Kmity a rotace molekul

Rozměr: px
Začít zobrazení ze stránky:

Download "Kmity a rotace molekul"

Transkript

1 Kity a otace oleul Svět oleul je eustále v poybu eletoy se poybují oolo jade jáda itají ole ovovážýc polo oleuly otují a přesouvají se Io H + podoběji Kity vibace oleul disociačí eegie vazby E D se liší od teoeticé eegie E El zísaé řešeí Sc. ovice a to o eegii zál. vibačío poybu (zeopoit eegy) E/ ev - E D σ potivazebý obital E El σ vazebý obital ½ν dva vázaé atoy ejsou v lidu, ale itají ole ovovážýc polo Haoicý osciláto a částici působí poti sěu výcyly síla F = x (Hooův záo) E/ ev d Ψ - ( x ) V = + x Ψ = EΨ, eff = eff dx + Haoicý osciláto - řešeí výslede řešeí je vzta po eegii E + ν, =,,,... = v v vibačí vatové číslo důslede řešeí je eulová eegie záladío vibačío stavu zeo-poit vibatioal eegy - při K je populová záladí vibačí stav a systé stále vibuje

2 Haoicý osciláto - řešeí Haoicý osciláto - důsledy / řešeí ( / ) ( / ) E = + ν = + eff povoleé přecody je ezi sousedíi ladiai Δ = ± / ν = / π Δ = eff E E + E = ν = / eff ~ ν = odtud lze spočítat πc eff Haoicý osciláto Haoicý osciláto - přílady E/eV - > > x/å E = x de = F = x dx E = F gadiet (spád)... silová ostata oleula ~ ν / c - / N - / p H 5 7. D H 35 Cl H 79 B H 7 I O 6 O N N C 6 O Haoicý osciláto Haoicá apoxiace E/eV - ν aoicá apoxiace selává aoicá apoxiace dobře platí je blízo ovovážé poloy, de se dá půbě poteciálí eegie apoxiovat vadaticou fucí, teá v picipu edovoluje disociaci vyšší vibačí stavy jsou blíže a ) ( ) ( E = E D e Moseo pot. eálé vibačí stavy

3 Vibace víceatoovýc oleul dvouatoové oleuly ají jede vibačí ód ataováí vazby (bod stetcig) víceatoové oleuly více vibačíc ódů elieáí oleula 3N 6 lieáí oleula 3N 5 H O = 3 CO = Vibačí ódy H O 595 c 365 c 3756 c ν ~ Vibačí ódy CO Vibace 667 c 667 c 388 c 39 c vločet vibačíc ódů se poybuje řádově oolo c -, jaé to odpovídá eegii a vlové délce? λ = ~, λ = ν c E = = λ E =. N A = 3 3 c, = J/ol 5 ifačeveé, tepelé zářeí J.eV Zaříváí oleul... zaříváí oleul docází excitaci vyššíc vibačíc ladi oleuly, při ižšíc teplotác jsou obsazováy ižší vibačí ladiy, při teplotě absolutí uly (-73.5 C = K) je obsazea je záladí vibačí ladia za běžýc teplot (3 K) jsou doiatě obsazey je záladí vibačí stavy vibace oleul lze studovat poocí IR ebo Raaovy spetosopie Ifačeveá spetosopie studuje absopci světla z IR oblasti speta oleulai eegie se spotřebovává a excitaci vibačíc ladi ěteé vibace eusí být ve spetu vidět vidět jsou je vibace, u teýc docází e zěě dipólovéo oetu 3

