávky v bodě je roven ɛ CD dq X dp Y PY Q X. Podle koeficientu křížové elasticity poptávky můžeme usuzovat na vztah mezi statkem X a Y. Definice Řekneme, že statky jsou: substituty, jestliže ɛ CD > 0, komplementy, jestliže ɛ CD < 0, na sobě nezávislé, jestliže ɛ CD 0. Význam křížové elasticity poptávky spočívá v tom, že firmy mohou odhadnout vliv snížení ceny konkurenčních výrobků na poptávku po svých výrobcích. Stejně tak mohou odhadnout dopad snížení ceny komplementárního výrobku na poptávku po svých výrobcích, např. dojde-li ke snížení ceny počítačů, o kolik se zvýší poptávka po programovém vybavení. Příklad 4.5. Individuální poptávka po statku X má tvar Q X 100 3P X +5P Y +0, 03I, přičemž Q X a P X 15 představují poptávané množství a cenu statku X, P Y 10 je cena statku Y a I 1000 je disponibilní důchod spotřebitele. Určete křížovou elasticitu poptávky spotřebitele a dále, o jaké statky se jedná. Řešení. K výpočtu použijeme definici 4.10 ɛ CD dq X dp Y PY Q X 5P Y 100 3P X + 5P Y + 0, 03I. 0, 37. Koeficient bodové křížové elasticity poptávky je přibližně roven 0, 37 a můžeme říci, že podle definice 4.11 jsou statky X a Y substituty.

34 4 Elasticita poptávkové funkce Vztah mezi elasticitami Pro analýzu vztahů mezi elasticitami poptávky, tj. cenovou, důchodovou a křížovou, je důležitý jejich součet. Poptávková funkce je matematicky homogenní funkcí nultého stupně, což v ekonomii znamená, že při stejném zvýšení všech cen i důchodu spotřebitele se poptávka nezmění. V tomto odstavci budeme pracovat s původním vzorcem pro výpočet cenové elasticity poptávky, tedy bez přidaného znaménka minus. Předpokládejme, že poptávka po statku X je ovlivněna pouze cenami statků X a Y, tj. P X a P Y a disponibilním důchodem spotřebitele I, pak součet elasticit je nulový. Při odvození vycházíme z uvedeného předpokladu a tedy platí Q X P X + Q X P X I Rovnici (15) vydělíme proměnnou Q X Q X PX + Q X P X Q X I čímž získáme součet elasticit v bodě a tedy platí I + Q X P Y P Y 0. (15) I Q X + Q X P Y ɛ P D + ɛ ID + ɛ CD 0. PY Q X 0, Příklad 4.6. Je dána individuální poptávka ve tvaru Q X 30 2P X + 3P Y + 0, 004I. Q X představuje poptávané množství statku X. Dále cena tohoto statku je P X 50, cena alternativního zboží je P Y 20 a disponibilní důchod spotřebitele je I Ukažte, že součet cenové, důchodové a křížové elasticity je nulový a výsledky interpretujte. Řešení. Opět budeme postupovat podle příslušných definic koeficientů elasticit v bodě, počítejme postupně ɛ P D dq X dp X PX Q X ɛ ID dq X di ɛ CD dq X dp Y I Q X 2P X 30 2P X + 3P Y + 0, 004I 10 3 PY Q X. 3, 333 0, 004I 30 2P X + 3P Y + 0, 004I 4. 1, P Y 30 2P X + 3P Y + 0, 004I Lze snadno vidět, že ɛ P D + ɛ ID + ɛ CD 0. Dále můžeme říci, že poptávka je cenově elastická, uvedené statky jsou luxusní a současně substituty. Tyto výsledky jsou také v souladu s odstavcem 4.1.5, ve kterém se říká, že cenová elasticita poptávky po statku, který má dostupné substituty, je více elastická, než poptávka po statku, který substituty nemá. A také, že cenová elasticita poptávky po luxusním statku je vyšší, než po statku nezbytném.

