Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt
|
|
- Daniel Neduchal
- před 6 lety
- Počet zobrazení:
Transkript
1 DALŠÍ TYPY VLN Iotozvukové vly (elektostatiké ízkofekvečí vly) jsou to podélé vly podobé klasikému zvuku v plyu ω γ kt k M B s = = plazma zvuk pomalý po elektoy, yhlý po ioty hustota elektoů je v každém okamžiku ovovážá po okamžiku v ovováze s okamžitým poteiálem eφ eφ e = exp = kt B e kt B e eφ kt i B e = elektoy jsou izotemálí ( γ = ) = Z po ioty pohybové ovie iω = ikv i i i p iω Mv = + ZeE i i i E = Φ = ikφ Poissoova ovie eí potřeba ( ) ε Φ = Ze e = e Z i i pomalý pohyb kvazieutalita Zi = V
2 eφ kt = Φ = B e kt B e e po zahovaí kvazieutality suma sil a elektoy = kt ee e p ikk T B e = Φ = e = = B e E iωmiv i = ikγ ikbt i i ikkbtezi - pohyb iotů s použitím kotiuity obvykle ioty adiabatiké γ i = 5/3 γ ikt B i + ZkT B e ω = k M s ZT T Pokud je e i, pak je silý bezesážkový útlum a ioteh, fázová yhlost s iotová tepelá yhlost Iotozvukové vly po ZTe >> Ti slabě tlumeé zvuková yhlost s ZkBT M Použité plazmatiké přiblížeí eplatí po velká k v důsledku velkýh ω. Poto odvodíme disp. vztah bez plazmatikého přiblížeí E = Φ = k Φ = e Z / ε e ( ) i e = eφ e kt B e V
3 dosadíme do Poissoovy ovie e Ze Φ k + = εkt B e ε i Ze λ i De ε + k λde Φ = dosadíme poteiál Φ do pohybové ovie iotů ω Zk T γ k T = + k M k M B e i B i + λde dispezí vztah iotozvuk. vl se liší je čleem k λ De ejjedodušší vztah po k >> a T = λ De i ω Ze Z e = i ω pi εm = εm = iotová plazmová fekvee V 3
4 Elmg. vly v plazmatu bez vějšího magetikého pole B Maxwellovy ovie B E = t E B = ε + µ t j převedeme a vlovou ovii E ( E ) + = t j t εµ µ vyjádříme vysokofekvečí poud v ee ee e = j = i E imeω meω hustota elektoů se eměí (kotiuita = ) A = A A využijeme idetity ( ) gad div E E + = fázová e iµ t meω t ω ω p = = e E ω t k E E k ε t k = ωµεε = ω( e / ) / t = + ε ( ω) ω ω p k ω v / k ϕ = = + ω p k gupová ω p = ε = εε ω dω dk v g = = k/ ω = /vϕ t V 4
5 po ω ω p k < < vla se ešíří, do plazmatu poiká pouze ski-efektem po ω ω p + k a dohází k úplému odazu (mezí fekvee) ε mω = e Re( ε ) = - kitiká hustota = m -3 λ=,6 µm (Nd-lase) = 9 m -3 λ=,6 µm (CO -lase) = 5 m -3 λ=,6 m (m vly) A. Kolmý dopad elmg. vly a ovié plazma B ot E + = t D ot B µ = t E E µεε = t ot ot = gad div div D= = ε div E+ E ε div E = ω i E t i t e ω pokud haakt. čas změ hustoty >> ε ( xt, ) ε ( x) τ ω V 5
6 E ω ω + ε E = k = ε x staioá.vl.e ε λ << ε ε pomalu poměé v postou WKB přiblížeí E = E x e + E x e i kdx ( ) ( ) + i kdx '' E+ k E + i kdx E = k E ik i E e x x.řád x. řád. řád. řád ω ke+ ε E+ = splěo. řád E + k ik + i E+ = x x 4 E k ε E+ i kdx E i kdx E = e + e 4 4 ε ε WKB řešeí (žádý odaz!!) Existují pofily, kde WKB řeší úlohu přesě Okolí kitikého bodu ε - WKB eplatí alezeme řešeí po lieáí pofil hustoty e elativí pemitivita ε = ax + is kde S ν = ω hustota plazmatu tedy oste ve směu osy x pole musí jít k po x V 6
7 E ω + ( ax + is ) E = x ( ξ ) E = 3Aa i 3 ω d E ξ = ( ax + is ) + ξe = a dξ Existuje přesé řešeí splňujíí okajovou podmíku a i = Aiyho fuke 3 3 Re(ξ) > Aξ J ξ + J ξ = 3 3 ( ) ( ) A ξ I ( ) ξ + I ξ Re(ξ) < B. Šikmý dopad vly a ezoačí absope ω si = x + y x + k k k k Re ε = si bod odazu ( ) θ θ V 7