4 uáza IR speta uáza IR speta vločet (c - ) Eletoové a vibačí excitovaé stavy eletoová excitace vyžaduje e. ~ ev vlové dély fotoů < studuje se v oblasti UV-VIS vibačí excitačí eegie cca >. ev vlové dély fotoů > 5 studuje se v oblasti IR Rotace oleul otace oleul jsou vatováy, otačí vata oleul jsou alá ve sováí s vibačíi a eletoovýi odděleě se studují otace dvouatoovýc., lieáíc.,syeticýc setvačíů, sféicýc s. a asyeticýc s. Dvouatoové oleuly Rotace HB - přílad apoxiace tuéo otou (déla vazby se běe otace eěí) E = J ( J + ) J =,,, 3,... I otačí v. číslo E = cbj( J +) oet setvačosti I = μeff ~ ν ~ + ν = B, B = 8π Ic ozdíl dvou ot. ladi ΔJ = ± výběové pavidlo =.6 = p I = B = 8.73 c 7 g - g E - /J 6 T=. - J (5 C) eulový dipólový oet

5 HCl spetu Eletoové, vibačí, a otačí excitovaé stavy eletoová excitace vyžaduje e. ~ ev vlové dély fotoů < studuje se v oblasti UV-VIS vibačí excitačí eegie cca >. ev vlové dély fotoů > 5, ~ c - studuje se v oblasti IR otačí excitačí eegie cca >.3 ev vločty fotoů ~ c - studuje se v oblasti fa IR, iovlé Uázy IR spete gas pase codesed pase 3756 c 365 c 595 c 5

Kmity a rotace molekul

Kmity a rotace molekul Kmity a rotace moleul Svět moleul je neustále v pohybu l eletrony se pohybují oolo jader l jádra mitají olem rovnovážných poloh l moleuly rotují a přesouvají se Ion H + podrobněji Kmity vibrace moleul

Více

Pojem prvku. alchymie Paracelsus (16.st)

Pojem prvku. alchymie Paracelsus (16.st) Pojem pvku alchymie Paacelsus (6.st) alchymie. teoie flogistou chemie 7.-8.st při hořeí látky ztácí těkavou součást - flogisto. látky flogisto + popel (... esouhlasila hmotost) kvatitativí zázamy postupů

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Ý ď Ú Ť ň Ť Ď Ť ú Ý Ď ň Ť Ť Ó Ť ň Ť Ť Ť Ť Ť ň Ť ň Ť Ť Č Ť Ě ň Č ň Ď Č Ý Č ř Ó Č Ú Ť Ť Ť Ó Ť Ť Ť Ť Ť Č Ť Ť Ť Ť Ť Ť Ú Ť Ť Ť É Ú Č Ť Č Ť Ý Ť Ť ř ň Ó Ť Ú Ť ú Ť Ť Ť Ť Ý Ě Č ň Č Ť Č ň ň ď ď Ť Ť ď Ť Ý Ó Ť Č ň

Více

Složení soustav. c k. Přehled užívaných koncentrací. hmotnostní konc. (podíl) objemová konc. (podíl) molová konc. (podíl) hmotnostně objemová konc.

Složení soustav. c k. Přehled užívaných koncentrací. hmotnostní konc. (podíl) objemová konc. (podíl) molová konc. (podíl) hmotnostně objemová konc. U 8 - Ústav oesí a zaovatelsé tehy FS ČVU Složeí soustav Přehled užívaýh oetaí Symbol efe Rozmě Název m hmotost_ hmotost_ hmotostí o. (odíl) v objem_ objem_ objemová o. (odíl) lat. mozství_ lat. mozství_

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor. 5 PŘEDNÁŠKA 5: Jedorozměrý a třírozměrý harmoický oscilátor. Půjde o spektrum harmoického oscilátoru emá to ic společého se spektrem atomu ebo se spektrálími čarami atomu. Liší se to právě poteciálem!

Více

Teorie Molekulových Orbitalů (MO)

Teorie Molekulových Orbitalů (MO) Teorie Molekulových Orbitalů (MO) Kombinace atomových orbitalů na všech atomech v molekule Vhodná symetrie Vhodná (podobná) energie Z n AO vytvoříme n MO Pro začátek dvouatomové molekuly: H 2, F 2, CO,...