35 5 Elasticita nabídkové funkce 35 5 Elasticita nabídkové funkce U nabídkové funkce nás bude zajímat její cenová elasticita. 5.1 Cenová elasticita nabídky Vztah mezi cenou a nabízeným množstvím je přímo úměrný a to, s jakou intenzitou reagují firmy na cenové změny, vyjadřuje cenová elasticita nabídky. Cenová elasticita nabídky (ɛ P S ) nám říká, o kolik procent se změní nabízené množství daného statku, jestliže se jeho cena změní o 1%. Vztahy pro výpočet obloukové elasticity i elasticity v bodě jsou podobné, jako v případě poptávky, uvažujeme však nabízené množství. Dále platí, že hodnota cenové elasticity nabídky je kladná, vzhledem k přímo úměrnému vztahu mezi cenou a nabízeným množstvím. Platí tedy následující definice. Definice 5.1. Koeficient obloukové cenové elasticity nabídky je roven ɛ P S Q 2 Q 1 Q 2 + Q 1. P 2 P 1 P 2 + P 1 Definice 5.2. Koeficient cenové elasticity nabídky v bodě je roven ɛ P S dq dp P Q. Nabídku můžeme podle hodnoty koeficientu cenové elasticity specifikovat následovně. Definice 5.3. Řekneme, že nabídka je jednotkově elastická, jestliže ɛ P S 1, neelastická, jestliže ɛ P S (0, 1), elastická, jestliže ɛ P S (1, ), dokonale elastická, jestliže ɛ P S, dokonale neelastická, jestliže ɛ P S 0. Podobně jako v případě poptávky se můžeme zabývat vztahem mezi monotonií funkce a její elasticitou také u nabídky. Opět platí, že u lineární funkce nabídky se mění její elasticita, ale sklon zůstává konstantní a u funkce nabídky v exponenciálním tvaru dostáváme opačný výsledek. Cenovou elasticitu nabídky ovlivňuje především časový horizont. V dlouhém období je nabídka elastičtější.

Mikroekonomie Nabídka, poptávka

Mikroekonomie Nabídka, poptávka Téma cvičení č. 2: Mikroekonomie Nabídka, poptávka Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Podstatné z minulého cvičení Matematický pojmový aparát v Mikroekonomii Důležité minulé cvičení kontrolní

Více

PR5 Poptávka na trhu výrobků a služeb

PR5 Poptávka na trhu výrobků a služeb PR5 Poptávka na trhu výrobků a služeb 5.1. Rovnováha spotřebitele 5.2. Indiferenční analýza od kardinalismu k ordinalismu 5.3. Poptávka, poptávané množství a jejich změny 5.4. Pružnost tržní poptávky Poptávka

Více

POPTÁVKA.

POPTÁVKA. POPTÁVKA INDIVIDUÁLNÍ POPTÁVKA Individuální poptávka-poptávka jednoho spotřebitele, závisí na: -ceně statku -cenách ostatních statků -důchodu spotřebitele Preference a očekávání předpokládáme za neměnné

Více

Mikroekonomie. Nabídka, poptávka. = c + d.q. P s. Nabídka, poptávka. Téma cvičení č. 2: Téma. Nabídka (supply) S. Obecná rovnice nabídky

Mikroekonomie. Nabídka, poptávka. = c + d.q. P s. Nabídka, poptávka. Téma cvičení č. 2: Téma. Nabídka (supply) S. Obecná rovnice nabídky Téma cvičení č. 2: Mikroekonomie Nabídka, poptávka Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Téma Nabídka, poptávka Nabídka (supply) S Nabídka představuje objem zboží, které jsou výrobci ochotni

Více

Optimalizace spotřebitele a poptávka

Optimalizace spotřebitele a poptávka Optimalizace spotřebitele a poptávka Optimum (rovnováha) spotřebitele spojení indiferenční mapy a linie příjmů standardní situace Optimem spotřebitele se nazývá situace, kdy spotřebitel volí optimální

