M - Příprava na 9. zápočtový test

Rozměr: px
Začít zobrazení ze stránky:

Download "M - Příprava na 9. zápočtový test"

Transkript

1 M - Příprava na 9. zápočtový test Určeno pro studenty dálkového studia. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na

2 ± Pythagorova věta Pythagorova věta Věta: Obsah čtverce sestrojeného nad přeponou pravoúhlého trojúhelníka je roven součtu obsahů čtverců sestrojených nad oběma odvěsnami. Důkaz: Na základě Eukleidovy věty o odvěsně platí: a = c. ca b = c. cb Sečteme-li pravé i levé strany obou rovnic, dostáváme: a + b = c. ca + c. cb = c. (ca + cb) = c. c = c CBD Platí také věta obrácená: Věta: Platí-li o stranách trojúhelníka ABC předpoklad, že c = a + b, pak jde o pravoúhlý trojúhelník s pravým úhlem při vrcholu C. Důkaz: Zvolme pravoúhlý trojúhelník A B C takový, aby při vrcholu C byl pravý úhel. Nechť jeho odvěsny jsou shodné se stranami AC a BC daného trojúhelníka ABC. Platí tedy: a = a b = b Pro přeponu trojúhelníka A B C platí Pythagorova věta: c = a + b = a + b = c Z toho vyplývá, že c = c Trojúhelník ABC je pak shodný s trojúhelníkem A B C (sss), proto i vnitřní úhel při vrcholu C (který je pravý) je roven vnitřnímu úhlu při vrcholu C. I ten je tedy pravý a to jsme měli dokázat. Ukázkové příklady: Příklad : Rozhodněte, zda trojúhelník daný třemi stranami o délkách 4 cm, 5 cm, 6 cm je pravoúhlý. Řešení: a = 4 cm b = 5 cm c = 6 cm c =? [cm] Podle Pythagorovy věty vypočteme pomocí předpokládaných odvěsen (tj. kratších stran) a, b délku pomyslné přepony c. Pokud bude platit c = c, pak je původní trojúhelník pravoúhlý. c = a + b = = 4 ¹ 6 Závěr tedy zní: Zadaný trojúhelník není pravoúhlý :5:0 z 8

3 ± Pythagorova věta - procvičovací příklady. 339,4 m ,9 cm ,6 cm cm ,78 cm m cm :5:0 6,06 cm z 8

4 . 347 ± Eukleidovy věty Eukleidovy věty. Věta o výšce Pata výšky C rozdělí stranu c na dvě části: ca, cb. Tvrzení: Trojúhelník AC C je podobný s trojúhelníkem CC B. Důkaz je zřejmý podle věty uu, neboť oba trojúhelníky obsahují úhly alfa a beta. Pozn.: Dva úhly, které mají na sebe kolmá ramena, jsou shodné. Z podobnosti trojúhelníků vyplývá: v ca = Þ v = ca.cb cb v Rovněž by se dalo vyjádřit se stejným závěrem: v cb = Þ v = ca.cb ca v Vzniklý závěr nazýváme Eukleidovou větou o výšce a můžeme ji slovně vyjádřit následující větou: Obsah čtverce sestrojeného nad výškou pravoúhlého trojúhelníka je roven obsahu obdélníka, jehož stranami jsou úseky strany c. Každou větu je nutno dokázat - důkaz už byl ale vlastně proveden výše.. Věta o odvěsně :5:0 3 z 8

5 Trojúhelník AC C je podobný s trojúhelníkem ACB. Podobnost lze odůvodnit opět podle věty uu, neboť v obou trojúhelnících jsou opět úhly alfa i beta. Z podobnosti trojúhelníků vyplývá: cb b = Þ b = cb.c b c Rovněž by se dalo vyjádřit: ca a = Þ a = ca.c a c Vzniklé vzorce jsou matematickým vyjádřením Eukleidových vět o odvěsně. Protože každý pravoúhlý trojúhelník má dvě odvěsny, jsou vždy i dvě Eukleidovy věty o odvěsnách. Opět můžeme napsat matematickou větu: Obsah čtverce sestrojeného nad odvěsnou pravoúhlého trojúhelníka je roven obsahu obdélníka, jehož stranami jsou přepona a úsek přilehlý k dané odvěsně. Důkaz i této věty už byl vlastně proveden výše. Ukázkové příklady Příklad - určení druhé odmocniny pomocí Eukleidovy věty o výšce: Pomocí Eukleidovy věty o výšce narýsujte úsečku o délce x = Ö0 Řešení:. Číslo pod odmocninou rozložíme na součin libovolných dvou činitelů - např.. 5. Rovnost x = Ö0 upravíme do tvaru x = 0, resp. x = Zvolíme-li x = v, ca =, cb = 5, pak můžeme snadno použít větu o výšce. 4. Protože platí ca + cb = c, zjistíme, že přepona bude dlouhá + 5 = 7 5. Narýsujeme úsečku AB o délce Vyznačíme bod C a to tak, že je vzdálen od bodu A o délku Najdeme střed úsečky AB a uděláme půlkružnici k s tímto středem a poloměrem odpovídajícím polovině úsečky AB. 8. V bodě C vstyčíme kolmici, její průsečík s kruhovým obloukem označíme X. 9. Délka úsečky C X pak odpovídá hledané x = Ö0 Příklad - určení druhé odmocniny pomocí Eukleidovy věty o odvěsně: Pomocí Eukleidovy věty o odvěsně narýsujte úsečku o délce x = Ö :5:0 4 z 8

6 Řešení:. Číslo pod odmocninou rozložíme na součin libovolných dvou činitelů - např.. 5. Rovnost x = Ö0 upravíme do tvaru x = 0, resp. x = Zvolíme-li x = a, ca =, c = 5, pak můžeme snadno použít větu o odvěsně a. 4. Narýsujeme úsečku AB o délce Vyznačíme bod C a to tak, že je vzdálen od bodu B o délku. 6. Najdeme střed úsečky AB a uděláme půlkružnici k s tímto středem a poloměrem odpovídajícím polovině úsečky AB. 7. V bodě C vstyčíme kolmici, její průsečík s kruhovým obloukem označíme X. 8. Délka úsečky XB pak odpovídá hledané x = Ö0 ± Eukleidovy věty - procvičovací příklady. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö8. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4,4 35. Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö5. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö8. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 5, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö8. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce., Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö9. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö4. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, :5:0 5 z 8

7 9. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö3. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö0. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö3. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö9. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö8. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö3. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o odvěsně narýsujte úsečku délky x = Ö7. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, :5:0 6 z 8