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt

Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt DALŠÍ TYPY VLN Iotozvukové vly (elektostatiké ízkofekvečí vly) jsou to podélé vly podobé klasikému zvuku v plyu ω γ kt k M B s = = plazma zvuk pomalý po elektoy, yhlý po ioty hustota elektoů je v každém

Více

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil 3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová

Více

( NV, )} Řešením Schrödingerovy rovnice pro N částic

( NV, )} Řešením Schrödingerovy rovnice pro N částic Partčí fuc { E ( V, )} Řším Schrödgrovy rovc pro částc Zdoduší (?) H = H E = E Ψ= Ψ BOSOY stavy sou obsazováy bz omzí FERMIOY frmoy mohou být v stém stavu Přílady: Ply (ízý tla) => mzmolulové trac zadbáy

Více

ATOMOVÁ SPEKTRA DVOUELEKTRONOVÝCH SYSTÉMŮ: He, Hg

ATOMOVÁ SPEKTRA DVOUELEKTRONOVÝCH SYSTÉMŮ: He, Hg Úloa č. 0 ATOMOVÁ SPEKTRA DVOUELEKTRONOVÝCH SYSTÉMŮ: H, Hg ÚKOL MĚŘENÍ:. Staovt vlovou délku jitzivějšíc spktálíc liií lia.. Staovt vlovou délku jitzivějšíc spktálíc liií tuti.. TEORETICKÝ ÚVOD. Itfc světla

Více

Born-Oppenheimerova aproximace

Born-Oppenheimerova aproximace Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra

Více

TELMG Modul 09: Nestacionární pole III - Záření. Z modulu 3 víme, že tok elektromagnetické energie orientovanou ploškou ds je dán součinem

TELMG Modul 09: Nestacionární pole III - Záření. Z modulu 3 víme, že tok elektromagnetické energie orientovanou ploškou ds je dán součinem TELMG Modul 9: Nestaioáí pole III - Zářeí Eletomagetié zářeí Z modulu 3 víme že to eletomagetié eegie oietovaou plošou ds je dá součiem dφ = P ds = PdS de P E H je Poytigův veto Plohu ds lze vyjádřit pomoí

Více

Íč č č Ě Ť š č č š ť č ň š ň č č č Í Ť š š Í č ň Ž č č č Ť š ň ň Ť č Í Ť ň Í Ť š Ž Ť Ž Í Ž Š Ž š č šť č š š ň š Ž š š š Ž č Ď Ď č Í ň Í ň č š Íš š ň ň š č č č Ď č č Ž š Ž Ý Ť š š ň ď š ň ň š ň č ň š Í

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

q q q ... Nw De p kt Partiční funkce monoatomického ideálního plynu

q q q ... Nw De p kt Partiční funkce monoatomického ideálního plynu Patičí fukc mooatomického idálího plyu QNVT (,, ) tas lc ucl N! N 3/ pmkt tas ( VT, ) V h w w lct w ucl 1 1 1 bd... V L Pouz multiplikativí kostata v Q Ovliví pouz S a A kostata V řadě případů musím uvažovat

Více

KATEDRA VOZIDEL A MOTOR. Palivová sm s PSM #4/14. Karel Páv

KATEDRA VOZIDEL A MOTOR. Palivová sm s PSM #4/14. Karel Páv KAEDA VZIDEL A alivová ss #4/14 Kael áv Eegie volá oeí / 8 1. záko teoyaiky: Q U W V = kost. U U U eakí eegie [J] (zaéko ) U p = kost. (žíváo v ceické teoyaice) eakí etalpie [J] (zaéko ) eakí etalpie bývá

Více

Kvantování elektromagnetického pole Šárka Gregorová, 2013

Kvantování elektromagnetického pole Šárka Gregorová, 2013 Kvtováí eletrogeticého pole Šár Gregorová, 3 Vycházíe z Mxwellových rovic Ze čtvrté rovice plye existece vetorového poteciálu A () () Doszeí do druhé rovice zistíe, že eletricé pole E se ůže od čsové derivce

Více

Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů

Více

1. Čím se zabývá 4PP? zabývá se určováním deformace a porušováním celistvých těles v závislosti na vnějším zatížení

1. Čím se zabývá 4PP? zabývá se určováním deformace a porušováním celistvých těles v závislosti na vnějším zatížení . Čím se zabývá 4PP? zabývá se určováím deformace a porušováím celstvých těles v závslost a vějším zatížeí. Defce obecého apětí + apjatost v bodě tělesa -apětí - je to apětí v určtém bodě určtého tělesa.