Více

Obsah. Poptávka spotřebitele - 1 - Petr Voborník

Obsah. Poptávka spotřebitele - 1 - Petr Voborník Obsah Obsah... Poptávka spotřebitele.... ndividuální poptávka (po statku ).... Vliv změny důchodu spotřebitele na poptávku..... Důchodová spotřební křivka..... Druhy statků... 3 CC, kde je určitým druhem

Více

Národní hospodářství poptávka a nabídka

Národní hospodářství poptávka a nabídka Národní hospodářství poptávka a nabídka Chování spotřebitele a poptávka Užitek a spotřebitelův přebytek Jedním ze základních problémů, které spotřebitel řeší, je, kolik určitého statku má kupovat a jak

Více

Mikroekonomie I. Trh výrobních faktorů ekonomický koloběh. Křivka nabídky (S) Přednáška 3. Podstatné z minulé přednášky. Zákon rostoucí nabídky

Mikroekonomie I. Trh výrobních faktorů ekonomický koloběh. Křivka nabídky (S) Přednáška 3. Podstatné z minulé přednášky. Zákon rostoucí nabídky Trh výrobních faktorů ekonomický koloběh Mikroekonomie I 3. přednáška Poptávka substituční a důchodový efekt, konkurence, elasticita poptávky Přednáška 3. Křivka nabídky (S) Poptávka substituční a důchodový

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Obsah. Poptávka ( D- demand) Křivka tržní poptávky. Křivka poptávky. Poptávka. Nabídka. Poptávku můžeme rozlišit:

Obsah. Poptávka ( D- demand) Křivka tržní poptávky. Křivka poptávky. Poptávka. Nabídka. Poptávku můžeme rozlišit: Obsah optávka Nabídka optávka ( - demand) Udává mn. určitého výr či služby, který je spotř. ochoten a schopen si nakoupit při různých cenách Je určena množství (q) pop. výrobků a jejich cenami (p) optávku

Více

5. Trh analýza. Poptávka, nabídka, elasticity, užitková a produkční funkce.

5. Trh analýza. Poptávka, nabídka, elasticity, užitková a produkční funkce. 5. Trh analýza. Poptávka, nabídka, elasticity, užitková a produkční funkce. Teorie spotřebitele x teorie firmy 5.1.1 Teorie spotřebitele Ekonomie zkoumá preference mezi statky. Nezkoumá je ale přímo, nýbrž

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

TRH. Mgr. Hana Grzegorzová

TRH. Mgr. Hana Grzegorzová TRH Mgr. Hana Grzegorzová Vývoj trhu Pokud šlo o první formy, bylo možné vyměňovat výrobek za výrobek (tzv. barter). Postupně složitější dělbou práce se toto stává velmi obtížným a dochází ke vzniku peněz.

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 11. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 13 Vybrané ekonomické aplikace diferenciálního

Více

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie Model AS - AD Makroekonomie I Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Osnova: Agregátní poptávka a agregátní nabídka : Agregátní poptávka a její změny Agregátní nabídka krátkodobá a dlouhodobá Rovnováha

Více

Mikroekonomie. Opakování příklad 1. Řšení. Příklad 2. Příklad 5. Proč Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU 16 D

Mikroekonomie. Opakování příklad 1. Řšení. Příklad 2. Příklad 5. Proč Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU 16 D Opakování příklad 1 Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Hodnota Edp = 0,1 znamená, že procentní změna množství při 10% změně ceny bude: a/ 0,2 b/ 2,5 c/ 5,0 d/ 1,0 e/ ze zadaných

Více

a, c, d Mikroekonomie Tržní rovnováha Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU 1. opakování Příklad 1 Řešení Řešení Příklad

a, c, d Mikroekonomie Tržní rovnováha Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU 1. opakování Příklad 1 Řešení Řešení Příklad Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU 1. opakování Tržní rovnováha Příklad 1 Poptávka je dána funkcí Q = 25 P a nabídka tabulkou: Varianta a b c d Cena 5 10 15 20 Množství 5 15

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Mikroekonomie I. Přednáška 3. Trh výrobních faktorů ekonomický koloběh. Podstatné z minulé přednášky. Křivka nabídky (S) Zákon rostoucí nabídky