8 E B TE vla = s-polaizae p-polaizae E ε B E p-polaizae TM vla = E x db dε db ω div E + ( ε si θ ) B = dx ε dx dx kb y siθ B = = ωµ ε µε ε v kitiké ploše sigulaita Rezoačí absope t l (příčá elmg. vla se měí v podélou plazmovou) - l emůže z plazmatu uikout absope sážkami ebo bezesážkově v piipu lieáí jev existuje i při malýh I ν při A= f η ( ) 3 η = kl si θ ω ( ) θ Ex x kolmý dopad eí E x L Ex x bod odazu daleko od x V 8
9 ( ) ( ) osθ B 3 ( )( kl ) B x 3 6 Γ (po malá η) 3 η << η >> A = η η A = exp η exp η 3 3 maximálí A.5 při η ε x = i ν ω sážky ( ) Šířka maxima siθ Ez( x) = B( x) ν ε µ ω L ν ν = = L ω ω Absobovaá eegie / ω ν ei ν ω ων si θ ν E dz Ez( x) B ( x) L = = ω ω ω ω / ν ω = ωb x L ezávisí a ν ( ) Teplé plazma (postoová dispeze pole) t 3v Te ε D= ε E+ gad dive dive ε 3ε V 9
10 plazmová vla se síří z kitiké plohy do řidšího plazmatu, při poklesu hustoty oste vlové číslo k a klesá tedy v ϕ stae se sovatelou s tepelou yhlostí Ladaův útlum při vyššíh itezitáh je útlum plazmové vly elieáí mehaismem lámáí vl (wavebeakig) vede k předáí eegie malé skupiě tzv. hokýh (yhlýh) elektoů elektoy uyhlováy především k haii plazmatu s vakuem, kde se většia elektoů odazí v elektostatikém poli dvojvstvy ( sheath ) zpět do teče V
11 Nelieaity při šířeí elektomagetikýh vl v plazmatu ε e ω e = = ε m ω ω e p A. me elativistiká elieaita m e pokud v os m = e e v e EL me ω << m (v os >> v Te ) e e E e L ε = εmeω me ω elieaita δε EL / ω Iλ - kvadatiká elieaita B. e - změu hustoty způsobí pod. síla ebo gad tlaku a) podeomotoiká elieaita F = ρ ρ p ε E ε E ρ = 4ρ Fp p = podeomotoiká síla vytlačuje plazma z oblasti itezivího pole vzike gad hustoty gad tlaku v ovováze gad tlaku vyovává pod. sílu e EL kbte e 4 ε = exp ( ε EL ) e = 4kT po malé I - kvadatiká elieaita L δε B e L / ~ E Iλ b) tepelá v maximu pole se plazma maximálě zahřeje a hustota se síží, aby tlak byl kostatí V
12
13
14
15
16
17
18
Iontozvukové vlny (elektrostatické nízkofrekvenční vlny)
DALŠÍ TYPY VLN Iontozvukové vlny (elektrostatiké nízkofrekvenční vlny) jsou podélné vlny podobné klasikému zvuku γ kt B s = = v plynu k M plazma zvuk pomalý pro elektrony, ryhlý pro ionty Hustota elektronů
VíceIontozvukové vlny (elektrostatické nízkofrekvenční vlny)
DALŠÍ TYPY VLN Iontozvukové vlny (lktostatiké nízkofkvnční vlny) jsou podélné vlny podobné klasikému zvuku v plynu s γ kt k M B plazma zvuk pomalý po lktony, yhlý po ionty Hustota lktonů j v každém okamžiku
VíceInterference. 15. prosince 2014
Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude
Více23. Mechanické vlnění
3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze
VícePostupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice
VíceGeometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:
Geometrická optika Je auka o optickém zobrazováí. Byla vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým ejsou potřeba zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost
VíceVlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H.