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná

Více

Symetrie Platonovská tělesa

Symetrie Platonovská tělesa Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značk a

Více

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011

Přijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011 Přijíací zkoušky do avazujícího agiseského sudia čiesví fyziky po supeň ZŠ a čiesví fyziky po SŠ po akadeický ok / ) Při akceeačích závodech sauje závodí auoobi z kidu a ěří se čas, za keý uazí dáhu 4

Více

Ž č éří š é š ří í č ó Ž ří š é š ó Ě Ě É Ě Ě ě š čů čů ó ý ů í č ó š ý ó ě ó í Ž ě ó í ř čí Ú á č é ó č éš é č ě ž ó í íš ó ó ý ó ý č ó ě Ť ý ě íř í ě č č ó ý é ů ó é ó á í ě Ť ó ó í ě ý ý ó í íč ó ó

Více

6. Lineární diferenciální rovnice s kvazipolynomiální pravou stranou

6. Lineární diferenciální rovnice s kvazipolynomiální pravou stranou 6 37 3: Jsef Herdla lieárí difereciálí rvice se speciálí pravu strau 6 Lieárí difereciálí rvice s vaziplyiálí pravu strau Kvaziplye azýváe fuci tvaru sučiu plyu a epeciály tj P e α Keficiety plyu P() a

Více

ž ú Á Í úč ů ú Í ů ů ú Í č č ů ú ů Í č ó Í ž Ž Íč č ó ž Ž č úč ů ů Í ž Í úč ů Í ž Ž Š Č Á Ř ŘÍ ž Ú ž Í š ž Í č ňň Ú Í Ě Ž č Ž č č ó ÓČ ú č Í čšě ž ňč Ťž Í ů ž ž č č š Ž ž č Í č Í Č Ý Ť ó ú ó ň Ž ň Č ů

Více

II. Soustavy s konečným počtem stupňů volnosti

II. Soustavy s konečným počtem stupňů volnosti Jiří Máca - atedra echaiy - B35 - tel. 435 4500 aca@fsv.cvut.cz. Pohybové rovice. Vlastí etlueé itáí 3. Vyuceé etlueé itáí 4. Volé etlueé itáí 5. Metoda ostat poddajosti 6. Přílady 7. Staticá odezace 8.

Více

❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P

❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P ❷ s é 2s é í t é Pr 3 t str í Úst 2 t t t r 2 2 á rá t r t í str t r 3 tí t 2 2 r á rs ý í rá á 2 í P ZADÁNÍ DIPLOMOVÉ PRÁCE I. OSOBNÍ A STUDIJNÍ ÚDAJE Příjmení: Hurský Jméno: Tomáš Fakulta/ústav: Fakulta

Více

ý č í č é ů ě ě é í č Č í í í í í í í í í ů č é ů ě í ý í č ů č ů í í ý í í í í č č í í čí í č í ů ě í í č í í č é ů ě ě é í í é í í í ý ěí ě č é ů í č ů í č ň ě í ů é č í ů í í í í é í ů é č č í í č í

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

á í ř í č é á é Č é ó š ř č Ť ř ů ž í čů Č á č á á č á ů Č žá í žá í ú Š í é ř Č ř č á í žá ě é ří ř Ř á žá á í ě žá é á ě ů š ěží žá í ří á á áž ě žá í žá í á ě á í ř ť Č ř č ří ří č í žá í á ďě ř ž á

Více

Úvod. Stavba atomů a molekul. Proč? Přehled témat. Paradoxy mikrosvěta. Stavba mikrosvěta v historii. cíle. prostředky

Úvod. Stavba atomů a molekul. Proč? Přehled témat. Paradoxy mikrosvěta. Stavba mikrosvěta v historii. cíle. prostředky Stavba atomů a molekul Úvod cíle sezámit studety s moderími představami a fakty o struktuře a vlastostech mikrosvěta prostředky ezbyté miimum matematiky a základí představy kvatové teorie, která umožňuje