Mikroekonomie I. Přednáška 3. Trh výrobních faktorů ekonomický koloběh. Podstatné z minulé přednášky. Křivka nabídky (S) Zákon rostoucí nabídky Přednáška 3. Mikroekonomie I 3. přednáška Poptávka substituční a důchodový efekt, konkurence, elasticita poptávky Poptávka substituční a důchodový efekt, konkurence, elasticita poptávky Podstatné z minulé

Více

Bod uzavření firmy. Bod zvratu. Mikroekonomie. Důležité FC, VC, TC (graf) Náklady firmy - důležité. Průběh funkcí nákladů - grafy

Bod uzavření firmy. Bod zvratu. Mikroekonomie. Důležité FC, VC, TC (graf) Náklady firmy - důležité. Průběh funkcí nákladů - grafy Důležité FC, VC, TC (graf) Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Náklady firmy - důležité Průběh funkcí nákladů - grafy TC = FC + VC AC = AFC + AVC AFC = FC/Q AVC = VC/Q MC =

Více

Elasticita a její aplikace

Elasticita a její aplikace Elasticita a její aplikace Motivace Firmu zajímá, jak ovlivní její tržby tyto změny: firmě rostou náklady, proto chce zdražit svou produkci konkurenční firma vyrábějící podobný výrobek zlevnila očekává

Více

2 POPTÁVKA A JEJÍ DETERMINANTY

2 POPTÁVKA A JEJÍ DETERMINANTY 2 POPTÁVKA A JEJÍ DETERMINANTY Poptávka charakterizuje chování kupujících. Je to vztah mezi poptávaným množstvím a tržní cenou za předpokladu, že ostatní vlivy, které na poptávku působí, jsou konstantní.

Více

Teorie her a ekonomické rozhodování. 9. Modely nedokonalých trhů

Teorie her a ekonomické rozhodování. 9. Modely nedokonalých trhů Teorie her a ekonomické rozhodování 9. Modely nedokonalých trhů 9.1 Dokonalý trh Dokonalý trh Dokonalá informovanost kupujících Dokonalá informovanost prodávajících Nulové náklady na změnu dodavatele Homogenní

Více

Mikroekonomie. 1. Opakování příklad 1. Řešení. Opakování - Příklad 2. Příklad 2 - řešení P = 30 (6Q/5)

Mikroekonomie. 1. Opakování příklad 1. Řešení. Opakování - Příklad 2. Příklad 2 - řešení P = 30 (6Q/5) 1. Opakování příklad 1. Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Poptávka po obuvi je popsána rovnicí: Q D = 300 0,3P, (Q D je poptávané množství za měsíc. Nabídka v průběhu měsíce

Více

Všeobecná rovnováha 1 Statistický pohled

Všeobecná rovnováha 1 Statistický pohled Makroekonomická analýza přednáška 4 1 Všeobecná rovnováha 1 Statistický pohled Předpoklady Úspory (resp.spotřeba) a investice (resp.kapitál), kterými jsme se zabývali v minulých lekcích, jsou spolu s technologickým

Více

TRŽNÍ HOSPODÁŘSTVÍ. stát

TRŽNÍ HOSPODÁŘSTVÍ. stát TRŽNÍ HOSPODÁŘSTVÍ Trh = místo, kde se střetává nabídka s poptávkou Tržní mechanismus = zajišťuje spojení výrobce a spotřebitele, má dvě strany: 1. nabídka, 2. poptávka. Znaky tržního mechanismu: - výrobky

Více

Příjmy firmy můžeme rozdělit na celkové, průměrné a mezní.