8 ± Střední geometrická úměrná a čtvrtá geometrická úměrná Střední geometrická úměrná Vraťme se zpět k Eukleidově větě o výšce: v = ca. cb neboli v = ca.cb Výška v pravoúhlém trojúhelníku je střední geometrickou úměrnou obou úseků. Eukleidovy věty proto využíváme ke konstrukci algebraických výrazů - zejména odmocnin. Příklad : Je dán kruh o poloměru r. Rozdělte jej kružnicí s ním soustřednou na dvě části, jejichž obsahy se sobě rovnají. Řešení: Označme poloměr zadaného kruhu r a poloměr kledané soustředné kružnice r. Pak má platit: r r r =.r r = Hledaný poloměr je tedy střední geometrickou úměrnou Čtvrtá geometrická úměrná Platí-li pro čtyři úsečky o délkách a, b, c, x vztah a c = b x pak úsečka x je čtvrtou geometrickou úměrnou úseček a, b, c v tomto pořadí. Příklad : Narýsujte čtvrtou geometrickou úměrnou úseček 3 cm, 5 cm, Ö cm Řešení: Ze zadání musí platit vztah: :5:0 7 z 8

9 3 = 5 x Příklad 3: Narýsujte úsečku, která vyhovuje vztahu: a x= b Řešení: Zadaný vztah přepíšeme do tvaru x a = a b neboli b a = a x ± Střední a čtvrtá geometrická úměrná - procvičovací příklady. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö8. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 5, :5: z 8

10 . Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö3. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Narýsujte úsečku délky x = (abc)/d, kde a, b, c, d jsou velikosti daných úseček. Pomocná úsečka y je čtvrtou geometrickou úměrnou úseček b, a, d. Úsečka x je pak čtvrtou geometrickou úměrnou úseček y, a, d. 4. Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö0. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Nechť a, b, c jsou délky tří daných úseček. Sestrojte čtvrtou úsečku délky x, která vyhovuje rovnici x = bc/a Úsečka x je čtvrtou geometrickou úměrnou úseček a, c, b Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö8. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö3. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 3, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö9. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce. 4, Pomocí Eukleidovy věty o výšce narýsujte úsečku délky x = Ö8. Kontrolu správnosti proveďte určením z tabulek nebo na kalkulačce., ± Výpočty rovinných útvarů Výpočty rovinných útvarů Tato kapitola obsahuje řešení příkladů s využitím všech teoretických vlastností, se kterými jsme se seznámili v :5:0 9 z 8

11 předcházejících kapitolách z planimetrie. Převážnou většinu příkladů budeme vždy řešit nejprve obecně, pak teprve dosadíme číselné hodnoty a na kalkulačce spočítáme výsledek, který vhodně zaokrouhlíme. Obecné řešení považujeme za hotové tehdy, obsahuje-li vzorec pouze proměnné, které máme v zápisu příkladu a výraz už nelze dále zjednodušit. ± Výpočty rovinných útvarů - procvičovací příklady ,9 cm. 580 Porovnejte obsahy trojúhelníků ABC a ABC na obrázku. Oba obsahy jsou shodné :5:0 Zmenšení obsahu o 0 % Zmenšení obvodu o, % 0 z 8

12 m m Čtverec má větší obsah než obdélník ,7 m :5:0 6 z 8

13 . 574 řešení: , % cm :5:0 z 8

14 cm ,5 cm cm. 6 3,5 cm ,4 cm :5:0 3 z 8

15 ,8 cm , :5:0 57,74 cm 4 z 8

16 BC = 0 cm, obsah je 54 cm m :5:0 5 mm 5 z 8

17 ABD cm ,08 m, 800 cm cm , m o = 4 cm; S = 4,6 cm :5:0 88 cm 6 z 8

18 v = 4,33 cm b) :5:0 40, m 7 z 8

19 řešení: 0,5 cm;,5 cm krát Kč :5:0 7,3 cm 8 z 8

20 / Poloměr kružnice opsané: 4,6 cm Poloměr kružnice vepsané:,3 cm 60,5 % :5:0 977 m 9 z 8

21 m ,9 % trojúhelníků Tupoúhlý :5: z 8

22 Ne cm cm ,075 cm :5:0 AF = 5 cm, BC = cm z 8

23 ,8 m Nemohou cm :5:0 0,35 m z 8

24 obdélníků ,7 cm cm 6 cm :5:0,, 3 z 8

25 83. 56,, cm :5:0 v = 6,06 cm ABD 4 z 8

26 a = 0, b = 70, c = 60, d = 50, e = 60, f = 70, g = 60, h = cm ,4 m :5:0 dlaždic 5 z 8

27 cm ,5 ha :5:0 6 z 8

28 / ,, Není zavlažováno 6,8 m, třetí strana pole je 33,94 m cm :5:0 700 m ; 60 m 7 z 8

29 ,6 dm cm cm m :5: krát 8 z 8

30 ,8 cm cm ,3 cm , resp cm m ,8 % m ± Goniometrie a trigonometrie Tato kapitola se zabývá goniometrickými funkcemi, výpočty u pravoúhlého, ale i u obecného trojúhelníka :5:0 9 z 8

31 ± Orientovaný úhel Orientovaný úhel Orientovaným úhlem AVB se nazývá uspořádaná dvojice polopřímek VA, VB, kde počátek, přičemž: VA je počáteční rameno úhlu VB je koncové rameno úhlu V je vrchol orientovaného úhlu V je jejich společný Hodnota orientovaného úhlu je kladná, jestliže se počáteční rameno VA otáčí kolem vrcholu V směrem ke koncovému rameni VB proti směru chodu hodinových ručiček. Hodnota orientovaného úhlu je záporná, jestliže se počáteční rameno VA otáčí kolem vrcholu V směrem ke koncovému rameni VB po směru chodu hodinových ručiček. Stupňová a oblouková míra Velikost úhlů můžeme vyjadřovat jednak ve stupňové míře (plný úhel pak má 360 ) a dále v míře obloukové (plný úhel pak má velikosti p rad). Stupňová míra: :5:0 30 z 8

32 Oblouková míra: :5:0 3 z 8

33 p je tzv. Ludolfovo číslo a jeho hodnota je přibližně 3,4. Plný úhel má tedy hodnotu p rad, což je tedy přibližně 6,8 radiánů. K převodům velikostí úhlů ze stupňů na radiány a naopak můžeme výhodně využít např. trojčlenku. U číselné hodnoty úhlu v obloukové míře se obvykle jednotka rad vynechává. Příklad : Úhel o velikosti 5 převeďte do obloukové míry. Řešení: p rad 5... x rad Jedná se vždy o přímou úměrnost (šipky na obou stranách směrem vzhůru) x= p.5 p = rad 80 Pozn.: Výsledek můžeme klidně vyjádřit i ve tvaru 0,6 rad (přibližně) Příklad : Úhel o velikosti 3p/4 rad převeďte na stupně. Řešení: :5:0 p rad 3 z 8