Více

( ) { }{} ( ) { }{} ( ) n (

( ) { }{} ( ) { }{} ( ) n ( Mtody optické spktoskopi v biofyzic Toi absopčníc přcodů / TEORIE ABSORPČNÍCH PŘECHODŮ. Obcné vztay Jdná s nám o ční lktickéo dipólovéo momnt přcod { } ( ) ( ) { } ( ) d = Ψ R d R Ψ R ˆ,,, n n momnt lz

Více

Symetrie Platonovská tělesa

Symetrie Platonovská tělesa Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značka Prvek

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

DISKRÉTNÍ MATEMATIKA II

DISKRÉTNÍ MATEMATIKA II Faulta pedagogcá Techcá uverzta v Lberc DISKRÉTNÍ MATEMATIKA II Doc. RNDr. Mroslav Koucý CSc. Lberec 4 Úvod Dsrétí ateata resp. její zálady patří jž tradčě ez stadardí téata předášeá a Techcé uverztě v

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

K a rb id ic k é fá z e v R O. J i í H á je k ř V á c la v K ra u s

K a rb id ic k é fá z e v R O. J i í H á je k ř V á c la v K ra u s K a rb id ic k é fá z e v R O J i í H á je k ř V á c la v K ra u s Ú vod E xp. materiál Identifikace karbidů Metalografie E DX vs. E BS D Vyhodnocení Závěr V liv o c h la z o v a c í ry c h lo s ti n a

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016 e²ení testu Mechania a ontinuu NAFY00 8. listopadu 06 P ílad Zadání: Eletron o ineticé energii E se srazí s valen ní eletrone argonu a ionizuje jej. P i ionizaci se ást energie nalétávajícího eletronu

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE

ÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE ÚLOHA VÍCE TĚLES V NEBESKÉ ECHANICE SPECIFIKACE PROBLÉU Řeš úlohu ěles zaeá aléz pohyby ( foulova pohybové ovce a aléz ech řešeí) hoých bodů (esp ěles př zaedbáí duhoé oace) a eé působí pouze vzáeé gavačí

Více

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc. DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul

Více

ÚŘ Á Í Š Í ĚŘ Á Í ĚŘ ě ň ě ý ů ý š ý ů ý š ý ů ý š Č ě ě ý ě ý ý ě ů ý ě ě ýš ť š Ó ě š ý ě ě ě š ů ý ý ý ě ý ě š ý ě ě ě ů ě ý ě ý ý Č ě ě ě ě ě ě ů ý ě ě ů ď ů ě ů ý Č ě Ú š Ú š ě ý ý ě ů ě ě š ě ů š

Více

12. Regrese Teoretické základy

12. Regrese Teoretické základy Regese Jedím z hlavích úolů matematicé statistiy je hledáí a studium závislostí mezi dvěma či více oměými Závisle oměá se zavidla ozačuje Y a ezávisle oměé X,, X i,i Závislosti mezi Y a suiou oměých X

Více

1. Přirozená topologie v R n

1. Přirozená topologie v R n MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty

Více

ú ú ň Ž Ž Ť ú Č ň ť ď ú Č ň Č Ť Ž Ť Ť ť Ť Ž ď Č Š Ž ň ť ú ď ú ň Ť Ž ú ď ú ť Ť Ť Ž ú Č ň Ž Č ú Ž ť Ž ť Ž ť ť Š ó ť É ť ť ť ť ó ť ú Ž ó Ž ú ú Ť ň Ť Č Ý Ť Ť Ž Ž ť Ž Ž Ž ú ň ň ó ť Ž Ž Ú Č Ť Ž ň ó ú Ž ď ň Á

Více

á Í š ů á š Ď í á Š č á š á íš ř á Íí ě á č í í á á á ť ř ň ě č íč í í ť ě ť ě á á í é á í š ť á Ťí ě í í í á č íšť á í í í ě ť ě á á í Ťí š š í ďě á í ť šť á í í ě í š í ďé á í á í Ť á ďě á í í š é á

