Michal Zamboj. December 23, 2016
|
|
- Květa Šmídová
- před 7 lety
- Počet zobrazení:
Transkript
1 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu jde hlavně o pochopení a odůvodnění manipulace s kuželosečkou s cílem její klasifikace, pro podrobné definice viz slidy z přednášky, nebo materiál od M. Holíkové. Obecně. Projektivní vlastnosti Kuželosečka a její matice - projektivní klasifikace: regulární/ singulární, reálná/ imaginární Rovnice kuželosečky c v CP 3 se dá zapsat ako množina bodů X se zástupcem x T = (x, x, x 0 ), pro které platí: a b d x x T Ax = (x, x, x 0 ) b c e x = ax + bx x + cx + dx x 0 + ex x 0 + fx 0 = 0 d e f x ( ) ( 0 ) ( ) b d a d a b označme dále A = A = A 3 = c e b e b c Matici A múžeme převádět současnými řádkovými a sloupcovými úpravami na diagonální matici A vzhledem k polární bázi kuželosečky (viz příklady). Tahle transformace nemění projektivní vlastnosti kuželosečky (mění však metrické vlastnosti!). a 0 0 x x T A x = (x, x, x 0 ) 0 c 0 x = a x + c x + f x 0 = f x 0 Je-li hodnost matice h(a) = h(a ) = 3, anebo det(a), det(a ) 0, tak je kuželosečka regulární, jinak je singulární. Ze signatury (nuly, +, ) matice A, dokážeme dále určit jestli je kuželosečka reálná, nebo imaginární. hodnost signatura R I rovnice projektivní typ h(a) = 3 (0, 3, 0) R bodů x + x + x 0 = 0 imaginární regulární KS h(a) = 3 (0,, ) R body x + x x 0 = 0 reálná regulární KS (el., par., hyp.) h(a) = (,, 0) R bodů x + x = 0 imaginární různoběžky h(a) = (,, ) R body x x = 0 reálné různoběžky h(a) = (,, 0) R body x = 0 reálná -násobná přímka Polární vlastnosti kuželosečky - singulární/ regulární body, pól, polára, tečna body P, Q polárněkonjugované vzhledem ke kuželosečce c: a b d q p T Aq = (p, p, p 0 ) b c e q = 0 d e f q 0
2 P je singulární, je-li polárně konjugován s každým bodem prostoru: a b d 0 p T A = (p, p, p 0 ) b c e = 0 d e f 0 Není-li bod singulární, potom je regulární. Množina bodů x T = (x, x, x 0 ) polárne konjugovaných s regulárním (!) bodem P (pólem) vzhledem ke kuželosečce c je polára: a b d x p T Ax = (p, p, p 0 ) b c e x = ap x + bp x + dp 0 x + bp x + cp x + ep 0 x + dp x 0 + ep x 0 + fp 0 x 0 d e f x 0 = x (ap + bp + dp 0 ) + x (bp + cp + ep 0 ) + x 0 (dp + ep + fp 0 ) = 0 T.j. souřadnice poláry jsou (ap + bp + dp 0 ; bp + cp + ep 0 ; dp + ep + fp 0 ). Polára regulárního bodu na kuželosečce se nazývá tečna a její pól je bod dotyku. Jednoduché tvrzení na ověření: Jestli má kuželosečka singulární bod, potom ním prochází polára libovolného regulárního bodu.. Afinní vlastnosti Afinní klasifikace - počet asymptotických směrů, středová/nestředová Polára nevlastního bodu U se zástupcem (u, u, 0) neležícího (!) na kuželosečce je její průměr: a b d x u T Ax = (u, u, 0) b c e x = x (au + bu ) + x (bu + cu ) + x 0 (du + eu ) = 0 d e f x 0 Střed nalezneme jako průsečík průměrů, které jsou poláry dvou nevlastních bodů (, 0, 0), (0,, 0). Bod (, 0, 0) nám dáva rovnici průměru: ax + bx + dx 0 = 0 Bod (0,, 0) nám dáva rovnici průměru: bx + cx + ex 0 = 0 Souřadnice středu tedy jsou (a, b, d) (b, c, e) = (det A, det A, det A 3 ). Je-li determinant det(a 3 ) = 0, tak střed je nevlastní. Má-li kuželosečka singulární bod, potom je tento bod jejím středem. Má-li kuželosečka vlastní střed, potom ji nazýváme středová, centrická, jinak je nestředová. Má-li kuželosečka reálný nevlastní bod = asymptotický směr A se zástupcem (a, a, 0), pak pro něj (po dosazení do rovnice kuželosečky) platí: ax + bx x + cx = 0 Protože (0, 0, 0) není bodem, tak alespoň jedna souřadnice x x 0 a můžeme ní obě strany rovnice zkrátit. BÚNO x 0 dostávame pak kvadratickou rovnici a x x + b x x + c = 0, která má dva reálné kořeny pro b ac > 0, jeden dvojnásobný kořen pro b ac = 0 a žádný reálný kořen pro b ac < 0. b ac lze taky dostat přímo z matice jako det(a 3 ) resp. stačí upravit matici A 3 na diagonální tvar a získáme tzv. vedlejší signaturu. Polára asymptotického směru kuželosečky se nazývá asymptota - tečna v nekonečnu.
