Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:
|
|
- Štěpán Novák
- před 7 lety
- Počet zobrazení:
Transkript
1 Geometrická optika Je auka o optickém zobrazováí. Byla vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým ejsou potřeba zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost světelých paprsků (a dva možé směry jejich šířeí) 3) odraz světla 4) lom světla Zákoy odrazu a lomu světelých paprsků, i jejich přímočaré šířeí, lze odvodit z Fermatova pricipu ejmešího času, potřebého k proběhutí dráhy mezi dvěma body. (Pierre de Fermat, ) Záko odrazu a lomu světla Jestliže světelý paprsek prochází. prostředím, kde je jeho rychlost v a dopadá a rovié rozhraí se. prostředím, ve kterém je jeho rychlost v, pak se část světla odrazí zpět do. prostředí a část viká do. prostředí. Vzikají tak dva paprsky odražeý a lomeý - které spolu s kolmicí v místě dopadu leží v jedé roviě a platí: k. prostředí v. prostředí v β záko odrazu si si β v v záko lomu (Sellův záko) Přitom se tedy defiuje ová veličia: relativí idex lomu (. prostředí vzhledem k. prostředí) Lze rozlišit dva základí případy: lom ke kolmici a lom od kolmice - viz dále:
2 a) Jestliže je v. prostředí rychlost světla větší (tzv. opticky řidší prostředí) ež rychlost světla ve druhém prostředí (tzv. opticky hustší prostředí), tedy jestliže v > v, pak ze zákoa lomu plye: > β tzv. lom ke kolmici β b) jestliže aopak platí erovost opačá, tedy jestliže v < v, pak ze zákoa lomu dostaeme: < β tzv. lom od kolmice β V tomto případě můžeme pozorovat zajímavý jev: Když postupě zvětšujeme úhel dopadu, pak podle zákoa lomu se také musí postupě zvětšovat i úhel lomu β.... až dosáhe maximálí možé hodoty 90 - kdy lomeý paprsek už vlastě eviká do druhého prostředí - a to při úhlu dopadu m < 90. to je tzv. mezí úhel A pro větší úhly dopadu, tedy pro > m už eexistuje úhel lomu β takový, aby byl záko lomu splě. Tedy pro tyto větší úhly dopadu už eexistuje lom, ale pouze odraz tzv. totálí (úplý) odraz světla Pro mezí úhel tak platí: si si 90 m si m Totálí odraz světla se velmi často využívá v optických přístrojích viz dále. β 90 Nevýhodou relativího idexu lomu je, že závisí a parametrech dvou prostředí. Proto se zavádí další veličia, daá vlastostmi pouze jedoho prostředí: c v Absolutí idex lomu v rychlost světla v daém prostředí c rychlost světla ve vakuu Absolutí idex lomu zkoumaého prostředí tedy popisuje lom světla z vakua do tohoto prostředí.