34 x... 3p/4 rad Jedná se vždy o přímou úměrnost (šipky na obou stranách směrem vzhůru) 3p x = = 35o p Úhel má tedy velikost 35. Z předchozích postupů můžeme snadno odvodit vzorce pro převody jedním nebo druhým směrem:. Převod ze stupňů na míru obloukovou p.a o x= rad 80. Převod z radiánů na míru stupňovou x= 80.arad p ± Stupňová a oblouková míra :5: z 8

35 :5:0 9,97 34 z 8

36 , ± Jednotková kružnice Jednotková kružnice Jednotková kružnice je taková kružnice, jejíž poloměr je. Využít ji můžeme například k odvození goniometrických funkcí platících pro pravoúhlý trojúhelník. ± Funkce sinus Funkce sinus Určení funkce z jednotkové kružnice: :5:0 35 z 8

37 V pravoúhlém trojúhelníku je funkce sinus určena jako podíl protilehlé odvěsny a přepony. Funkce sinus je tedy goniometrická funkce daná předpisem f: y = sina Poznámky: Funkce shora omezená: :5:0 36 z 8

38 Funkce zdola omezená: :5:0 37 z 8

39 Funkce periodická: :5:0 38 z 8

40 Funkce lichá: Funkce se nazývá kosekans a a zapisuje se y = cosec a :5:0 39 z 8

41 ± Funkce kosinus Funkce kosinus Určení funkce z jednotkové kružnice: V pravoúhlém trojúhelníku je funkce dána podílem přilehlé odvěsny a přepony. Funkce kosinus je funkce, která je dána předpisem f: y = cos a. Poznámky: Funkce sudá: :5:0 40 z 8

42 Funkce se nazývá sekans a, zapisujeme y = sec a ± Funkce tangens Funkce tangens Určení funkce tangens z jednotkové kružnice: :5:0 4 z 8

43 Funkce tangens a je goniometrická funkce definovaná pomocí funkcí sinus a kosinus a má tvar: V pravoúhlém trojúhelníku je funkce dána podílem protilehlé a přilehlé odvěsny. Poznámky: Funkce rostoucí: :5:0 4 z 8

44 ± Funkce kotangens Funkce kotangens Určení funkce z jednotkové kružnice: Funkce y = cotg a je goniometrická funkce, která je definována pomocí funkcí sinus a kosinus a má tvar: V pravoúhlém trojúhelníku je funkce definována jako podíl přilehlé odvěsny a protilehlé odvěsny :5:0 43 z 8

45 Poznámky: Funkce klesající: ± Řešení pravoúhlého trojúhelníka Řešení pravoúhlého trojúhelníka Mění-li se v pravoúhlém trojúhelníku velikost úhlu alfa, mění se i poměry délek stran v tomto trojúhelníku. Proto jsou v pravoúhlém trojúhelníku definovány tyto vztahy pro goniometrické funkce ostrého úhlu: :5:0 44 z 8

46 Pozn.: Veškeré výpočty goniometrických funkcí budeme provádět zpravidla na kalkulačce a výsledky budeme udávat s přesností na čtyři platné číslice. Respektujeme přitom správné zaokrouhlení čísel. Za platnou číslici se považuje každá číslice v číslu, která je na pozici počínaje od první nenulové zleva. Pokud nebude zadáno jinak, vždy uvažujeme obvyklé značení v pravoúhlém trojúhelníku, což je: Pravý úhel při vrcholu C, přepona c, odvěsny a, b, ostré úhly při vrcholu A, B. Příklad : V pravoúhlém trojúhelníku ABC s pravým úhlem při vrcholu C je AB = c = 8 cm, BC = a = 5 cm. Vypočti velikosti ostrých úhlů při vrcholech A, B trojúhelníku ABC. Řešení: AB = c = 8 cm BC = a = 5 cm a =? [ ] b =? [ ] a c 5 sin a = 8 sin a = :5:0 45 z 8

47 sin a = 0,65 a = 38 4 a c 5 cos b = 8 cos b = cos b = 0,65 b = 5 9 Závěr: Vnitřní úhel při vrcholu A má velikost 38 4 a vnitřní úhel při vrcholu B má velikost 5 9. Příklad : V pravoúhlém trojúhelníku OPQ s pravým úhlem při vrcholu Q je OQ = p = 5 cm, úhel QOP = Vypočti délku odvěsny PQ = o. Řešení: OQ = p = 5 cm úhel QOP = 35 0 PQ = o =? [cm] tg úhelqop = PQ OQ PQ = OQ. tg úhel QOP PQ = 5. tg 35 0 = 5. 0,7046 = 3,5 (po zaokrouhlení) PQ = 3,5 cm (po zaokrouhlení) Závěr: Délka odvěsny je přibližně 3,5 cm. Příklad 3: Nejvyšší přípustné stoupání silnic je dáno poměrem : 8. Pod jakým největším úhlem může silnice stoupat? Řešení: BC = díl AB = 8 dílů a =? [ ] tga = BC AB tga = 8 tg a = 0,0556 a = 3 Závěr: Úsek silnice může stoupat nejvýše pod úhlem :5:0 46 z 8

48 ± Řešení pravoúhlého trojúhelníka - procvičovací příklady. V pravoúhlém trojúhelníku EFG jsou dány délky odvěsen FG = e = 0,4 m a EG = f = 6,8 m. Vypočti velikosti jeho ostrých úhlů při vrcholech E a F. Úhel při vrcholu E má velikost a úhel při vrcholu F má velikost Rampu u skladu zboží drží 4 stejné ocelové vzpěry, jedna z nich je nakreslena na obrázku. Kolik metrů ocelové trubky čtvercového průřezu se spotřebovalo k výrobě všech čtyř vzpěr, jestliže se jejich spotřeba úpravou ve svárech zvýšila o 7 procent? 478 m 3. Úhlopříčka obdélníkového půdorysu chaty je dlouhá 0 m a s kratší stranou tohoto půdorysu svírá úhel 60. Vypočti obsah půdorysu chaty. 43,3 m V kosočtverci ABCD je úhlopříčka AC = e = 4 cm a úhel SAB = e = 8 ; S je průsečík úhlopříček AC a BD. Vypočtěte obvod kosočtverce ABCD. 54 cm V rovnoramenném trojúhelníku XYZ je dána délka jeho základny XY = z = 9 cm a velikost úhlu úhel XYZ = Vypočti obsah tohoto trojúhelníku. 4,3 cm Před rovinným zrcadlem jsou dva body A, B vzdálené od sebe 36 cm. Vzdálenost bodu A od zrcadla je 7 cm, bodu B 8 cm. Pod jakým úhlem je třeba vést světelný paprsek (jde o úhel mezi rovinou zrcadla a paprskem) bodem A, aby po odrazu procházel bodem B? :5:0 36, 47 z 8