Příjmy firmy můžeme rozdělit na celkové, průměrné a mezní. 7 Příjmy firmy Příjmy firmy představují sumu peněžních prostředků, které firmě plynou z realizace její produkce, proto někteří autoři používají analogický pojem tržby. Jestliže vycházíme z cíle formy v

Více

Poptávka. Zákon klesající poptávky

Poptávka. Zákon klesající poptávky Poptávka Poptávka je množství zboží, které je spotřebitel ochoten koupit na trhu za určitou cenu a za jinak stejných podmínek. Poptávku můžeme psát jako poptávkovou funkci ve tvaru: Q = f (P) Kde Q (quantity)

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf

Více

Pavlína Matysová. 5. listopadu 2018

Pavlína Matysová. 5. listopadu 2018 Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice MIKROEKONOMIE ÚVOD, TRH A TRŽNÍ MECHANISMUS Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu

Více

Derivace a monotónnost funkce

Derivace a monotónnost funkce Derivace a monotónnost funkce Věta : Uvažujme funkci f (x), která má na intervalu I derivaci f (x). Pak platí: je-li f (x) > 0 x I, funkce f je na intervalu I rostoucí. je-li f (x) < 0 x I, funkce f je

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Přebytek spotřebitele

Přebytek spotřebitele Přebytek spotřebitele a tržní poptávka Varian: Mikroekonomie: moderní přístup, kapitoly 14 a 15 Varian: Intermediate Microeconomics, 8e, Chapters 14 and 15 () 1 / 36 Na této přednášce se dozvíte jak měříme

Více

Nabídka, Poptávka, Tržní rovnováha

Nabídka, Poptávka, Tržní rovnováha Nabídka, optávka, Tržní rovnováha (Tomáš Volek, Ivana Faltová Leitmanová) Nabídka (S - Supply) Nabídka představuje množství statků, které jsou firmy ochotny vyrábět a prodávat. Nabídku můžeme rozdělit

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

OP3BK_FEK. Ekonomika. Jaro / 13:55 15:35 / učebna č.20

OP3BK_FEK. Ekonomika. Jaro / 13:55 15:35 / učebna č.20 OP3BK_FEK Ekonomika Jaro 2013 16.03.2013 / 13:55 15:35 / učebna č.20 Přehled témat (osnova): 1. Úvod do ekonomie Základní pojmy Vývoj ekonomie Aktuální problémy 2. Mikroekonomie Tržní struktury Dokonalá

Více

Základy ekonomie. Petr Musil: petrmusil1977@gmail.com

Základy ekonomie. Petr Musil: petrmusil1977@gmail.com Základy ekonomie Téma č. 2: Trh, nabídka, poptávka Petr Musil: petrmusil1977@gmail.com Obsah 1. Dělba práce 2. Směna, peníze 3. Trh 4. Cena 5. Nabídka 6. Poptávka 7. Tržní rovnováha 8. Konkurence Dělba

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

4. Elasticita a její aplikace

4. Elasticita a její aplikace . Elasticita a její aplikace Motivace Firmu zajímá, jak ovlivní její tržby tyto změny: firmě rostou náklady, proto chce zdražit svou produkci konkurenční firma vyrábějící podobný výrobek zlevnila očekává

Více

3 Elasticita nabídky. 3.1 Základní pojmy. 3.2 Grafy. 3.3 Příklady

3 Elasticita nabídky. 3.1 Základní pojmy. 3.2 Grafy. 3.3 Příklady 3 Elasticita nabídky 3.1 Základní pojmy Vysvětlete následující pojmy: 1. cenová elasticita nabídky, 2. cenově elastická nabídka, 3. cenově neelastická nabídka, 4. jednotkově elastická nabídka, 5. dokonale

Více

Základy ekonomie II. Téma č. 3: Modely ekonomické rovnováhy Petr Musil

Základy ekonomie II. Téma č. 3: Modely ekonomické rovnováhy Petr Musil Základy ekonomie II Téma č. 3: Modely ekonomické rovnováhy Petr Musil Struktura Opakování: ekonomická rovnováha Klasický model ekonomické rovnováhy: trh kapitálu trh práce důsledky v modelu AS-AD Keynesiánský

Více

Mikroekonomie. Nabídka, poptávka. Kombinované studium 1. cv. Nabídka - rozlišujeme mezi: Nabídka (supply) S 10.10.2014