3 Absolutí idex lomu je základí optická charakteristika prostředí: - pro vakuum je - pro hmoté prostředí je vždy >, apř.: voda.,33 sklo..,45,95 vzduch,0003, tj. prakticky jako vakuum Lze ho také jedoduše zavést do zákoa lomu: si si β c v v ( v c v ) Disperze světla Ve vakuu je rychlost světla pro všechy barvy stejá, ale ve hmotém prostředí je fukcí vlové délky: v v (λ) Proto také absolutí idex lomu c/v musí záviset a vlové délce: ( λ ) Pak prostředí má disperzí vlastosti tj. astává jev disperze (rozklad) světla: Protože idexy lomu paprsků růzých barev (s růzou λ ) jsou růzé, pak při lomu složeého (bílého) světla.. při daém úhlu dopadu se růzobarevé paprsky lámou pod růzými úhly lomu β..dochází k rozkladu světla a jedotlivé složky vziká spektrum (viz íže): U většiy látek klesá idex lomu s vlovou délkou, to je tzv. ormálí disperze. Tedy jestliže apř. pro vlové délky červeého a fialového světla platí: potom podle grafu platí: < červ fial λ > λ, červ fial a ze Sellova zákoa plye pro úhly lomu: β > červ β fial.. tedy více se láme světlo s kratší vlovou délkou 3
4 Poz: Výjimečě, a je v úzkém itervalu vlových délek, mají ěkteré látky tzv. aomálí disperzi, kdy idex lomu s vlovou délkou roste. Využití disperze světla ) Vzik spektra ve hraolovém spektrometru (moochromátoru) : - viz dále odstavec Aplikace odrazu a lomu ) Při optickém zobrazeí je ale disperze ežádoucím jevem způsobuje tzv. barevou vadu optických prvků (čoček) 3) Průběh fukce ( λ ) lze pro každou látku samozřejmě přesě staovit, v praktické optice se ale často udávají je hodoty pro 3 vlové délky pro vybraé Frauhoferovy čáry: C.. D (e).. F červeá žlutá modrá 656,3 m 589,3 m 486, m Příslušé hodoty idexu lomu se ozačují: Za základí hodotu idexu lomu se považuje D (pro žluté světlo, přibližě ve středu itervalu viditelého světla) a dále se defiují veličiy: C D F µ středí disperze F C F C ν středí relativí disperze D ν D ν Abbeho číslo (převráceá středí relativí disperze) F C Optická skla se vyrábějí v širokém rozsahu idexů lomu a Abbeho čísel: D ν (,45 K ( 0 K,95 ) 70 ) Např. určité koruové sklo: C D F, 54, 57, 553 } ν 5 Pro srováí: voda C D F, 334, 333, 3373 } ν 56 4
5 4) Disperzí jev je také velmi důležitý při studiu přeosu eergie zářeím (vlěím) Teoreticky si zázorňujeme vlěí jako ekoečý útvar - ale reálé vly jsou koečé v čase i v prostoru a lze si je představit jako vlové grupy (vlová klubka) - a jejich rychlost tzv. grupová rychlost eí automaticky shodá s fázovou rychlostí vlěí - viz Skládáí vlěí v sylabu FYI): ω - dospěli jsme k růzým vztahům pro tyto rychlosti: c k c gr dω d k - protože vlová klubka obsahují všecha maxima vl (kmitů) která určují celkovou eergii kmitavého pohybu, je zřejmé, že jejich pohyb určuje pohyb eergie - grupovou rychlostí. - vakuum je prostředí bez disperze, eboť fázová rychlost vlěí je kostatí - ezávislá a vlové délce. Pak grupová rychlost je: dω d c gr ( c k ) c. tedy rová fázové rychlosti dk d k - hmoté prostřeí má většiou ormálí disperzi, kdy fázová rychlost roste s vlovou délkou (a idex lomu klesá). Pak grupová rychlost je: dω d dv v gr ( v k ) v + k < v. tedy meší ež fázová rychlost!!! d k d k dk - ve zřídkavém případě aomálí disperze, kdy fázová rychlost klesá s vlovou délkou (a idex lomu roste) je ovšem grupová rychlost: dω d dv v gr ( v k ) v + k > dk d k d k v. tedy větší ež fázová rychlost!!! (ale podle pricipů teorie relativity emůže ovšem ikdy převýšit rychlost světla ve vakuu) Aplikace odrazu a lomu (a roviých plochách) Optický hraol Používá se trojboký skleěý hraol (viz obr.): z.. základa, s, s lámavé stěy, φ.. lámavý úhel hraolu Pro obě lámavé stěy platí záko lomu: si si si β si β 5