49 7. Řešte pravoúhlý trojúhelník ABC, jehož přepona je AB a platí: a = 4 cm, c = 30 cm. b = 8 cm, a = 53 08, b = 36 5, g = Průměr podstavy válce je 36 cm. Velikost úhlu w, který svírá úhlopříčka osového řezu s výškou válce v, je 30. Vypočti povrch válce cm 9. V pravoúhlém trojúhelníku ABC s přeponou AB je dáno: b = 30 cm, b = 67. Vypočti délku odvěsny a.,7 cm V pravoúhlém trojúhelníku ABC je délka přepony AB = c = 6,9 cm a úhel CAB = a 34. Vypočti délky odvěsen AC a BC. a = 3,9 cm, b = 5,7 cm 467. Stavební materiál byl na stavbu dopravován transportérem dlouhým 0 m pod úhlem w = 0. Do jaké výšky v metrech byl tento materiál dopravován? (Obloukovité zakončení transportéru neber v úvahu.) 46. 3,4 m Délka a šířka obdélníku jsou v poměru 8 : 5. Jak velké úhly svírá úhlopříčka obdélníku s jeho stranami? S delší stranou 3, s kratší stranou :5: z 8

50 3. Jedna část střechy má tvar obrazce složeného z obdélníku a z kosodélníku (viz obrázek). Vypočti spotřebu tašek na její pokrytí, počítá-li se s 8 taškami na jeden metr čtverečný a s osmi procenty tašek navíc z důvodu jejich tvarové úpravy ks Stabilitu roury na vodorovné podložce zabezpečuje ocelové lano, které rouru obepíná. Lano je ukotveno v bodech A, B. Platí AT = BT ; T je bod dotyku roury s podložkou. Vypočítejte délku lana od bodu A do bodu B, jestliže vnější průměr roury se rovná 44 cm a velikost úhlu T3ST je rovna 90 ; S je střed kruhového průřezu rourou, který je kolmý na osu roury ,8 cm 5. Řešte pravoúhlý trojúhelník ABC, jehož přepona je AB a platí: a = 48 30, c = 3, m a =,40 m, b =, m, b = 4 30, g = Řešte pravoúhlý trojúhelník ABC, jehož přepona je AB a platí: a = 63 0, a = 6,7 m b = 3,39 m, c = 7,5 m, b = 6 50, g = :5:0 49 z 8

51 7. Na obrázku jsou narýsovány tečny t a t z bodu P ke kružnici k(s; 3 cm). Platí: PS = 9,6 cm. Vypočti délku tětivy TT ,7 cm 8. Přímá železniční trať stoupla na vzdálenosti 00 m (měřeno ve vodorovné poloze) o,4 m. Vypočítej velikost úhlu stoupání. 0, Profil příkopu na obrázku je rovnoramenný lichoběžník se základnami dlouhými 60 cm a 80 cm. Sklon boční stěny příkopu je 80. Vypočti hloubku příkopu ,7 cm Tělesová úhlopříčka ukvádru je dlouhá 9,7 dm a s podstavnou úhlopříčkou u svírá úhel a = 4. Vypočti výšku kvádru v :5: ,5 dm 50 z 8

52 . Krov dlouhý 6,6 m přesahuje přes okraj zdi 60 cm své délky a s rovinou půdy svírá úhel 4 (viz obrázek). O kolik centimetrů by se snížila výška půdy v, kdyby tentýž krov přesahoval přes okraj zdi 75 centimetrů své délky?. 479,8 cm Vypočti obsah kosočtverce ABCD, je-li tangens úhlu ABD roven Ö5 a AC = 4 cm., cm 47 ± Tabulka důležitých hodnot gon. funkcí Tabulka důležitých hodnot goniometrických funkcí ± Goniometrické funkce úhlů větších než 90 Goniometrické funkce úhlů větších než 90 Určíme snadno z jednotkové kružnice na základě znalosti úhlů do :5:0 5 z 8

53 Všimněme si, že pro základní úhel a vychází funkce sinus jako svislá úsečka (označena červeně) a funkce kosinus jako vodorovná úsečka (označena modře). Navíc pro základní úhel a je funkce sinus "krátká" úsečka a funkce kosinus "dlouhá" úsečka. Toho všeho využijeme pro určení dalších vzorců. Obrázek naší jednotkové kružnice využijeme pro určení vzorců pro úhly velikosti (90 + a). Pro určení dalších vzorců budou úvahy analogické, proto už budou pouze popsány slovy (bez náčrtku jednotkové kružnice). Platí tedy: sin (90 + a) = červená (svislá) úsečka; protože je dlouhá, jde tedy o kosinus a protože směřuje do kladné poloosy, je výsledek kladný Závěr: sin (90 + a) = cos a cos (90 + a) = (modrá) vodorovná úsečka; protože je krátká, jde o sinus a protože směřuje do záporné poloosy, je výsledek záporný Závěr: cos (90 + a) = - sin a Hodnoty tangens a kotangens určíme z právě uvedených hodnot funkcí sinus a kosinus pomocí známých vzorců: sin (90 + a ) cos a = = -cotg a cos(90 + a ) - sin a cos(90 + a ) - sin a cotg (90 + a ) = = = -tga sin (90 + a ) cos a tg (90 + a ) = Nyní budeme zkoumat hodnoty úhlu (80 -a): Úvahy z jednotkové kružnice jsou analogické :5:0 5 z 8

54 sin (80 - a) = červená (svislá) úsečka; protože je krátká, jde tedy o sinus a protože směřuje do kladné poloosy, je výsledek kladný Závěr: sin (80 - a) = sin a cos (80 - a) = (modrá) vodorovná úsečka; protože je dlouhá, jde o kosinus a protože směřuje do záporné poloosy, je výsledek záporný Závěr: cos (80 - a) = - cos a sin (80 - a ) sin a = = - tg a cos(80 - a ) - cos a cos(80 - a ) - cos a cotg (80 - a ) = = = -cotg a sin (80 - a ) sin a tg (80 - a ) = Nyní budeme zkoumat hodnoty úhlu (80 + a): Úvahy z jednotkové kružnice jsou analogické. sin (80 + a) = červená (svislá) úsečka; protože je krátká, jde tedy o sinus a protože směřuje do záporné poloosy, je výsledek záporný Závěr: sin (80 + a) = - sin a cos (80 + a) = (modrá) vodorovná úsečka; protože je dlouhá, jde o kosinus a protože směřuje do záporné poloosy, je výsledek záporný Závěr: cos (80 + a) = - cos a sin (80 + a ) - sin a = = tg a cos(80 + a ) - cos a cos(80 + a ) - cos a cotg (80 + a ) = = = cotg a sin (80 + a ) - sin a tg (80 + a ) = Nyní budeme zkoumat hodnoty úhlu (70 - a): Úvahy z jednotkové kružnice jsou analogické. sin (70 - a) = červená (svislá) úsečka; protože je dlouhá, jde tedy o kosinus a protože směřuje do záporné poloosy, je výsledek záporný Závěr: sin (70 - a) = - cos a cos (70 - a) = (modrá) vodorovná úsečka; protože je krátká, jde o sinus a protože směřuje do záporné poloosy, je výsledek záporný Závěr: cos (70 - a) = - sin a sin (70 - a ) - cos a = = cotg a cos(70 - a ) - sin a cos (70 - a ) - sin a cotg (70 - a ) = = = tg a sin (70 - a ) - cos a tg (70 - a ) = Nyní budeme zkoumat hodnoty úhlu (70 + a): Úvahy z jednotkové kružnice jsou analogické. sin (70 + a) = červená (svislá) úsečka; protože je dlouhá, jde tedy o kosinus a protože směřuje do záporné :5:0 53 z 8