3 hodnost signatura vedlejší signatura rovnice projektivní typ h(a) = 3 (0, 3, 0) (0,, 0) x + x + x 0 = 0 imaginární elipsa h(a) = 3 (0,, ) (0,, 0) x + x x 0 = 0 elipsa h(a) = 3 (0,, ) (0,, ) x x x 0 = 0 hyperbola h(a) = 3 (0,, ) (,, 0) x + x = 0 parabola h(a) = (,, 0) (0,, 0) x + x = 0 imaginární různoběžky h(a) = (,, 0) (,, 0) x + x 0 = 0 imaginární rovnoběžky h(a) = (,, ) (0,, ) x x = 0 reálné různoběžky h(a) = (,, ) (,, 0) x x 0 = 0 reálné rovnoběžky h(a) = (3, 0, 0) (, 0, 0) x x 0 = 0 vlastní a nevlastní přímka (není diag.) h(a) = (,, 0) (,, 0) x = 0 jedna dvojnásobná přímka h(a) = (,, 0) (, 0, 0) x 0 = 0 jedna dvojnásobná nevlastní přímka.3 Metrické vlastnosti Metrická klasifikace - hlavní směry, osy, vrcholy, ohniska a řídící přímka Dva vzájemně kolmé polárně sdružené směry u = (u, u, 0), v = (v, v, 0) (nevlastní body) nazýváme hlavními směry. Platí tedy: u T A a b d v v = (u, u, 0) b c e v = 0 a současně skalární součin u v = u T E v = 0 a taky libovolný λ násobek. d e f 0 Proto: u T λe λ 0 0 v v = (u, u, 0) 0 λ 0 v = 0 = u T A a b d v v = (u, u, 0) b c e v 0 0 λ 0 d e f 0 u T (A λe) v = 0 a hledáme vlastní čísla matice A. Taky je odsud vidět, že stačí hledat vlastní vektory matice A 3. Polára hlavního směru je osa kuželosečky. Průsečík kuželosečky s osou se nazývá vrchol kuželosečky. Ohniska F, F dopočítáme ze vztahů pro elipsu, hyperbolu, kde excentricita je e = F S, velikost hlavní (delší) poloosy je a = AS a velikost vedlejší poloosy je b = BS, kde S je střed kuželosečky. Ohniska zárověň leží na hlavní ose kuželosečky. elipsa: e = a b hyperbola: e = a + b Parabola má jedno ohnisko F ležící na ose, a řídící přímku d, kolmou na osu, pro libovolný bod X paraboly platí dx = F X. Další možnost je využít toho, že tečna je osou průvodičů paraboly F X a přímky procházející bodem X rovnoběžné s osou. Resp. ohniska a řídící útvary lze řešit transformací - posunutí středu (u paraboly vrcholu) do počátku a otočení do osového tvaru (resp. obráceně), t.j. zbavíme se smíšeného členu xy substitucí (otočení): 3
4 x = x cos α y sin α y = x sin α + y cos α vyjádříme x, y: x = x cos α y sin α y = x sin α + y cos α dosadíme do rovnice kuželosečky, ve které se vynuluje člen u x y požadovaný tvar po substituci. U paraboly z vrcholové rovnice y = px platí, že V F = V d = p. a zjistíme velikost α, po dosazení zpátky dostávame Příklady ) Klasifikujte kuželosečku c : x xy + y 4x 0y + 5 = 0 v R Projektivní klasifikace: Přepíšeme do homegenních souřadnic: x x x + x 4x x 0 0x x 0 + 5x 0 = 0. 7 Matice kuželosečky: A = det A = 44 regulární. Jestli je reálná nebo imaginární zjistíme z dalších výsledků. Druhá možnost je transformovat vzhledem ke polární bázi a zjistit signaturu = (0,,), t.j. je reálná. Afinní klasifikace: Asymptotické směry: det A 3 = 0 a kuželosečka má jeden dvojnásobný asymptotický směr. x =, x =, t.j. A = (,, 0). x x = ( b a ) = =, a Už ted je vidět, že kuželosečkou je parabola a nemá vlastní střed - nestředová, resp. střed je A. Stejný výsledek dostáváme použitím vzorečku pro střed S = (det A, det A, det A 3 ) = (,, 0). Asymptota paraboly je nevlastní přímka, resp. spočítat jako poláru asymptotického směru: 4