6 Úhly β a β lze těžko změřit, ale lehce se určí úhel δ - výsledá odchylka paprsku dopadajícího a vystupujícího z hraolu... tzv. deviace paprsku Podle obrázku platí: ϕ β + β a dále: δ ( β ) + ( β ) + ( β + β ) + ϕ Velikost δ tedy závisí a : δ δ ( ) Tato fukce má extrém (miimum) tzv. miimálí deviaci, ajdeme ji v ásledujících řádcích: Triviálí řešeí (rovost čitatelů a jmeovatelů) je: β β β A ze vztahu pro lámavý úhel: ϕ β + β β dostaeme: β ϕ. to zameá, že miimálí odchylka astae při symetrickém chodu paprsků: A její velikost je: δ mi + ϕ ϕ Pro úhel dopadu tedy platí: δ mi + ϕ a to můžeme spolu se vztahem pro úhel lomu dosadit do zákoa odrazu: si si β si si β si ( δ mi + ϕ si ϕ ) Vyšla ám tak závislost idexu lomu a miimálí deviaci paprsku.... platí to ovšem i obráceě: 6
7 tedy deviace závisí a idexu lomu je jeho fukcí: δ δ ( ) A protože paprsky růzých vlových délek mají v disperzím prostředí také růzé idexy lomu, mají i růzé deviace astává rozklad složeého světla. Trojboký hraol je proto základem hraolového spektrometru. skleěý hraol stíítko bílé světlo Plaparalelí deska Skleěá (idex lomu ) deska s rovoběžými plochami, obklopeá vzduchem (idex lomu ) (viz obr.) Z obrázku je zřejmé, že světelý paprsek eí odchýleý od původího směru, je je posuutý: Ozačíme : Δ. příčé posuutí Δ o... osové posuutí (virtuálího obrazu A / předmětu A a optické ose o ) Podle obrázku platí: 7
8 Pro malé úhly pak dostaeme: o d o si d Tedy příčé posuutí je přímo úměré úhlu dopadu paprsku a desku: Aplikace: Plaparalelí desku vložíme do cesty světelému paprsku a jejím otáčeím paprsek příčě posouváme (měřicí mikrometr ebo dalekohled) kost Rovié zrcadlo Na obrázku je vyzačea úhlová odchylka deviace δ paprsku od původího směru, platí pro i: δ π Jestliže pootočíme zrcadlem (okolo bodu O) o ějaký malý úhel d, změí se o stejou hodotu úhel dopadu a musí se změit i deviace paprsku: dδ d( π ) 0 d ( ) d.. tj. dvojásobě. Poz.: Zobrazeí roviým zrcadlem: - virtuálí obraz - zvětšeí + Úhlová zrcadla jsou tvořea dvěma roviými zrcadly svírajícími úhel ϕ Dávají zajímavý výsledek výsledé deviace paprsku: Podle obrázku platí (vější úhly): ϕ + β Potom výsledá deviaci paprsku po dvou odrazech: δ + β ( + β ) ϕ kost.. ezávisí a úhlu dopadu!! 8
9 . tedy při pootočeí zrcadel o úhel d δ d( ϕ ) Využití úhlových zrcadel: - vytyčováí úhlů 0 d, se sice změí o stejou hodotu i úhel dopadu, ale změa deviace bude ulová: Odrazé hraoly Nahrazují roviá zrcadla ebo úhlová zrcadla. - světlo se odráží a pokoveém povrchu hraolu, ebo se s výhodou využije totálí odraz. - jsou kompaktější ež zrcadla - úhly odrazých ploch jsou skutečě kostatí Příklady: ) petagoálí hraol.pro vytyčováí pravého úhlu ) pravoúhlý hraol.. jako áhrada roviého zrcadla,,,,,,,, ebo pro obráceí chodu paprsků (převráceý obraz) 3) kombiace dvou pravoúhlých hraolů tzv. Porrův systém. druhu..pro triedry (dává úplě převráceý obraz výškově i straově) D. cv.: Je uté odrazé plochy těchto hraolů pokovit, aby dobře odrážely světlo 9
10 Optický světlovod (optický kabel) Je to svazek tekých světlovodých vláke.až ěkolik tisíc vláke ve společém obalu vláka jsou ejčastěji skleěá válcového průřezu, průměru apř mikroů. Vedeí světla v každém vlákě probíhá postupými totálími odrazy a rozhraí jádra a pláště. Podmíka úplých odrazů a plášti vláka vede k tomu, že úhel dopadu paprsku a čelí stěu emůže být větší ež určitý maximálí úhel dopadu u (viz obr.) Pro teto úhel platí vztah (zkuste odvodit za D.cv.): A siu.. tzv. číselá apertura světlovodu Úhel u určuje maximálí vrcholový úhel kuželového svazku vstoupit do světlovodu. a bude dále světlovodem vede. u, který může (z bodového zdroje) D.cv.: Mohlo by být optické vláko je z jedoho druhu skla a místo pláště být pokoveo? Na