55 poloosy, je výsledek záporný Závěr: sin (70 + a) = - cos a cos (70 + a) = (modrá) vodorovná úsečka; protože je krátká, jde o sinus a protože směřuje do kladné poloosy, je výsledek kladný Závěr: cos (70 + a) = sin a sin (70 + a ) - cos a = = -cotg a cos(70 + a ) sin a cos(70 + a ) sin a cotg (70 + a ) = = = - tg a sin (70 + a ) - cos a tg (70 + a ) = Nyní budeme zkoumat hodnoty úhlu (360 - a): Úvahy z jednotkové kružnice jsou analogické. sin (360 - a) = červená (svislá) úsečka; protože je krátká, jde tedy o sinus a protože směřuje do záporné poloosy, je výsledek záporný Závěr: sin (360 - a) = - sin a cos (360 - a) = (modrá) vodorovná úsečka; protože je dlouhá, jde o kosinus a protože směřuje do kladné poloosy, je výsledek kladný Závěr: cos (360 - a) = cos a sin (360 - a ) - sin a = = - tg a cos(360 - a ) cos a cos(360 - a ) cos a cotg (360 - a ) = = = -cotg a sin (360 - a ) - sin a tg (360 - a ) = Ukázkové příklady: Příklad : Vypočtěte: sin cos 0 + tg 50-0,5 tg 45 Řešení: sin ( ) - cos ( ) + tg (80-30 ) - 0,5. = = - sin 30 - (- cos 30 ) + (- tg 30 ) - 0,5 = =- + - = = 3 6 = = Příklad : Vypočtěte: sin cos ,5. tg tg 495 Řešení: :5:0 54 z 8

56 Při řešení využijeme vlastností, že goniometrické funkce jsou periodické. U funkcí sinus a kosinus můžeme libovolně přičítat (odečítat) periodu 360, resp. její násobky. U funkcí tangens a kotangens můžeme libovolně přičítat nebo odečítat násobky periody, kterou je 80. sin cos ,5. tg tg 495 = sin cos 5 + 0,5. tg 60 + tg 35 = = sin ( ) - cos ( ) + 0,5. tg 60 + tg ( ) = = - sin 60 - (- cos 45 ) + 0,5. tg 60 + (- cotg 45 ) = = = = =- = - ± Goniometrické funkce úhlů větších než 90 - procvičovací příklady , , :5:0 0, z 8

57 , , , , , , , , , :5:0 -,73 56 z 8

58 . 77-0, , , , , , , ± Vztahy mezi goniometrickými funkcemi Vztahy mezi goniometrickými funkcemi Vztahy mezi goniometrickými funkcemi využíváme ke zjednodušování výrazů obsahujících goniometrické funkce a dále i k řešení goniometrických rovnic, jimiž se budeme zabývat později. Přehled důležitých vzorců, které budeme často využívat: :5:0 57 z 8

59 sin x cos x cos x cotg x = sin x tgx = sin (-x) = - sin x cos (-x) = cos x tg (-x) = - tg x cotg (-x) = - cotg x sin x + cos x = tg x. cotg x = sin (x + y) = sin x. cos y + cos x. sin y sin (x - y) = sin x. cos y - cos x. sin y cos (x + y) = cos x. cos y - sin x. sin y cos (x - y) = cos x. cos y + sin x. sin y tgx + tgy - tgx.tgy tgx - tgy tg ( x - y ) = + tgx.tgy tg ( x + y ) = sin x = sin x. cos x cos x = cos x - sin x tg x = tgx - tg x sin x - cos x = cos x + cos x = tg x - cos x = + cos x x+ y x- y cos x+ y x- y sin x - sin y = cos sin x+ y x- y cos x + cos y = cos cos x+ y x- y cos x - cos y = - sin sin sin x + sin y = sin Příklad : :5:0 58 z 8

60 Řešení: Příklad : Řešení: Příklad 3: Řešení: Příklad 4: Řešení: Příklad 5: Řešení: Příklad 6: :5:0 59 z 8

61 Řešení: Příklad 7: Řešení: Příklad 8: Řešení: Příklad 9: Řešení: :5:0 60 z 8

62 Příklad 0: Řešení: ± Vztahy mezi goniometrickými funkcemi - procvičovací příklady :5:0 0 6 z 8

63 :5:0 6 z 8

64 :5:0 63 z 8

65 :5:0 64 z 8

66 :5:0 65 z 8

67 ± Goniometrické rovnice Goniometrické rovnice Goniometrické rovnice jsou takové rovnice, které obsahují neznámou v argumentu goniometrické funkce. Při řešení goniometrických rovnic využijeme vztahů mezi goniometrickými funkcemi, znalosti grafů jednotlivých goniometrických funkcí a dále tabulky důležitých hodnot goniometrických funkcí. Vždy musíme vzít v úvahu periodu jednotlivých goniometrických funkcí. Příklad : Řešte rovnici sin x = 0,5 Řešení: Z tabulky důležitých hodnot goniometrických funkcí víme, že sin x = 0,5 je splněno pro x = 30. Platí tedy, že x= 30 + k.360 Funkce sinus nabývá ale hodnoty 0,5 ještě pro úhel (80-30 ) = 50 (k závěru dospějeme nejsnáze, pokud si představíme průběh grafu funkce sinus). Dostáváme tak druhé řešení: x = 50 + k.360 Obě řešení lze vyjádřit i v obloukové míře: Příklad : Řešte rovnici: sin x = - 3 Řešení: Pokud je hodnota záporná, vytvoříme si nejprve hodnotu pomocnou, a to s kladným znménkem. Řešíme tedy nejprve pomocnou rovnici sin x = 3 Vyjde nám tak pomocný úhel x0 = 60. Protože ale hodnota má být ve skutečnosti záporná, určíme z grafu hodnotu neznámých: x = ( ) + k.360 = 40 + k.360 x = ( ) + k.360 = k.360 I v tomto případě lze oba výsledky vyjádřit v obloukové míře: Příklad 3: Řešte rovnici sin x = 0,5 Řešení: :5:0 66 z 8