Mikroekonomie. Nabídka, poptávka. Kombinované studium 1. cv. Nabídka - rozlišujeme mezi: Nabídka (supply) S 10.10.2014 Kombinované studium 1. cv. Mikroekonomie Nabídka, poptávka Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Nabídka (supply) S Nabídka představuje objem zboží, které jsou výrobci ochotni na trh dodat

Více

POPTÁVKA NA DOKONALE KONKURENČNÍM TRHU PRÁCE

POPTÁVKA NA DOKONALE KONKURENČNÍM TRHU PRÁCE POPTÁVKA NA DOKONALE KONKURENČNÍM TRHU PRÁCE Firma maximalizuje zisk když platí Dokonalý trh práce-firma přicházející na tento trh je jednou z velkého počtu cenu práce nemůže ovlivnit Křivku nabídky práce

Více

MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL

MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL MODELY OLIGOPOLU COURNOTŮV MODEL, STACKELBERGŮV MODEL DOKONALÁ KONKURENCE Trh dokonalé konkurence je charakterizován velkým počtem prodávajících, kteří vyrábějí homogenní produkt a nemohou ovlivnit tržní

Více

13 Specifika formování poptávky firem po práci a kapitálu

13 Specifika formování poptávky firem po práci a kapitálu 13 Specifika formování poptávky firem po práci a kapitálu Na rozdíl od trhu finálních statků, kde stranu poptávky tvořili jednotlivci (domácnosti) a stranu nabídky firmy, na trhu vstupů vytvářejí jednotlivci

Více

Přehled matematického aparátu

Přehled matematického aparátu Přehled matematického aparátu Ekonomie je směsí historie, filozofie, etiky, psychologie, sociologie a dalších oborů je tak příslovečným tavicím kotlem ostatních společenských věd. Ekonomie však často staví

Více

Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek mikroekonomie. Správná odpověď je označena tučně

Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek mikroekonomie. Správná odpověď je označena tučně řijímací řízení ak. r. 2010/11 Kompletní znění testových otázek mikroekonomie Správná odpověď je označena tučně 1. řebytek spotřebitele je rozdíl mezi a... a) cenou, mezními náklady b) cenou, celkovými

Více

Téma č. 2: Trh, nabídka, poptávka

Téma č. 2: Trh, nabídka, poptávka Téma č. 2: Trh, nabídka, poptávka Obsah 1. Dělba práce 2. Směna, peníze 3. Trh 4. Cena a směnná hodnota 5. Nabídka 6. Poptávka 7. Tržní rovnováha 8. Konkurence Dělba práce Dělba práce Jednotliví lidé se

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 10. přednáška Diferenciální počet funkcí více proměnných (II) Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci

Více

1 Odvození poptávkové křivky

1 Odvození poptávkové křivky Odvození poptávkové křivky Optimalizační chování domácností (maximalizace užitku) vzhledem k rozpočtovému omezení. Nejprve odvodíme deterministický model, který potom rozšíříme o stochastické prvky. Odvozené

Více

Dokonalá konkurence. Mikroekonomie. Opakování. Řešení. Příklad. Příklad. Řešení Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU

Dokonalá konkurence. Mikroekonomie. Opakování. Řešení. Příklad. Příklad. Řešení Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Opakování Mikroekonomie Dokonalá konkurence Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU U firmy v rámci dokonalé konkurence jsou výrobní náklady dány vztahem: TC = 20000 + 2 a) Jestliže tržní cena

Více

Makroekonomie I cvičení

Makroekonomie I cvičení Téma Makroekonomie I cvičení 25. 3. 015 Dvousektorový model ekonomiky Spotřební funkce Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Model 45 - jak je dosaženo rovnovážného HDP Východiska - graf: Osa x.