plášti by se pak realizoval obyčejý odraz jako a zrcadle - a do světlovodu by pak mohl vstupovat maximálě široký svazek světla (u 90 ) V komuikačích sítích jsou optické kabely ejperspektivějším přeosovým prostředkem, s vysokou přeosovou rychlostí (Tbit/s). Používají se většiou jedovlákové, vyrobeé z křemeého skla, jádra průměru 8-60 mikroů, s obalem 5 mikroů, vější ochraý akrylový plášť mikroů Zdroje jsou diody LED ebo laserové diody, vyzařující ifračerveé světlo m. Ve stavebictví existují světlovody pro přívod deího světla do tmavých místostí. Na rozdíl od výše uvedeých světlovodů to většiou jsou pouze pevé (plechové) tubusy s vitří odrazou plochou, průměru desítek cetimetrů, s délkou ěkolika metrů koec kapitoly K. Rusňák, verze 03/06 0
Geometrická optika. Zákon odrazu a lomu světla
Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost
Více23. Mechanické vlnění
3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze
VíceÚstav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10
Ústav yzikálího ižeýrství Fakulta strojího ižeýrství VUT v Brě GEOMETRICKÁ OPTIKA Předáška 10 1 Obsah Základy geometrické (paprskové) optiky - Zobrazeí cetrovaou soustavou dvou kulových ploch. Rovice čočky.
VíceMěření indexu lomu pevných látek a kapalin refraktometrem
F Měřeí idexu lomu pevých látek a kapali refraktometrem Úkoly : 1. Proveďte kalibraci refraktometru 2. Změřte idex lomu kapali 1-3 3. Změřte idex lomu ezámých vzorků optických skel Postup : 1. Pricip měřeí
VíceSvětlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla
Paprskoá optika Sětlo jako elektromagetiké lěí Šířeí sětla, Odraz a lom sětla Disperze sětla Sětlo jako elektromagetiké lěí James Clerk Maxwell (83 879) agliký fyzik autorem teorie, podle íž elektro-magetiké
VíceInterference. 15. prosince 2014
Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude
VíceFYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla
Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla
VícePaedDr. Jozef Beňuška ODRAZ A LOM SVĚTLA aneb Zákony při průchodu světla rozhraním
PaedDr. Jozef Beňuška jbeuska@extra.sk ODRAZ A LOM SVĚTLA aeb Zákoy při průchodu sětla rozhraím Vlěí, jež dopadá a rozhraí dou prostředí se může: - odrazit od rozhraí, - projít do druhého prostředí. Odraz
Více11. STUDIUM JEVŮ GEOMETRICKÉ A VLNOVÉ OPTIKY POMOCÍ CENTIMETROVÝCH VLN
8 11. STUDIUM JEVŮ GEOMETRICKÉ A VLNOVÉ OPTIKY POMOCÍ CENTIMETROVÝCH VLN Měřicí potřeby: 1) Guova dioda s vysílací trychtýřovou atéou ) apájecí zdroj pro Guovu diodu 3) přijímací atéa 4) polovodičová dioda
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
VíceZÁKLADNÍ POJMY OPTIKY
Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia
VíceODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady
ODRAZ A LOM SVTLA Odraz svtla lo svtla idex lou úplý odraz svtla píklady Každý z Vás se urit kdy díval do vody. Na klidé vodí hladi vidl kro svého obrazu také kaey ebo písek a d. Na základí škole jste
Vícesin n sin n 1 n 2 Obr. 1: K zákonu lomu
MĚŘENÍ INDEXU LOMU REFRAKTOMETREM Jedou z charakteristických optických veliči daé látky je absolutím idexu lomu. Je to podíl rychlosti světla ve vakuu c a v daém prostředí v: c (1) v Průchod světla rozhraím
VíceInterakce světla s prostředím
Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos
VíceKABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely
KABELY Pro drátové okruhy (za drát se považuje i světlovodé vláko): metalické kabely optické kabely Metalické kabely: osou veličiou je elektrické apětí ebo proud obvykle se jedá o vysokofrekvečí přeos
VíceFYZIKA 4. ROČNÍK. Optika. Základní vlastnosti světla. Optika - nauka o světle; Světlo je elmg. vlnění, které vyvolává vjem v našem oku.