68 V tomto případě je vhodné použít substituci: y = x Řešíme pak rovnici sin y = 0,5 Z příkladu č. už víme, že tato rovnice má dvě řešení: y = 30 + k.360 y = 50 + k.360 Vrátíme se k substituci a dostaneme: x = 30 + k.360 a odtud: x = 5 + k.80 x = 50 + k.360 a odtud: x = 75 + k.80 I tyto výsledky lze vyjádřit oba v obloukové míře: Příklad 4: Řešte rovnici: cos 3x. sin x = 0 Řešení: Využijeme věty, že součin se rovná nule tehdy, je-li roven nule alespoň jeden z činitelů. Proto řešení rovnice rozdělíme na dvě části:. část: Řešíme cos 3x = 0 Substituce: y = 3x Rovnice cos y = 0 má řešení: y = 90 + k. 360 y = 70 + k. 360 Vzhledem k tomu, že ale 70 = 3. 90, vidíme, že vlastně lze oba výsledky sloučit do jednoho, protože se vlastně jedná o všechny liché násobky čísla 90. Získáme tak řešení: y = (k + ). 90 Pozn.: Liché násobky vyjadřujeme (k + ), kde k je libovolné celé číslo, a sudé násobky vyjadřujeme k, kde k je libovolné celé číslo. Vrátíme se k substituci a získáme: 3x = (k + ). 90 neboli x = (k + ). 30. část: Řešíme sin x = 0 Substituce: y = x Rovnice sin y = 0 má dvě řešení: y = 0 + k. 360 y = 80 + k. 360 Vzhledem k tomu, že ale 80 =. 90 a 0 = 0. 90, vidíme, že se vlastně vždy jedná o sudé násobky čísla 90 a při představení si grafu zjistíme, že se jedná o všechny sudé násobky čísla 90. Získáme tak opět jediné řešení: y = k. 90 Vrátíme se k substituci a získáme: x = k. 90 neboli x = k. 90 Oba konečné výsledky lze opět vyjádřit v obloukové míře: Příklad 5: :5:0 67 z 8

69 Řešte rovnici: 4cos x + 4cosx - 3 = 0 Řešení: Substituce y = cos x Získáme tak kvadratickou rovnici 4y + 4y - 3 = 0 Zjistíme, že tato kvadratická rovnice má kořeny: y = -,5 a y = 0,5 Vrátíme se k substituci: cos x = -,5 Tato rovnice ale nemá řešení, protože obor hodnot funkce y = cos x je <-; > cos x = 0,5 x = 60 + k. 360 x3 = ( ) + k. 360 = k. 360 Řešením tedy je x = 60 + k. 360, x = k. 360, neboli v obloukové míře: ± Goniometrické rovnice - procvičovací příklady. 80 Řešte rovnici:. 85 Řešte rovnici: 3. Řešte rovnici: sin x = 3cos x Řešte rovnici: Řešte rovnici: :5:0 68 z 8

70 Řešte rovnici: Řešte rovnici: tg x = 8. Řešte rovnici: cos x = cos x Řešte rovnici: 0. Řešte rovnici: sin x +,5cos x =,5sin x. cos x 80. Řešte rovnici: 3cos x - sin x - sin x = Řešte rovnici: Řešte rovnici: Řešte rovnici: Řešte rovnici: Řešte rovnici: :5:0 69 z 8

71 7. 8 Řešte rovnici: 8. Řešte rovnici: sin x. cos x == 0, Řešte rovnici: 7sin x + 4cos x = Řešte rovnici:. 83 Řešte rovnici:. 807 Řešte rovnici: 3. Řešte rovnici: sin x + sin x - = Řešte rovnici: Řešte rovnici: Řešte rovnici: Řešte rovnici: :5:0 70 z 8

72 8. 8 Řešte rovnici: Řešte rovnici: Řešte rovnici: Rovnice nemá řešení. 809 Řešte rovnici: 3. Řešte rovnici: sin x - sin x. cos x - cos x = Řešte rovnici: cos x = cos x Řešte rovnici: Řešte rovnici: Řešte rovnici: Řešte rovnici: :5:0 7 z 8

73 38. 8 Řešte rovnici: 39. Řešte rovnici: 6sin x + 3sin x. cos x - 5cos x = Řešte rovnici: sin x. cotg x = Řešte rovnici: Řešte rovnici: Řešte rovnici: Řešte rovnici: 45. Řešte rovnici: tg x - 3cotg x = Řešte rovnici: cos x = Řešte rovnici: :5:0 7 z 8

74 Řešte rovnici: cotg 6x = Řešte rovnici: 50. Řešte rovnici: sin x. ( + cos x) = Řešte rovnici: 5. Řešte rovnici: sin x - cos x + sin x = Řešte rovnici: sin x = 3sin x ± Sinová věta Sinová věta Věta: V trojúhelníku ABC platí: a : b : c = sina : sinb : sing Lze zapsat i jinak: a sin a = b sin b ; b sin b = c sin g ; c sin g = a sin a nebo a b c = = sin a sin b sin g Důkaz: :5:0 73 z 8

75 Volme jednotkovou kružnici. Platí: BC = a = a r Použijeme pro trojúhelník ZBC Pythagorovu větu: a = sin a + ( - cos a ) = sin a + - cos a + cos a = r = - cosa =.( - cos a ) =. sin a + cos a - cos a + sin a = BC = ( ) =. sin a = 4 sin a a = 4 sin a r a, r, sina jsou kladné hodnoty, proto můžeme odmocnit a dostaneme: a = r sin a Obdobně bychom dokázali: c b = r = r sin g sin b ; Odtud tedy platí: a b c = = sin a sin b sin g Slovní vyjádření věty: Poměr dvou stran v trojúhelníku je roven poměru sinů protilehlých úhlů. Užití sinové věty: Známe-li buď dva úhly a jednu stranu nebo dvě strany a úhel ležící proti jedné z nich :5:0 74 z 8

76 Sinová věta platí pro obecný trojúhelník, nikoliv tedy jen pro trojúhelník pravoúhlý. Příklad : Řešte trojúhelník ABC, je-li dáno: a = 3,07 m b = g = Známe stranu a, proto potřebujeme znát i úhel ležící proti ní. Snadno ho vypočteme: a = 80 - (b + g ) = 80 - ( ) = = = 4 7 a b = sin a sin b a. sin b b= sin a 3,07. sin b= sin 4 7 b = 65,9 m a c = sin a sin g a. sin g c= sin a 3,07. sin c= sin 4 7 c = 73,45 m V zadaném trojúhelníku má tedy úhel a velikost 4 7, strana b je dlouhá 65,9 metru a strana c má délku 73,45 m. ± Sinová věta - procvičovací příklady m :5:0 46 m 75 z 8