Více

Dualita& poptávka Jan Čadil FNH VŠE

Dualita& poptávka Jan Čadil FNH VŠE Dualita& poptávka Jan Čadil FNH VŠE Footer Text 3/24/2014 1 Podstata problému duality Předchozí přístup k optimalizaci předpokládal maximalizaci spotřebitel zná své omezení (rozpočet) a snaží se dosáhnout

Více

Přednáška 3: Limita a spojitost

Přednáška 3: Limita a spojitost 3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

FAKULTA EKONOMICKÁ ZČU PLZEŇ. Katedra ekonomie a financí. Mikroekonomie cvičení 5

FAKULTA EKONOMICKÁ ZČU PLZEŇ. Katedra ekonomie a financí. Mikroekonomie cvičení 5 FAKULTA EKONOMICKÁ ZČU LZEŇ Katedra ekonomie a financí Mikroekonomie cvičení 5 5. CHOVÁNÍ SOTŘEBITELE A FORMOVÁ- NÍ OTÁVKY ŘÍKLAD Č. 1 V rámci kardinalistické teorie užitku definujte pojmy: užitek, celkový

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Zboží, peníze, cena, poptávka, nabídka

Zboží, peníze, cena, poptávka, nabídka Zboží, peníze, cena, poptávka, nabídka Zboží Zboží je výsledkem lidské práce. Jde o výrobek, který může být hmotným statkem (věcí, předmětem) nebo službou, uspokojující svými vlastnostmi lidské potřeby,

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

8. Dokonalá konkurence

8. Dokonalá konkurence 8. Dokonalá konkurence Kompletní text ke kapitole viz. KRAFT, J., BEDNÁŘOVÁ, P, KOCOUREK, A. Ekonomie I. TUL Liberec, 2010. ISBN 978-80-7372-652-2; str.64-75 Dokonale konkurenční tržní prostředí lze charakterizovat

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

ROVNOVÁHA. 5. Jak by se změnila účinnost fiskální politiky, pokud by spotřeba kromě důchodu závisela i na úrokové sazbě?

ROVNOVÁHA. 5. Jak by se změnila účinnost fiskální politiky, pokud by spotřeba kromě důchodu závisela i na úrokové sazbě? ROVNOVÁHA Zadání 1. Použijte neoklasickou teorii rozdělování k předpovědi efektu následujících událostí na reálnou mzdu a reálnou cenu kapitálu: a) Vlna imigrace zvýší množství pracovníků v zemi. b) Zemětřesení

Více

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21 Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Mikroekonomie Q FC VC Příklad řešení. Kontrolní otázky Příklad opakování zjistěte zbývající údaje

Mikroekonomie Q FC VC Příklad řešení. Kontrolní otázky Příklad opakování zjistěte zbývající údaje Příklad opakování zjistěte zbývající údaje Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Q FC VC 0 20 1 10 2 18 3 24 4 36 Co lze zjistit? FC - pro Q = 1, 2, 3, 4 TC AC AVC AFC Příklad

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

4. Křivka nabídky monopolní firmy je totožná s částí křivky mezních nákladů.

4. Křivka nabídky monopolní firmy je totožná s částí křivky mezních nákladů. Firma v nedokonalé konkurenci 1. Zdroji nedokonalé konkurence jsou: - jednak nákladové podmínky podnikání, - jednak. 2. Zapište vzorec Lernerova indexu. K čemu slouží? 3. Zakreslete celkový příjem monopolní

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

6. Teorie výroby Průvodce studiem: 6.2 Produkční analýza v krátkém období celkový (fyzický) produkt (TP)

6. Teorie výroby Průvodce studiem: 6.2 Produkční analýza v krátkém období celkový (fyzický) produkt (TP) 6. Teorie výroby Firma vystupuje na trhu finální produkce v pozici nabízejícího a současně na trhu výrobních faktorů v pozici poptávajícího. Firma používá různé vstupy (výrobní faktory), které ve výrobě

Více

Tak je možno sestavit poptávkovou funkci, která tuto závislost vyjadřuje, a zabývat se vlivem jednotlivých faktorů. X 2 = f 2 (P 1, P 2,, P n, I)

Tak je možno sestavit poptávkovou funkci, která tuto závislost vyjadřuje, a zabývat se vlivem jednotlivých faktorů. X 2 = f 2 (P 1, P 2,, P n, I) 3 Poptávka 3.1 Individuální poptávka V předcházející kapitole jsme se zabývali rozhodováním spotřebitele, který maximalizuje užitek při daném rozpočtovém omezení. Určením optimální kombinace statků jsme