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

(. ) NAVIER-STOKESOVY ROVNICE. Symetrie. Obecně Navier-Stokesovy rovnice: = + u. Posuv v prostoru. Galileova transformace g U : t, r,

(. ) NAVIER-STOKESOVY ROVNICE. Symetrie. Obecně Navier-Stokesovy rovnice: = + u. Posuv v prostoru. Galileova transformace g U : t, r, NAVIER-STOKESOVY ROVNICE Symetrie Obecně Navier-Stokesovy rovnice: D = +. = g Ω p + ν + Dt t D +. = 0 Dt (. ) Posv v prostor space g : t, r, v t, r +, v IR time Posv v čase g τ : t, r, v t + τ, r, v τ

Více

Viz též stavová rovnice ideálního plynu, stavová rovnice reálného plynu a van der Waalsova stavová rovnice.

Viz též stavová rovnice ideálního plynu, stavová rovnice reálného plynu a van der Waalsova stavová rovnice. 5.1 Stavová rovnice 5.1.1 Stavová rovnice ideálního plynu Stavová rovnice pro sěs ideálních plynů 5.1.2 Stavová rovnice reálného plynu Stavové rovnice se dvěa onstantai Viriální rovnice Stavové rovnice

Více

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0) ..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

Ě Ý Í Č í ří í Ř ř ř ří é í í í Ž ř é ř é č ů í é é ž č é č é ž í ů é č í é é ž í í Ž Ž é ú í ř é é Íí ř ů é ž č ů ú í ů ů ú é í í č í í é ř é ů ů í é ř é í ů ž í Í é Í Ř ř ů ř ů ž í é í č í č í í ří í

Více

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených. Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím

Více

Kvantová mechanika IF Co se do přednášky nevešlo

Kvantová mechanika IF Co se do přednášky nevešlo Kvatová mecaika IF Vzik a základy kvatové mecaiky Kvatová mecaika je část kvatové fyziky, která se zabývá mecaickým poybem částic v mikrosvětě pod vlivem působícíc sil. Na rozdíl od klasické, Newtoovy

Více

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí: Geometrická optika Je auka o optickém zobrazováí. Byla vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým ejsou potřeba zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

S k l á d á n í s i l

S k l á d á n í s i l S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících

Více

FYZIKA 1. UČEBNÍ TEXT KATEDRY FYZIKY PrF OU

FYZIKA 1. UČEBNÍ TEXT KATEDRY FYZIKY PrF OU FYZIKA UČEBNÍ TEXT KATEDRY FYZIKY PF OU LSKLENÁK, 00 Fyzia PřF OU, Sleá, 00 MECHANIKA HMOTNÉHO BODU (HB) KINEMATIKA HB Hotý bod (dále je HB) je ejjedodušší z odelů eálých objetů (těles) oužívaých v echaice

Více

Spolehlivost nosné konstrukce

Spolehlivost nosné konstrukce Spolehlivost nosné onstruce Zatížení: -stálé G součinitel zatížení γ G - proměnné Q.součinitel zatíženíγ Q Zatížení: -charateristicé F F,V, M -návrhové F d F d F γ + F γ G G Q Q,V, M Pevnost - charateristicá

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

ě á ž š ž ž š úž úž ě ě Ž ř ř á á ž é ž ř á ě ž č Ž í íš ú š í ěř ě ě š á ž ť á ě ě ž č í íš Ž č Ž é éž č Ž č ž ř ú ě š ř Ž í é ě úž í ž á á ě ž Ž ň ó Í č á ř á š á ž ř š Ž ř š á í ďá ř í Ó š ě č Ž ě í

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ OPTOELEKTRONIKA. Kapitola 2.