7 Vlnovody Běžná vedení (koaxiální kabel, dvojlinka) jsou jen omezeně použitelná v mikovlnné části kmitočtového spekta. S ůstem kmitočtu přenášeného signálu totiž významně ostou ztáty v dielektiku těchto
VíceTELMG Modul 09: Nestacionární pole III - Záření. Z modulu 3 víme, že tok elektromagnetické energie orientovanou ploškou ds je dán součinem
TELMG Modul 9: Nestaioáí pole III - Zářeí Eletomagetié zářeí Z modulu 3 víme že to eletomagetié eegie oietovaou plošou ds je dá součiem dφ = P ds = PdS de P E H je Poytigův veto Plohu ds lze vyjádřit pomoí
VíceVlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy
Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných
Vícek + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající
Vlastnosti kmitajíího dipólu Podle klasiké teoie je nejefektivnějším zdojem elektomagnetikého záření kmitajíí elektiký dipól. Intenzita jeho záření o několik řádů převyšuje intenzity ostatníh zdojů záření
Více14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Více5. Světlo jako elektromagnetické vlnění
Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech
Víceprocesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze
limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí
Víceβ. Potom dopadající výkon bude
Učebí ex k předášce UFY Feselovy vzoce a jevy a ozhaí dvou posředí II Odazvos a popusos Ve vakuu je plošá husoa oku zářeí dáa Poygovým vekoem S c ε E B a zářvos (W/m je defováa jako časová sředí hodoa
VíceĎ Ů Ň ž Ů ž ň ž ž ž Č Č Ď Č ž Ě ž ž ž ž ň ž ž ž ž ž ž ž Ě ň ž ž ž ž Ďž ň ž Č Č ň Č Ď Ě Ň Č Ň ž ž ž Ů ň Ň ž ň ň ž ň ň ň ž ň ž Č ž ž Ř ž ž ž ž ň ž ž ž ž Ř ž ň ž ž ž ž ž ž ž Ě Ě Ě Č ž Ď Ř ž ň ň Ř ž ž ž ž
VíceJiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních
Více4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Víceš š Ť ř ň š ú ř ý ž š ř ě Š ě š ř ň š ú ř ý ž ř ý ě ř š ř ň š ú ý ř ý ž ě ě š š ě ě ě ž ž š ě ř ý ěž ů ň ů ý š ř ý ř ě ž ř ě ž ý ž ý ř š ř š ě ř ý š ý ě ž ř ě ž ě ř ěž ř ž ř ň ř ý ý š ě ě ž ň ř ý ř ě ý
VíceVibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Víceě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě
VíceElektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Více2. Definice plazmatu, základní charakteristiky plazmatu
2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se
VíceGeometrická optika. Zákon odrazu a lomu světla
Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost
VíceL A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
VícePohyby částic ve vnějším poli A) Homogenní pole. qb m. cyklotronová frekvence. dt = = 0. 2 ω PČ 1
Způsob popisu Pohb částic v poli vnějším Pohb částic v selfkonsistentním poli Kinetické rovnice Hdrodnamické rovnice * tekutin * 1 tekutina * magnetohdrodnamika Pohb částic ve vnějším poli A) Homogenní
Víceé č í é ě í ž ý í Ú á í ž ý í ý Á í ÁŘ É Á ý á ář é í á í ž ý í Ř ú á á č ý š á í š í řá ě č á í í é ář é á é é č á ú í ář é á á ů ě ž é é č é é ě ý ží á ý ý í ář é á ě ž é ří é ď ý é ě í í č í č íčá é
VíceVÝKONOVÉ DIODY 5000 A 0,1 A I FAV 50 V U RRM V
VÝKONOVÉ DIODY Výkoové polovodičové diody se v aplikacích používají k zabezpečeí průchodu proudu jedím směrem, ejčasěji k usměrňováí sřídavého proudu.,1 A I AV 5 A 5 V RRM 1 V Věkerých aplikacích je požadová
VíceSvětlo v izotropním látkovém prostředí a na rozhraní izotropní bezztrátové dielektrikum je charakterizováno skalární permitivitou ε = εε.