5 7 A T A = (,, 0) 5 = (0, 0, ) = (0, 0, ) t.j. x 0 = Metrická klasifikace: Hlavní směry ( jsou vlastní ) čísla matice A 3 : λ det A 3 = det = λ(λ ) = 0 λ = 0, λ = λ ( Pro λ ) = 0 dostáváme:, vlastní vektor je tedy (, ) t.j. směr (,, 0) = A ( Pro λ ) = dostáváme:, vlastní vektor je tedy (, ) t.j. směr (,, 0) = B Osa určená směrem A je právě nevlastní asymptota viz výpočet výš. Osa určená směrem B je: 7 B A T = (,, 0) 5 = (,, ) = (,, ) t.j. o : x + x + x 0 =
6 Průsečík osy a kuželosečky je: Pro x 0 = x = x a dosadíme do c : x x (x ) + (x ) 4x 0(x ) + 5 = 4x + 36 = 0 x = 3 V = ( 3,, ) Chceme-li dopočítat ohnisko F a řídící přímku, tak využijeme např. přímku - průvodič p : x x = 0, která protne kuželosečku c v bodě M: x x + x 4x 0x + 5 = 4x + 5 = 0 x = 5 5 4, M = ( 4, 5 4, ) spočítáme tečnu v bodě M: 7 ( 5 4, 5 4, ) 5 = ( 7, 5, 5 ) = ( 4, 0, 5)
7 Pro jednoduchost převedeme tečnu t M a průvodič p do R. Dopočítáme druhý průvodič jako přímku osově souměrnou s přímkou p o ose t M, stačí nám k tomu obraz O = [x, y ] bodu O = [0, 0]: x = = ; y = = 5 74 Bodem M a bodem O vedeme druhý průvodič ( 5 o q = [3, ] = F. 4, 5 4, ) ( 75 74, 5 74, ) = ( 3, 47, 5) q : 3x+47y 5 = 0. Průsečík ) Klasifikujte kuželosečku c : 4x 4xy + y x + y = 0 v R a určete poláru bodu [0, 0] vzhledem k c. Projektivní klasifikace: Přepíšeme do homogenních souřadnic: 4x 4x x + x x x 0 + x x 0 x 0 = 0 7
8 4 Matice kuželosečky: A = det A = 0 singulární. Transformujeme kuželosečku vzhledem k polární bázi: A = signatura je (,, ), t.j. kuželosečka je reálná. Singulární bod kuželosečky: 4 0 (p, p, p 0 ) = 0 (,, 0) 0 Afinní klasifikace: Její vedlejší signatura je (,, 0) a jde tedy o dvě reálné různoběžky. Vlastní střed kuželosečka nemá, je tedy nestředová. Asymptotický směr kuželosečky je dvojnásobný: 4x 4x x + x = (x x ) = 0 A = (,, 0) Metrická klasifikace: Hlavní směry: ( ) 4 λ det A 3 = det = λ(λ 5) = 0 λ = 0, λ = 5. λ ( Pro λ = 0) dostáváme: 4, vlastní vektor je tedy (, ) t.j. směr (,, 0) = A ( Pro λ = 5) dostáváme:, vlastní vektor je tedy (, ) t.j. směr (,, 0) = B 4 Protože A je nevlastním singulárním bodem kuželosečky, tak osou vzhledem k A je libovolná přímka kolmá na tento směr, např. o : x + x = 0. Osa určená směrem (,, 0) je: 4 B A T = (,, 0) = ( 4,, ) o : 4x + x + = 0 Polára p bodu O = (0, 0, ) je: 4 (0, 0, ) = (,, 4) x + x 4x 0 = 0 t.j. p : x + y 4 = 0. 8
Michal Zamboj. January 4, 2018
Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu
Podrobnější výklad tématu naleznete ve studijním textu, na který je odkaz v Moodle. Tam je téma
Kuželosečky a kvadriky - výpisky + příklady Postupně vznikající text k části předmětu Geometrie. Ve výpiscích naleznete výpisky z přednášky, poznámky, řešené příklady a příklady na procvičení. Podrobnější
KMA/G2 Geometrie 2 9. až 11. cvičení
KMA/G2 Geometrie 2 9. až 11. cvičení 1. Rozhodněte, zda kuželosečka k je regulární nebo singulární: a) k : x 2 0 + 2x 0x 1 x 0 x 2 + x 2 1 2x 1x 2 + x 2 2 = 0; b) k : x 2 0 + x2 1 + x2 2 + 2x 0x 1 = 0;
obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].
Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
17 Kuželosečky a přímky
17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Analytická geometrie kvadratických útvarů v rovině
Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme
1.13 Klasifikace kvadrik
5 KAPITOLA 1. KVADRIKY JAKO PLOCHY. STUPNĚ 1.13 Klasifikace kvadrik V této části provedeme klasifikaci kvadrik. Vyšetříme všechny případy, které mohou různou volbou koeficientů v rovnici kvadriky a 11
Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,
5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu
Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost
Kuželosečky Kružnice Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost (poloměr r).?! Co získáme, když v definici výraz stejnou nahradíme stejnou nebo
1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
Důkazy vybraných geometrických konstrukcí
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32
Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Kuželoseč ky. 1.1 Elipsa
Kuželoseč ky 1.1 Elipsa Definice: Elipsa je množina všech bodů v 2, které mají od dvou pevných (různých) bodů v 2, zvaných ohniska (značíme F 1, F 2 ), stálý součet vzdáleností rovný 2a, který je větší
Kuželosečky. Kapitola Elipsa
Kapitola 4 Kuželosečky 4.1 Elipsa DEFINICE 4.1.1. Množinu všech bodů v rovině E, které mají od dvou různých pevně zvolených bodů F 1, F konstantní součet vzdáleností a, nazýváme elipsa; tj. k e = {X E
Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,
Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
9.1 Definice a rovnice kuželoseček
9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma: Analytická geometrie
Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.
Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
JAK NA HYPERBOLU S GEOGEBROU
Trendy ve vzdělávání 015 JAK NA HYPERBOLU S GEOGEBROU KRIEG Jaroslav, CZ Resumé Článek ukazuje, jak pomocí GeoGebry snadno řešit úlohy, které vedou na konstrukci hyperboly, případně jak lehce zkonstruovat
Kuželosečky. Klasické definice. Základní vlastnosti. Alča Skálová
Kuželosečky Alča Skálová Klasické definice Elipsa je množina všech bodů v rovině, majících od dvou pevně daných různých bodů E, F(ohnisek)konstantnísoučetvzdáleností2a,kde2a > EF =2e. Parabola je množina
Kuželosečky a kvadriky ve škole i kolem
Kuželosečky a kvadriky ve škole i kolem nás Bc. Aneta Mirová Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím
6 Samodružné body a směry afinity
6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný
Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.
3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě
SBÍRKA PŘÍKLADŮ NA TÉMA KUŽELOSEČKY
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky Diplomová práce SBÍRKA PŘÍKLADŮ NA TÉMA KUŽELOSEČKY Autor práce: Bc. Žaneta Mifková Vedoucí práce: prof. RNDr. Pavel Pech,
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky
Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr
Lineární algebra : Vlastní čísla, vektory a diagonalizace
Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
ANALYTICKÁ GEOMETRIE HYPERBOLY
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ANALYTICKÁ
Deskriptivní geometrie 1
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 22. září 2009 verze 3.0 Předmluva Tento pomocný
Katedra matematiky. Geometrie pro FST 1. Plzeň 1. února 2009 verze 6.0
Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 1. února 2009 verze 6.0 Předmluva Tento pomocný text vznikl pro potřeby předmětu Geometrie
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna
Rovnice přímky vypsané příklady. Parametrické vyjádření přímky
Rovnice přímky vypsané příklady Zdroj: Vše kromě příkladu 3.4: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=parametrickevyjadre ni Příklady 3.5 a 3.7-1 a 3: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=obecnarovnice
Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
KVADRATICKÉ PLOCHY a jejich reprezentace v programu Maple. Roman HAŠEK, Pavel PECH
KVADRATICKÉ PLOCHY a jejich reprezentace v programu Maple Roman HAŠEK, Pavel PECH Jihočeská univerzita v Českých Budějovicích 1 Obsah Předmluva 4 1 Kvadriky jako plochy. stupně 9 1.1 Úvod.................................