77 3. Určete ostatní úhly v trojúhelníku ABC, je-li dáno: Určete velikost vnitřního úhlu při vrcholu A trojúhelníku ABC, je-li dáno: m Určete velikost vnitřního úhlu při vrcholu B trojúhelníku ABC, je-li dáno: ,3 m 8 9 m ,3 m Určete délku strany b trojúhelníka ABC, je-li dáno:. 5,6 m Určete délku strany c trojúhelníka ABC, je-li dáno: :5: , m 76 z 8

78 3. Určete délku strany a trojúhelníka ABC, je-li dáno: 836 3,75 m Vypočti stranu c, je-li v trojúhelníku ABC dáno: 835,35 m ,8 m ± Kosinová věta Kosinová věta Věta: Pro každý trojúhelník ABC s vnitřními úhly a, b, g, a stranami a, b, c platí: a = b + c - bc.cosa b = a + c - ac.cosb c = a + b - ab.cosg Důkaz: a a = BC = c :5:0 77 z 8

79 b b æb ö BC = ç - cos a + sin a = - cos a + cos a + sin a = c c èc ø b b = + - cos a c c a = b + c - bc.cosa Je-li a > 90, pak cosa = - cos(80 - a) a platí tedy: a = b + c +bc.cos(80 - a) Kosinová věta platí též, podobně jako sinová věta, pro obecný trojúhelník. Příklad : Řešte trojúhelník, je-li dáno: a = 7 cm, c = 4 cm, b = 38 Řešení: a = 7 cm c = 4 cm b = 78 b =? [cm] a =? [ ] g =? [ ] b = a + c - ac.cosb b = cos 78 b = cos 78 b = 53,3576 b = 7,3 cm (po zaokrouhlení) a b = sin a sin b a. sin b sin a = b 7. sin 78 sin a = = 0,9379 7,3 a = 69 4 a c = sin a sin g c. sin a sin g = a 4. sin 69 4 sin g = = 0, g = 3 4 Závěr: Zbývající prvky trojúhelníka jsou b = 7,3 cm, a = 69 4, g = :5:0 78 z 8

80 Poznámka: Úhly a a g můžeme též vypočítat podle Kosinové věty: a = b + c - bc. cos a b + c - a cos a = bc 7, cos a = = 0,3474.7,3.4 a = c = a + b - ab. cos g a + b - c ab 7 + 7,3-4 cos g = = 0, ,3 cos g = g = 3 4 Výsledky jsou tedy přibližně stejné. Nepatrná odchylka vznikla zaokrouhlením úhlů na minuty. Kdybychom počítali ve vteřinách, byly by výpočty přesnější. ± Kosinová věta - procvičovací příklady. Určete velikost úhlu g v trojúhelníku ABC, je-li dáno: a = , b = 683, m, c= 534,7 m Určete velikost úhlu b v trojúhelníku ABC, je-li dáno: a = 40 m, b = 3 m, c= 3 m m m :5: z 8

81 6. Určete velikost úhlu a v trojúhelníku ABC, jehož poměr stran je : 3 : Určete velikost úhlu b v trojúhelníku ABC, je-li dáno: a = 6 m, b = m, c= 7 m N Určete velikost úhlu g v trojúhelníku ABC, jehož poměr stran je 4 : 5 : Určete velikost úhlu b v trojúhelníku ABC, je-li dáno: a = , b = 683, m, c= 534,7 m ,5 m Určete velikost úhlu b v trojúhelníku ABC, jehož poměr stran je : 3 : Určete velikost úhlu a v trojúhelníku ABC, je-li dáno: a = 40 m, b = 3 m, c= 3 m Určete velikost úhlu b v trojúhelníku ABC, jehož poměr stran je : : 3 Trojúhelník neexistuje ,6 m :5:0 5,3 m 80 z 8

82 8. Určete velikost úhlu a v trojúhelníku ABC, jehož poměr stran je : : 3 Trojúhelník neexistuje 873 Určete velikost úhlu a v trojúhelníku ABC, je-li dáno: a = 6,9 m, b = 6 m, c= 7,3 m m. Určete velikost úhlu b v trojúhelníku ABC, je-li dáno: a = 6,9 m, b = 6 m, c= 7,3 m Určete velikost úhlu g v trojúhelníku ABC, je-li dáno: a = 40 m, b = 3 m, c= 3 m Určete velikost úhlu b v trojúhelníku ABC, jehož poměr stran je 4 : 5 : ,3 m Určete velikost strany a v trojúhelníku ABC, je-li dáno: a = , b = 683, m, c= 534,7 m 35,5 m m 8. Určete velikost úhlu g v trojúhelníku ABC, jehož poměr stran je : 3 : Určete velikost úhlu g v trojúhelníku ABC, jehož poměr stran je : : 3 Trojúhelník neexistuje :5:0 8 z 8

83 30. Určete velikost úhlu a v trojúhelníku ABC, jehož poměr stran je 4 : 5 : Určete velikost úhlu g v trojúhelníku ABC, je-li dáno: a = 6,9 m, b = 6 m, c= 7,3 m Určete velikost úhlu g v trojúhelníku ABC, je-li dáno: a = 6 m, b = m, c= 7 m Určete velikost úhlu a v trojúhelníku ABC, je-li dáno: a = 6 m, b = m, c= 7 m ,6 m :5: z 8

84 Obsah Pythagorova věta Pythagorova věta - procvičovací příklady Eukleidovy věty Eukleidovy věty - procvičovací příklady Střední geometrická úměrná a čtvrtá geometrická úměrná Střední a čtvrtá geometrická úměrná - procvičovací příklady Výpočty rovinných útvarů Výpočty rovinných útvarů - procvičovací příklady Goniometrie a trigonometrie Orientovaný úhel Stupňová a oblouková míra Jednotková kružnice Funkce sinus Funkce kosinus Funkce tangens Funkce kotangens Řešení pravoúhlého trojúhelníka Řešení pravoúhlého trojúhelníka - procvičovací příklady Tabulka důležitých hodnot gon. funkcí Goniometrické funkce úhlů větších než 90 Goniometrické funkce úhlů větších než 90 - procvičovací příklady Vztahy mezi goniometrickými funkcemi Vztahy mezi goniometrickými funkcemi - procvičovací příklady Goniometrické rovnice Goniometrické rovnice - procvičovací příklady Sinová věta Sinová věta - procvičovací příklady Kosinová věta Kosinová věta - procvičovací příklady :5:

M - Pythagorova věta, Eukleidovy věty

M - Pythagorova věta, Eukleidovy věty M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

M - Řešení pravoúhlého trojúhelníka

M - Řešení pravoúhlého trojúhelníka M - Řešení pravoúhlého trojúhelníka Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument byl

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

M - Příprava na 2. čtvrtletní písemnou práci

M - Příprava na 2. čtvrtletní písemnou práci M - Příprava na. čtvrtletní písemnou práci Určeno pro třídu ODK. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na

Více

M - Příprava na 3. čtvrtletní písemnou práci

M - Příprava na 3. čtvrtletní písemnou práci M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

M - Příprava na 4. čtvrtletku - třídy 1P, 1VK.