Učebí ex k předášce UFY2 Feselovy vzoce a jevy a ozhaí dvou posředí I Svělo v zoopím lákovém posředí a a ozhaí zoopí bezzáové delekkum je chaakezováo skaláí pemvou ε εε a pemeablou μ μμ (kde μ po emagecké
Víceγ α β E k r r ρ ρ 0 θ θ G Θ G U( r, t) w(z) w 0 ω z R z U( r, t) 1 c 2 2 U( r, t) t 2 = 0, U( r, t) U( r, t) = E( r, t) U( r, t) = u( r)e iωt. u( r) + k 2 u( r) = 0, k = ω/c u( r) = A exp( i k r), k
Více❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P
❷ s é 2s é í t é Pr 3 t str í Úst 2 t t t r 2 2 á rá t r t í str t r 3 tí t 2 2 r á rs ý í rá á 2 í P ZADÁNÍ DIPLOMOVÉ PRÁCE I. OSOBNÍ A STUDIJNÍ ÚDAJE Příjmení: Hurský Jméno: Tomáš Fakulta/ústav: Fakulta
VíceSložení soustav. c k. Přehled užívaných koncentrací. hmotnostní konc. (podíl) objemová konc. (podíl) molová konc. (podíl) hmotnostně objemová konc.
U 8 - Ústav oesí a zaovatelsé tehy FS ČVU Složeí soustav Přehled užívaýh oetaí Symbol efe Rozmě Název m hmotost_ hmotost_ hmotostí o. (odíl) v objem_ objem_ objemová o. (odíl) lat. mozství_ lat. mozství_
VíceObsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
VíceKmity a rotace molekul
Kity a otace oleul Svět oleul je eustále v poybu eletoy se poybují oolo jade jáda itají ole ovovážýc polo oleuly otují a přesouvají se Io H + podoběji Kity vibace oleul disociačí eegie vazby E D se liší
VíceVyužití komplementarity (duality) štěrbiny a páskového dipólu M
Přechodné typy antén a) štěrbinové antény - buzení el. polem napříč štěrbinou (vlnovod) z - galvanicky generátor mezi hranami - zdrojem záření - pole ve štěrbině (plošná a.) nebo magnetický proud (lineární
Více8. Antény pro pásma DV, SV, KV
8. Antény po pásma DV, SV, KV hlediska po výbě - kmitočtové pásmo, šíření vln, směové vlastnosti, výkony, cena 8.1 Vysílací antény po pásma DV, SV - povchová vlna - vetikální polaizace - ozhlas AM všesměové
VícePlazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
VíceNMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019
Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f
VíceNosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
Víceρ = 0 (nepřítomnost volných nábojů)
Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika
VícePři sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
VíceTOB v PROTECH spol. s r.o Pavel Nosek - Kaplice Datum tisku: DP_RDlow-energy. 6 c J/(kg K) 5 ρ kg/m 3.
TOB v... POTECH spol. s r.o. 00 - Pavel Nosek - Kaplice Datum tisku:..0 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: Místo: Zpracovatel: odinný dům Kaplice Zadavatel: Zakázka: Projektant:
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Více1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
VíceÚvod do vln v plazmatu
Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní
VíceELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 26, překlad: Vladimír Scholtz (27) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 61: RL OBVOD 2 OTÁZKA 62: LC OBVOD 2 OTÁZKA 63: LC
VíceObecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast
Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast zdrojů pro harmonický časový průběh veličin Laplaceův
VíceSIC1602A20. Komunikační protokol
SIC1602A20 Komunikační protokol SIC1602A20 Mechanické parametry Rozměr displeje 80 x 36 mm Montážní otvory 75 x 31 mm, průměr 2.5mm Distanční sloupky s vnitřním závitem M2.5, možno využít 4mm hloubky Konektor
VíceZákladní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el.