Více

1.1 Příklad z ekonomického prostředí 1

1.1 Příklad z ekonomického prostředí 1 1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

Základní elementy trhu

Základní elementy trhu Základní elementy trhu doc. Ing. Jana Korytárová, h.. ředpoklady pro základní model: Trh jednoho zboží (dílčí trh). okonalá konkurence: Mnoho prodávajících a mnoho kupujících. okonalá informovanost o kvalitě

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Kapitola 5 AGREGÁTNÍ POPTÁVKA A AGREGÁTNÍ NABÍDKA

Kapitola 5 AGREGÁTNÍ POPTÁVKA A AGREGÁTNÍ NABÍDKA Kapitola 5 AGREGÁTNÍ POPTÁVKA A AGREGÁTNÍ NABÍDKA Agregátní poptávka (AD): agregátní poptávka vyjadřuje různá množství statků a služeb (reálného produktu), která chtějí spotřebitelé, firmy, vláda a zahraniční

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

Poptávka a Slutského rovnice Varian, Mikroekonomie: moderní přístup, kapitoly 6 a 8 Varian: Intermediate Microeconomics, 8e, Chapters 6 and 8

Poptávka a Slutského rovnice Varian, Mikroekonomie: moderní přístup, kapitoly 6 a 8 Varian: Intermediate Microeconomics, 8e, Chapters 6 and 8 Poptávka a Slutského rovnice Varian, Mikroekonomie: moderní přístup, kapitoly 6 a 8 Varian: Intermediate Microeconomics, 8e, Chapters 6 and 8 () 1 / 50 Na této přednášce se dozvíte na čem závisí poptávková

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Formování cen na trzích výrobních faktorů

Formování cen na trzích výrobních faktorů Formování cen na trzích výrobních faktorů Na trzích výrobních faktorů jsou určujícími elementy poptávka a nabídka výrobního faktoru. Na trzích výrobků a služeb jsou domácnosti poptávající a firmy nabízející

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Funkce, elementární funkce.

Funkce, elementární funkce. Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.

Více

OTEVŘENÁ EKONOMIKA. b) Předpokládejte, že se vládní výdaje zvýší na Spočítejte národní úspory, investice,

OTEVŘENÁ EKONOMIKA. b) Předpokládejte, že se vládní výdaje zvýší na Spočítejte národní úspory, investice, OTEVŘENÁ EKONOMIKA Zadání 1. Pomocí modelu malé otevřené ekonomiky předpovězte, jak následující události ovlivní čisté vývozy, reálný směnný kurz a nominální směnný kurz: a) Klesne spotřebitelská důvěra

Více

11. Trhy výrobních faktorů Průvodce studiem: 11.1 Základní charakteristika trhu výrobních faktorů Poptávka po VF Nabídka výrobního faktoru

11. Trhy výrobních faktorů Průvodce studiem: 11.1 Základní charakteristika trhu výrobních faktorů Poptávka po VF Nabídka výrobního faktoru 11. Trhy výrobních faktorů V předchozích kapitolách jsme zkoumali způsob rozhodování firmy o výstupu a ceně v rámci různých tržních struktur (dokonalá a nedokonalá konkurence). Ačkoli se fungování firem

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Struktura. formování poptávky po kapitálu odvození poptávky po investicích formování nabídky úspor Hayekův trojúhelník a jeho souvislosti

Struktura. formování poptávky po kapitálu odvození poptávky po investicích formování nabídky úspor Hayekův trojúhelník a jeho souvislosti 11. Trh kapitálu Struktura formování poptávky po kapitálu odvození poptávky po investicích formování nabídky úspor Hayekův trojúhelník a jeho souvislosti Literatura Holman, R.: Mikroekonomie-středně pokročilý

Více

Matematická analýza pro informatiky I. Derivace funkce

Matematická analýza pro informatiky I. Derivace funkce Matematická analýza pro informatiky I. 7. přednáška Derivace funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 31. března 2011 Jan Tomeček, tomecek@inf.upol.cz

Více