M - Příprava na 4. čtvrtletku - třídy 1P, 1VK. M - Příprava na 4. čtvrtletku - třídy 1P, 1VK. Učebnice určená pro přípravu na 4. čtvrtletní písemnou práci. Obsahuje učivo března až června. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a

Více

M - Planimetrie - řešení úloh

M - Planimetrie - řešení úloh M - Planimetrie - řešení úloh Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

M - Planimetrie pro studijní obory

M - Planimetrie pro studijní obory M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

8. ročník 6. Podobnost. Geometrické funkce v pravoúhlém trojúhelníku 6. Podobnost. Goniometrické funkce v pravoúhlém trojúhelníku

8. ročník 6. Podobnost. Geometrické funkce v pravoúhlém trojúhelníku 6. Podobnost. Goniometrické funkce v pravoúhlém trojúhelníku 6. Podobnost. Goniometrické funkce v pravoúhlém trojúhelníku 6.1. Podobnost geometrických útvarů. Podobností ( podobným zobrazením ) nazýváme takové geometrické zobrazení, je-li každému bodu X přiřazen

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi

Více

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º) 6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,

Více

M - Příprava na 1. čtvrtletku pro třídu 4ODK

M - Příprava na 1. čtvrtletku pro třídu 4ODK M - Příprava na 1. čtvrtletku pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu povoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

M - Příprava na 12. zápočtový test

M - Příprava na 12. zápočtový test M - Příprava na 1. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

Variace Goniometrie a trigonometrie pro studijní obory

Variace Goniometrie a trigonometrie pro studijní obory Variace 1 Goniometrie a trigonometrie pro studijní obory 1. Goniometrie a trigonometrie 2. Orientovaný úhel 2 3 4 3. Stupňová a oblouková míra - procvičovací příklady 1. 1617 2. 1611 3. 1622 4. 1614 5.

Více

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( ) 6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice

Více

Radián je středový úhel, který přísluší na jednotkové kružnici oblouku délky 1.

Radián je středový úhel, který přísluší na jednotkové kružnici oblouku délky 1. Goniometrické funkce Velikost úhlu v míře stupňové a v míře obloukové Vjadřujeme-li úhl v míře stupňové, je jednotkou stupeň ( ), jestliže v míře obloukové, je jednotkou radián (rad). Ve stupňové míře

Více

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu! -----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

M - Příprava na pololetní písemku č. 2

M - Příprava na pololetní písemku č. 2 M - Příprava na pololetní písemku č. Určeno pro třídy SA, SB. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na www.dosli.cz.

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

Opakování ZŠ - Matematika - část geometrie - konstrukce

Opakování ZŠ - Matematika - část geometrie - konstrukce Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie

Více

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE

Více

M - Kvadratické rovnice

M - Kvadratické rovnice M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

Planimetrie pro studijní obory

Planimetrie pro studijní obory Variace 1 Planimetrie pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Planimetrie Planimetrie

Více

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) ) Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina

Více

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151

Více

ARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - TERCIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1

Matematická olympiáda ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7. Zadání úloh Z5 II 1 1 of 9 20. 1. 2014 12:05 Matematická olympiáda - 48. ročník (1998/1999) Komentáře k úlohám druhého kola pro kategorie Z5 až Z7 Zadání úloh Z5 II 1 Do prostředního kroužku je možné zapsat pouze čísla 8

Více

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky

Více

CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 CVIČNÝ TEST 14 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST 1 bod 7x 11 1 Určete hodnotu výrazu pro x = 27. 11 7x 32 2 Aritmetický průměr

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak

Více

Goniometrické rovnice

Goniometrické rovnice Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u

Více

4. GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE 4.1. GONIOMETRICKÉ FUNKCE

4. GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE 4.1. GONIOMETRICKÉ FUNKCE GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE V této kapitole se dozvíte: GONIOMETRICKÉ FUNKCE vztah mezi stupňovou a obloukovou mírou; jak jsou definovány čtyři základní goniometrické funkce:

Více

DIDAKTIKA MATEMATIKY

DIDAKTIKA MATEMATIKY DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní

Více

Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely

Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Kvarta 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Úlohy krajského kola kategorie C

Úlohy krajského kola kategorie C 6. ročník matematické olympiády Úlohy krajského kola kategorie C. Pro libovolná reálná čísla x, y, z taková, že x < y < z, dokažte nerovnost x 2 y 2 + z 2 > (x y + z) 2. 2. Honza má tři kartičky, na každé

Více

Repetitorium z matematiky

Repetitorium z matematiky Goniometrické funkce a rovnice Repetitorium z matematiky Podzim 01 Ivana Medková 1 GONIOMETRICKÉ FUNKCE OSTRÉHO ÚHLU B odvěsna a C β c b přepona. α odvěsna A sin α a c b cos α c a tgαα b b cotg α a délka

Více

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1

Více

Příklad 1. a) lim. b) lim. c) lim. d) lim. e) lim. f) lim. g) lim. h) lim. i) lim. j) lim. k) lim. l) lim ŘEŠENÉ PŘÍKLADY Z M1 ČÁST 7

Příklad 1. a) lim. b) lim. c) lim. d) lim. e) lim. f) lim. g) lim. h) lim. i) lim. j) lim. k) lim. l) lim ŘEŠENÉ PŘÍKLADY Z M1 ČÁST 7 Příklad 1 Pomocí l Hôpitalova pravidla spočtěte následující limity. Poznámka a) lim b) lim c) lim d) lim e) lim f) lim g) lim h) lim i) lim j) lim k) lim l) lim cotg Všechny limity uvedené v zadání vedou

Více

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK M - Příprava na 1. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu dovoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 63 ročník matematické olympiády Úlohy klauzurní části školního kola kategorie 1 Dokažte, že pro každé celé číslo n 3 je n-místné číslo s dekadickým zápisem druhou mocninou některého celého čísla 1 1 8

Více

STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH

STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH RNDr. Milada Rezková RNDr. Vlasta Sudzinová Mgr. Eva Valentová 2016 Předmluva Tento učební text je určen studentům 4. ročníku čtyřletých gymnázií,

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L

Více

4.3.4 Základní goniometrické vzorce I

4.3.4 Základní goniometrické vzorce I .. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

4.3.3 Základní goniometrické vzorce I

4.3.3 Základní goniometrické vzorce I 4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní

Více

Goniometrické funkce v elementární matematice

Goniometrické funkce v elementární matematice Goniometrické funkce v elementární matematice Kapitola : Goniometrie pravoúhlého trojúhelníku In: Radka Smýkalová (author): Goniometrické funkce v elementární matematice. (zech). rno, 06. pp. 0 6. Persistent

Více