Aplikace Gaussova zákona ) Po sestavení základní ovnice elektostatiky Základní vlastnosti elektostatického pole, pobané v minulých hodinách, popisují dvě difeenciální ovnice : () ot E konzevativnost el.
Víceí í Č Á ý í ě ž ř é ž é ů é ů í ž é í ý é é é í é ě íě č ž ý č ž ě í ž ř í ž ý ě ř í í é í é é í ž ý č ž ř é í Ž ž é ří í ýš č ří ů í ž é ů ě í Ž ší ě ž í ž é ž ě ž ě í é ě ž í í Ž ž ý š Í č ý č ů é č
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VíceObr. DI-1. K principu reverzibility (obrácení chodu paprsků).
Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí
VíceAmpérův zákon (1a) zákon elektromagnetické indukce. Gaussův zákon. zákon o neexistenci magnetických nábojů (1d)
Učební text k přednáše UFY v obeném tvaru D rot H = j( r, t ) Ampérův zákon (a) B rot E + = zákon elektromagnetiké induke (b) div D = ρ ( r, t ) Gaussův zákon () div B = zákon o neexisteni magnetikýh nábojů
VíceÚvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
VíceTermodynamicky kompatibilní viskoelastické modely rychlostního typu
Termodynamicky kompatibilní viskoelastické modely rychlostního typu Karel Tůma Jednoocí slepým 14. května 2012 podpora GAUK-152010, GACR 201/09/0917 Karel Tůma TD kompatibilní viskoelastické modely rychlostního
VíceModely CARMA. 22. listopadu Matematicko fyzikální fakulta Univerzity Karlovy v Praze. Modely CARMA. Úvod. CARMA proces. Definice CARMA procesu
Matematicko fyzikální fakulta Univerzity Karlovy v Praze ÚTIA AV ČR 22. listopadu 2010 u Obsah Definice u u u Motivace Známe. Umíme používat, odhadovat jejich koeficienty atd. Co když ale data nemají konstantní
VíceÁŠ Í č ť é ž é č Ó Ž í Ť Ž č íč š é Č í Í ČÁ É É Ě É í Á š í ď í Ž í é Ž é č í ť í í ž í Ž Ťí ě í ěť í ě š ě č í Ž Ť í š ě í Ž Ž í ť é í Ží í Ží í é ě é í í í é í í ž ě é šíť Ťí é Ž í ě í Ó ť í ť č í ž
VíceZadání diplomové práce
Zadání diplomové práce Ústav: Ústav fyzikálního inženýrství Studentka: Bc. Dominika Kalasová Studijní program: Aplikované vědy v inženýrství Studijní obor: Fyzikální inženýrství a nanotechnologie Vedoucí
VíceRegrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VíceMATEMATICKÁ KARTOGRAFIE
VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KARTOGRAFIE MODUL KARTOGRAFICKÁ ZKRESLENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Matematická kartografie
Více1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
VíceÍ ž í í Š ž á ř ž ú ú áš á ě Ž ž ě ř ř Íá Š í ž Š í ž á ž š ž á íš ž á č ý á ř á ž Š ě ž š í í é ú á ž á á ý íš é á ě ě Ž ž ť é á í í á á ý ž é á ě ř
Š Í ž é á ě ž ěž í éč í ě ě ě ě ě í ě ý ě é ě í á á ě ě č š ě í ě ž ř ě é ť ž č ě ší á í é ž ř á í Š í á í ž é íč ě ší ě č ý ž ě í á é í ý ž říč ě ž í ý ř ší á ě š é ý ó č é á ž š ě é Š ě š š é č ě ž ž
VíceBuckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)
Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,
VíceIntervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
VíceTERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
VíceMatematické modelování elmg. polí 3. kap.: Elmg. vlnění
Matematické modelování elmg. polí 3. kap.: Elmg. vlnění Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/ Text byl
VíceOdezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti
Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad
Více3 - Póly, nuly a odezvy
3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud
VíceTento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evroský sociálí od Praha & EU: Ivestujeme do vaší budoucosti eto materiál vzikl díky Oeračímu rogramu Praha Adatabilita CZ..7/3../3354 Maažerské kvatitativí metody II - ředáška č.3 - Queuig theory teorie
VíceSekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
VíceNapětí horninového masivu
Npětí honinového msivu pimání npjtostí sekundání npjtostí účinky n stbilitu podzemního díl Dále můžeme uvžovt * bobtnání honiny * teplotní stv honiny J. Pušk MH 6. přednášk 1 Pimání npjtost gvitční (vyvolán
Víceč íč ý š íč š í é ř í ě ř é ě í č š í ž í č ě á ří ž é ě é á ě é í č é š ř í é í ě í ý á í ů á í ž ř š ž é ř é ě í á í ý š íč é á í ě ě í ž čá ý é žá
ÍČ Ý č ář ý ý č ě í á í ž č ř á ý ří á č é ž í é í š í š ší ý á í ý ý č ě ř č á é ří íč č é é ář í á í ů ší é é í š ý č ě á í ý ů ří ů í ě á č ř á í á í á í á č é ě í íč č á ž ě č é č ě ě č í á í č ě š
VíceElektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19
34 Elektomagnetické pole statické, stacionání, nestacionání zásady řešení v jednoduchých geometických stuktuách, klasifikace postředí (lineaita, homogenita, dispeze, anizotopie). Vypacoval: Onda, otja@seznam.cz
VíceÉ Ě Č š ž ý Ť š š ř š ř ě ř š ě ě ř ř ý ř ž ěř ř ě ť ů ě ý ů ďě ř š ě ř š ř šš š ý ě ě š ř ů š ě ý ů ě ř š š ě š ě š ě ř ý ě ř š ě š Č š ž ý ř ě ř š š Š š ř š š ý šš ý ě ž ě ě ř ě ě š ý ř š ů ě ř ž ě ě
VíceÚvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,
Víceš ě ě č š š š ů š Í š ň ě š šč š Ť š ě č č š č ó č č š č ě ů ň ě š č ě ů ž š ň ž ň č ě ě ž ě ž ě š ď ě ě š ž ž Ř č ě č š ů ů ě š š č ě ě Ž Í š ě ě ů ů š ž ů ů ů Í ě š ě ů ž š ů ž ů ď ě ž ž ě ěž šť ž č
Více8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
VícePříklady k přednášce 3 - Póly, nuly a odezvy
Příklady k předášce 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 08 9-6-8 Nuly přeou Automatické řízeí - Kyberetika a robotika Pro přeo G ( ) = ( + ) ( + ) pólem = a ulou z = porovejme odezvy
Vícek(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln
Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =
VíceRovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
Víceý ý ž ž š š ě ě ě ě ě ě ž Á ť ě ý ý ý Ú ý ž š ý ý ž ý ž ý ž Š ě ý ž ý ž Í ý ž ě ž ě ý ú ě ě ý ý ě ě ý ě ú ů ý ž ě ú ú ě ý Ú š ú ů ýš ů ě ú š š ý Ú š ý ě ďě š ú ž Š ě ú Š ě Ť ž ú š ú ž ú ě ě ť ě ý ú ě ž
VícePosouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:
Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:
VícePřechod PN. Přechod PN - pásový diagram. Přechod PN strmý, asymetrický. kontakt přechod PN kontakt. (dotace) Rozložení příměsí. N-typ.
řchod v trmodyamické rovováz Vzik trmodyamické rovováhy, difúzí otciál ásový diagram Oblast rostorového ábo, růběh aětí a itzity lktrického ol roustá olarizac Ikc mioritích ositlů ábo roud řchodm, Shocklyho
Více= = ε =. = ( + ) =. = = ε =. = ( + ) =. = =, = = =, = ( ) = + ϱ = + = = (ϱ ϱ ) = = = ϱ = ϱ = ϱ = ϱ = ϱ = + +, + +, + + +, + + =, +, + + = = =, = (ϱ ϱ ) = (,,,,,, (,, ) = ) = =. ( =.) ( =.) ( = ) ΔU ΔQ
VíceZPOMALENÉ A ZASTAVENÉ SVĚTLO. A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha
ZPOMALENÉ A ZASTAVENÉ SVĚTLO A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha ... po pěti letech A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha historicky první,
Víceasi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia :
Dmk I, 3. předášk Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm
VíceRegularita PDR zápisky z přednášky doc. J. Staré, ZS 2003/2004
egularita PD zápisky z přednášky doc. J. Staré, ZS 23/24 Obsah. Prostory funkcí a rovnice............................................. 4 Technika diferencí....................................................