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ OPTOELEKTRONIKA. Kapitola 2. FAKULTA ELEKTROTECHIKY A KOMUIKAČÍCH TECHOLOGIÍ VYSOKÉ UČEÍ TECHICKÉ V BRĚ OPTOELEKTROIKA Kapitola. Obsah Obsah... Základí picipy...4. Optické zářeí...4.. Elektoagetická a kvatová teoie světla...4.. Polaizace

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = i(f )

2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = i(f ) 1 Pracovní úkoly 1. Zěřte tuost k pěti pružin etodou statickou. 2. Sestrojte raf závislosti prodloužení pružiny na působící síle y = i(f ) 3. Zěřte tuost k pěti pružin etodou dynaickou. 4. Z doby kitu

Více

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení

Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi

Více

1.1. Primitivní funkce a neurčitý integrál

1.1. Primitivní funkce a neurčitý integrál Mateatia II. NEURČITÝ INTEGRÁL.. Priitiví fuce a eurčitý itegrál Defiice... Říáe, že fuce F( ) je v itervalu ( ab, ) priitiví fucí fuci f ( ), platí-li pro všecha ( ab, ) vztah F = f. Defiice... Možia

Více

Teorie her pro FJFI ČVUT řešené úlohy

Teorie her pro FJFI ČVUT řešené úlohy Tyto úlohy volně doplňují přednášky z kursu teorie her. Rozsah látky a použité značení odpovídá slajdům dostupným na stránce věnované výuce. Γ S S Γ 3 o = o = o 3 = vítězná o o Γ u u(o ) = u(o ) = u(o

Více

Statistická rozdělení

Statistická rozdělení Úvod Statstcá rozděleí Václav Adamec vadamec@medelu.cz Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

Ť ň ň ř Ť Ť ň Í ň Ť ň ú Í č ř č č ň č ď ř Ť ň č č č Ť č ň ť č Ť č ň ť ť ň č Ď Ť ň č Ť Ť ť č Ť ň č Í č Ř č Í Ť č Ť Ž Í č č ť Ť Č č č Ť Ž Ť Ť Ť ň ň č ň č Ť ň Š Ť Ť Ž Í Ť ň č Ť č č č č Č č č č ň ř č č Ť ŽÍ

Více

Í é š é ř é Šč č Í š š é ř ý é ý ý ů č é ď č š é ř ř Ž é ů č ď č š é ř č é Í č č š é ř é č é ď ď é ř é é č é é Š é č č Í č š č é ř ý č é ů š ř ý ý ú ř é ř é é é ř č Í š ř ď č ř é é ř é é é ď ů é ů Č ď

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Rovnice 1.řádu. (taková řešení nazýváme singulární řešení). řeší rovnici (*) na intervalu ( a, b)

Rovnice 1.řádu. (taková řešení nazýváme singulární řešení). řeší rovnici (*) na intervalu ( a, b) Rovce řáu Rovce se separovaým proměým Derecálí rovc tvaru g h * azýváme rovcí se separovaým proměým latí: Nechť g je spojtá uce a tervalu a b h je spojtá a eulová uce a tervalu c Ozačme postupě G a H prmtví

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

FOURIEROVA A LAPLACEOVA TRANSFORMACE,

FOURIEROVA A LAPLACEOVA TRANSFORMACE, FOUIEOVA A LAPLACEOVA ANSFOMACE, OPEÁOOVÉ CHAAKEISIKY DVOJPÓLŮ Fourierovy řady prodlužováí periody Prodloužeí periody při zachováí šířy ipulsu π sižováí záladí frevece ω = frevece, eré jsou u raší periody

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

PETR KULHÁNEK. Praha 2001 FEL ČVUT

PETR KULHÁNEK. Praha 2001 FEL ČVUT ASTOFYZIKA -- S PET KULHÁNEK Paha 00 FEL ČVUT OBSAH I ZÁKLADNÍ VZTAHY 3 Pasek 3 Poxima Cetaui 4 3 Magituda 4 4 Pogsoova ovice 5 5 Absolutí magituda Sluce 5 6 Hodiový úhel Aldebaau 6 7 Jety kvasau - fiktiví