Základí vlastosti světla - auka o světle; Světlo je elmg. vlěí, které vyvolává vjem v ašem oku. Přehled elmg. vlěí: - dlouhé vly - středí rozhlasové - krátké - velmi krátké - ifračerveé zářeí - viditelé
VíceInovace předmětu K-Aplikovaná fyzika (KFYZ) byla financována z projektu OPVK Inovace studijních programů zahradnických oborů, reg. č.
Iovace předmětu K-Aplikovaá fyzika (KFYZ) byla fiacováa z projektu OPVK Iovace studijích programů zahradických oborů, reg. č.: CZ..07/..00/8.00 Připravil: Roma Pavlačka K-Aplikovaá fyzika Optika a zářeí
VíceLaboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:
ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy
VíceGRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components
Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ
Více1 Základy Z-transformace. pro aplikace v oblasti
Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi
VíceANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU
ANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU A.Mikš, J.Novák, P. Novák katedra fyziky, Fakulta stavebí ČVUT v Praze Abstrakt Práce se zabývá aalýzou vlivu velikosti umerické
Vícejako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
VíceL A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
VícePrůchod paprsků různými optickými prostředími
Průchod paprsků růzými optickými prostředími Materiál je urče pouze jako pomocý materiál pro studety zapsaé v předmětu: A4M38VBM, ČVUT- FEL, katedra měřeí, 05 Před A4M38VBM 05, J. Fischer, kat. měřeí,
VíceLaboratorní práce č. 4: Úlohy z paprskové optiky
Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého
Více6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VíceUniverzita Tomáše Bati ve Zlíně
Uiverzita Tomáše Bati ve Zlíě LABORATORNÍ CVIČENÍ Z FYZIKY II Název úlohy: Iterferece a teké vrstvě Jméo: Petr Luzar Skupia: IT II/ Datum měřeí: 3.říja 007 Obor: Iformačí techologie Hooceí: Přílohy: 0
Více2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí
. Měřeí základích optických vlastostí materiálů idex lomu a disperze propustost, absorpce kvalita optických prostředí .1. Měřeí idexu lomu a disperze Sellmeierův vztah i ( ) = 1+ i B C i Coruův vzorec
VíceMATEMATICKÁ INDUKCE. 1. Princip matematické indukce
MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost
Víceveličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
VíceO Jensenově nerovnosti
O Jeseově erovosti Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikovaé matematiky, Fakulta elektrotechiky a iformatiky, Vysoká škola báňská Techická uiverzita Ostrava Ostrava, 28.1. 2019 (ŠKOMAM 2019)
Vícestručná osnova jarní semestr podzimní semestr
Brýlová optika stručá osova jarí semestr základy geometrické optiky pro brýlovou optiku Gullstradovo schématické oko, další modely, otoreceptory oka, vizus, optotypy myopie, hypermetropie, aakie a jejich
VíceSprávnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
Více1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
VíceSTUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6
Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II
Vícestručná osnova jarní semestr podzimní semestr
Brýlová optika stručá osova jarí semestr základy geometrické optiky pro brýlovou optiku Gullstradovo schématické oko, další modely, otoreceptory oka, vizus, optotypy myopie, hypermetropie, aakie a jejich
VíceMatematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
VíceÚloha II.S... odhadnutelná
Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
Více6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
Více8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
Více2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
VíceLaboratorní práce č.9 Úloha č. 8. Závislost indexu lomu skla na vlnové délce světla Měření indexu lomu refraktometrem:
Truhlář Michal 3.. 005 Laboratorní práce č.9 Úloha č. 8 Závislost indexu lomu skla na vlnové délce světla Měření indexu lomu refraktometrem: T p 3, C 30% 97,9kPa Úkol: - Proveďte justaci hranolu a změřte
Více1 Uzavřená Gaussova rovina a její topologie
1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho
Více10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
VícePředmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE
Přdmět: SM 0 ROVIÉ PŘÍHRADOVÉ KOSTRUKCE doc. Ig. Michl POLÁK, CSc. Fkult stvbí, ČVUT v Prz ROVIÉ PŘÍHRADOVÉ KOSTRUKCE: KOSTRUKCE JE VYTVOŘEA Z PŘÍMÝCH PRUTŮ, PRUTY JSOU AVZÁJEM POSPOJOVÁY V BODECH STYČÍCÍCH,
VíceIterační výpočty projekt č. 2
Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....
Víceprocesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze
limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí
VíceDIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji
VíceMatematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
Více1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
Vícezákladním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
VíceDefinice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
VíceZáklady statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková
Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují
Více7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
VíceSTATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
Vícef x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )
DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce
VíceTržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.
Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví
Více8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
VícePružnost a pevnost. 9. přednáška, 11. prosince 2018
Pružost a pevost 9. předáška, 11. prosice 2018 1) Krouceí prutu s kruhovým průřezem 2) Volé krouceí prutu s průřezem a) masivím b) otevřeým tekostěým c) uzavřeým tekostěým 3) Ohybové (vázaé) krouceí Rovoměré
VíceVlastnosti posloupností
Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti
VíceSekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
VíceMatematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
Více11. přednáška 16. prosince Úvod do komplexní analýzy.
11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám
Vícen-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
VíceKomplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
Více1.7.4 Těžiště, rovnovážná poloha
74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit
VícePetr Šedivý Šedivá matematika
LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími
VíceMezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
VícePřednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti
Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou
Více6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
VíceObsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
VíceFYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Polarizace. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měřeí: 9. 3. 00 Úloha 9: Polarizace Jméo: Jiří Slabý Pracoví skupia: 4 Ročík a kroužek:. ročík,. kroužek, podělí 3:30 Spolupracovala: Eliška Greplová Hodoceí:
VícePři sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
VíceV. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
Více4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
VíceNáhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.
Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího
VíceS polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické
5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí
VíceU klasifikace podle minimální vzdálenosti je nutno zvolit:
.3. Klasifikace podle miimálí vzdáleosti Tato podkapitola je věováa popisu podstaty klasifikace podle miimálí vzdáleosti, jež úzce souvisí s klasifikací pomocí etaloů klasifikačích tříd. Představíme si
VíceENERGIE MEZI ZÁŘENZ VZORKEM
METODY BEZ VÝMĚNY V ENERGIE MEZI ZÁŘENZ ENÍM M A VZORKEM SPEKTROMETRIE VYUŽÍVAJÍCÍ ROZPTYL Meoda založeá a měřeí idexu lomu láek (). Prochází-li paprsek moochromaického zářeí rozhraím raspareích prosředí,
VíceIterační metody řešení soustav lineárních rovnic
Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro
Více8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
VíceOdhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení
Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází
Vícejsou reálná a m, n jsou čísla přirozená.
.7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou
VíceOVMT Přesnost měření a teorie chyb
Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.
VíceAnalýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály
Aalýza a zpracováí sigálů 3. Číselé řady, jejich vlastosti a základí operace, áhodé sigály Diskrétí sigál fukce ezávislé proměé.!!! Pozor!!!! : sigáleí defiová mezi dvěma ásledujícími vzorky ( a eí tam
Více1. Základy měření neelektrických veličin
. Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci
VíceP2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
Více1. Číselné obory, dělitelnost, výrazy
1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá
Více2. Definice plazmatu, základní charakteristiky plazmatu
2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se
VíceUPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ
3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,
Více5. Posloupnosti a řady
Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru
Více