VíceJednokapalinové přiblížení (MHD-magnetohydrodynamika)
Jenokapalinové přiblížení (HD-magnetohyroynamika) Zákon zachování hmoty zákony zachování počtu elektronů a iontů násobeny hmotnostmi a sečteny n e + iv = ( nu ) ni + iv( nu i i) = e e iv ( u ) (1) t ρ
VíceFyzika základního kurzu I (hypertextově) seznam důležitých skutečností
Fyzika základního kurzu I (hypertextově) seznam důležitých skutečností kolektiv ÚFI FSI Copyright c 005, ÚFI FSI VUT v Brně Tento text obsahuje rovnice, které jsou barevně vyznačeny v textu Fyzika. Kliknutím
VícePříloha-výpočet motoru
Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ
VícePravděpodobnost a statistika
Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení
VíceZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH. Jiří Tůma
ZPRACOVÁNÍ SIGNÁLŮ Z MECHANICKÝCH SYSTÉMŮ UŽITÍM FFT Jiří Tůma Štramberk 1997 ii Anotace Cílem této knihy je systematicky popsat metody analýzy signálů z mechanických systémů a strojních zařízení. Obsahem
Víceť ý ř ý ž í ř í š í ý ě ž í ř í š š č ř š š č Ž ý ě ěř í ý ú ř ř ý ě š ě í í Ťí í ř í ř Ž ř ě í ů ř ž ý ý í Ťí í ý š ř ž Ž ň í í í í ř úč í ř ú š č Č Č í í č ú í ř ř Č Ž í ř í ě ř č ě í ě í č ě ě č ě ě
VíceUčební text k přednášce UFY102
Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy
Více(. ) NAVIER-STOKESOVY ROVNICE. Symetrie. Obecně Navier-Stokesovy rovnice: = + u. Posuv v prostoru. Galileova transformace g U : t, r,
NAVIER-STOKESOVY ROVNICE Symetrie Obecně Navier-Stokesovy rovnice: D = +. = g Ω p + ν + Dt t D +. = 0 Dt (. ) Posv v prostor space g : t, r, v t, r +, v IR time Posv v čase g τ : t, r, v t + τ, r, v τ
Víceí ř íí í ě ý ó Š ď Í ý ů Čí é í š ě ú é í ší Ý ů é í š ě í í ř Ú í í íš ř ť Ž ř í ě í é í š Ú ě ý é ž í ý š í ř í Ž ý ú ý ší Í í ů ý ů é é ý ů ý é í é í í ě í í í ží í ď ží ý é ř ý ý ě ý í Ťíž é í é é
Více3 - Póly, nuly a odezvy
3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 8 9-6-8 Automatické řízeí - Kyberetika a robotika Póly přeou a póly ytému Póly přeou jou kořey jmeovatele pro g () = b () a () jou to komplexí číla
VíceInterakce světla s prostředím
Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos
Víceý Č á ý á č ář ý ý ů á ě ě ě ů á žš řá řá šš á ř ř ž šš řá ůž ý á č Ž á ě žš řá č ý ž ě ě á ý á ř ž ř Í ř á ý á á žš Ťá ř ý á ý žš řá ář ý á ý ý á ář
Ť Ť ó ý Č á ý á č ář ý ý ů á ě ě ě ů á žš řá řá šš á ř ř ž šš řá ůž ý á č Ž á ě žš řá č ý ž ě ě á ý á ř ž ř Í ř á ý á á žš Ťá ř ý á ý žš řá ář ý á ý ý á ář č ý á ř á á á ž ž ů áí ů á ý á ž ř á š ý Ž ř
Více