Více

MA1: Cvičné příklady posloupnosti, řady, mocninné řady Stručná řešení

MA1: Cvičné příklady posloupnosti, řady, mocninné řady Stručná řešení MA: Cvičé přílady poslouposti, řady, mocié řady Stručá řešeí Prvíčley: a 0, a, a, a 5, a 5 Podezřeí: {a }jerostoucípodívámeseato: a + > a + ++ > + + > + + > + 0 > Dostalijsmeerovostplatouprovšecha,ámstačípro,protopro

Více

11. cvičení z Matematiky 2

11. cvičení z Matematiky 2 11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv

Více

á ó ší ř ě á ě ě á í í í é ří ž Í á ě Í š í í í ó í ě é í í é ř Í é í ť í ří š ě á éž ž á ž á áá á í í č ě ř č é ď Ú á é ě ě É á š ě í Ž á í íč Í É ř

á ó ší ř ě á ě ě á í í í é ří ž Í á ě Í š í í í ó í ě é í í é ř Í é í ť í ří š ě á éž ž á ž á áá á í í č ě ř č é ď Ú á é ě ě É á š ě í Ž á í íč Í É ř ě í Íč í é íž ě Č é á ť ž ší ť ř č í á í ž ř ě é ř ž á í ů é ř ě á č é é ě ř Íž á š ěí Í ší Í š Ě ří é é ž í č ý ů á í ě é ř í č ě š Ž ží á í í é í ě š č í í í í á í é é á Í ó í ž ě á íš é é č éé ť á ó

Více

Ů ů ň ů ň Ý ž ů ů ě ů ů Ý ě ů ů Ý ž ž ě ůú ů ů ů ů Ů Á ě ě ů ž ě ě ů ů ň ž ě ě ě ů ě ů ě ě ů ě ě ě Ý ě ě ě ě ě ě ě ů Ú ě ě Ů ž ů ů ě Ý ů Í ě ě ů ě Ý ě Š Š ě ě Í Í Í Š Í Í ů ě ž ů ě ů Ý ě ů ů ů Í ů ů ú

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

3. cvičení 4ST201 - řešení

3. cvičení 4ST201 - řešení cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

Využití komplementarity (duality) štěrbiny a páskového dipólu M

Využití komplementarity (duality) štěrbiny a páskového dipólu M Přechodné typy antén a) štěrbinové antény - buzení el. polem napříč štěrbinou (vlnovod) z - galvanicky generátor mezi hranami - zdrojem záření - pole ve štěrbině (plošná a.) nebo magnetický proud (lineární

Více

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D.

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D. 3. část: Teorie hromadé obsluhy Ig. Michal Dorda, h.d. Zálady teorie pravděpodobosti Náhodý pous je děj, jehož výslede eí ai při dodržeí všech předepsaých podmíe předem zám. Náhodý jev je výsledem áhodého

Více

je amplituda indukovaného dipólového momentu s frekvencí ω

je amplituda indukovaného dipólového momentu s frekvencí ω Induované oscilující eletricé dipóly jao zdroje rozptýleného záření Ja v lasicém, ta i v vantově-mechanicém přístupu jsou za původce rozptýleného záření považovány oscilující eletricé a magneticé multipólové

Více

Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot

Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný

Více

ln ln (c Na + c OH ) L = (c Na + c OH ) P (c H + c Cl ) L = (c H + c Cl ) P

ln ln (c Na + c OH ) L = (c Na + c OH ) P (c H + c Cl ) L = (c H + c Cl ) P 1. MEMRÁNOÉ RONOÁY Ilustračí příklad 1 Doaova rovováha, Doaův poteciál...1 01 Doaova rovováha...3 0 Doaova rovováha...3 0 Doaova rovováha, Doaův poteciál...3 05 Doaova rovováha, Doaův poteciál...3 06 Doaova

Více

Ý é š á ě í í čá í ří í á ň ě ě á ř ář í ý ý á ů Č ě ý í šíč é ů é é á í ě ý í ě é ý ě é áž ý řá í č ě é ř á š ří é š í í ě é ě ž ý ří ě ůž á ř ž č íší í á í ř š é í ž á ý é í á š ě ž í č é á í í í áš

Více