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
May 31, Rovnice elipsy.notebook. Elipsa 2. rovnice elipsy. SOŠ InterDact Most, Mgr.Petra Mikolášková
Elipsa 2 rovnice elipsy SOŠ InterDact Most, Mgr.Petra Mikolášková 1 Název školy Autor Název šablony Číslo projektu Předmět SOŠ InterDACT s.r.o. Most Mgr. Petra Mikolášková III/2_Inovace a zkvalitnění výuky
Analytická geometrie. c ÚM FSI VUT v Brně
19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =
ANALYTICKÁ GEOMETRIE ELIPSY
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ANALYTICKÁ
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
37. PARABOLA V ANALYTICKÉ GEOMETRII
37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná
[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
Linearní algebra příklady
Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového
PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2
PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku
Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.
KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový
ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
Matematika I, část I Vzájemná poloha lineárních útvarů v E 3
3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů
SBÍRKA PŘÍKLADŮ NA KVADRATICKÉ PLOCHY
Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky Bakalářská práce SBÍRKA PŘÍKLADŮ NA KVADRATICKÉ PLOCHY Autor práce: Žaneta Mifková Vedoucí práce: prof. RNDr. Pavel Pech,
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a
DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x
Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
Obrázek 34: Vznik středové kolineace
6 Středová kolineace Jak naznačuje Obr. 34, středová kolineace (se středem S), jako vzájemně jednoznačné zobrazení Ē 2 na sebe, je výsledkem středového průmětu (se středem S ) středového promítání (se
Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.
Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n
LINEÁRNÍ ALGEBRA A GEOMETRIE III. Doc. RNDr. Martin Čadek, CSc.
LINEÁRNÍ ALGEBRA A GEOMETRIE III. Doc. RNDr. Martin Čadek, CSc. Obsah Úvod 1 Sylabus přednášky 2 1. Afinní a projektivní prostory 3 2. Nadkvadriky v afinním a projektivním prostoru 11 3. Metrické vlastnosti
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE Diplomová práce Řezy rotačních těles v projekcích Vedoucí diplomové práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání:
Otázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
ROVNICE KUŽELOSEČEK A KVADRIK V OBECNÉ POLOZE.
ROVNICE KUŽELOSEČEK A KVADRIK V OBECNÉ POLOZE. Bakalářská práce Studijní program: Studijní obory: Autor práce: Vedoucí práce: B1101 Matematika 7504R015 Matematika se zaměřením na vzdělávání 7507R036 Anglický
7 Analytická geometrie v rovině
7 Analytická geometrie v rovině Myslím, tedy jsem (René Descartes) 71 Úsečka V kapitole 51 jsme zavedli pojem souřadnice v rovině pro potřeby konstrukce grafů funkcí Pomocí souřadnic lze ovšem popisovat
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
M - Analytická geometrie pro třídu 4ODK
M - Analytická geometrie pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE Tento dokument
P ˇ REDNÁŠKA 3 FUNKCE
PŘEDNÁŠKA 3 FUNKCE 3.1 Pojem zobrazení a funkce 2 3 Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic (x, y) A B,
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.
AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna
Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
MONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
Sbírka úloh z matematiky
Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika
Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.
Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,
Obsah. Metodický list Metodický list Metodický list Metodický list
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti
x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
Kuželosečky. Copyright c 2006 Helena Říhová
Kuželosečk Copright c 2006 Helena Říhová Obsah 1 Kuželosečk 3 1.1 Kružnice... 3 1.1.1 Tečnakekružnici..... 3 1.2 lipsa.... 4 1.2.1 Rovniceelips...... 5 1.2.2 Tečnakelipse... 7 1.2.3 Konstrukceelips.....
KFC/SEM, KFC/SEMA Elementární funkce
Elementární funkce Požadované dovednosti: lineární funkce kvadratická funkce mocniná funkce funkce s asolutní hodnotou lineárně lomená funkce exponenciální a logaritmická funkce transformace grafu Lineární