Kmity a rotace molekul
|
|
- Drahomíra Kadlecová
- před 8 lety
- Počet zobrazení:
Transkript
1 Kity a otace oleul Svět oleul je eustále v poybu eletoy se poybují oolo jade jáda itají ole ovovážýc polo oleuly otují a přesouvají se Io H + podoběji Kity vibace oleul disociačí eegie vazby E D se liší od teoeticé eegie E El zísaé řešeí Sc. ovice a to o eegii zál. vibačío poybu (zeopoit eegy) E/ ev - E D σ potivazebý obital E El σ vazebý obital ½ν dva vázaé atoy ejsou v lidu, ale itají ole ovovážýc polo Haoicý osciláto a částici působí poti sěu výcyly síla F = x (Hooův záo) E/ ev d Ψ - ( x ) V = + x Ψ = EΨ, eff = eff dx + Haoicý osciláto - řešeí výslede řešeí je vzta po eegii E + ν, =,,,... = v v vibačí vatové číslo důslede řešeí je eulová eegie záladío vibačío stavu zeo-poit vibatioal eegy - při K je populová záladí vibačí stav a systé stále vibuje
2 Haoicý osciláto - řešeí Haoicý osciláto - důsledy / řešeí ( / ) ( / ) E = + ν = + eff povoleé přecody je ezi sousedíi ladiai Δ = ± / ν = / π Δ = eff E E + E = ν = / eff ~ ν = odtud lze spočítat πc eff Haoicý osciláto Haoicý osciláto - přílady E/eV - > > x/å E = x de = F = x dx E = F gadiet (spád)... silová ostata oleula ~ ν / c - / N - / p H 5 7. D H 35 Cl H 79 B H 7 I O 6 O N N C 6 O Haoicý osciláto Haoicá apoxiace E/eV - ν aoicá apoxiace selává aoicá apoxiace dobře platí je blízo ovovážé poloy, de se dá půbě poteciálí eegie apoxiovat vadaticou fucí, teá v picipu edovoluje disociaci vyšší vibačí stavy jsou blíže a ) ( ) ( E = E D e Moseo pot. eálé vibačí stavy
3 Vibace víceatoovýc oleul dvouatoové oleuly ají jede vibačí ód ataováí vazby (bod stetcig) víceatoové oleuly více vibačíc ódů elieáí oleula 3N 6 lieáí oleula 3N 5 H O = 3 CO = Vibačí ódy H O 595 c 365 c 3756 c ν ~ Vibačí ódy CO Vibace 667 c 667 c 388 c 39 c vločet vibačíc ódů se poybuje řádově oolo c -, jaé to odpovídá eegii a vlové délce? λ = ~, λ = ν c E = = λ E =. N A = 3 3 c, = J/ol 5 ifačeveé, tepelé zářeí J.eV Zaříváí oleul... zaříváí oleul docází excitaci vyššíc vibačíc ladi oleuly, při ižšíc teplotác jsou obsazováy ižší vibačí ladiy, při teplotě absolutí uly (-73.5 C = K) je obsazea je záladí vibačí ladia za běžýc teplot (3 K) jsou doiatě obsazey je záladí vibačí stavy vibace oleul lze studovat poocí IR ebo Raaovy spetosopie Ifačeveá spetosopie studuje absopci světla z IR oblasti speta oleulai eegie se spotřebovává a excitaci vibačíc ladi ěteé vibace eusí být ve spetu vidět vidět jsou je vibace, u teýc docází e zěě dipólovéo oetu 3
4 uáza IR speta uáza IR speta vločet (c - ) Eletoové a vibačí excitovaé stavy eletoová excitace vyžaduje e. ~ ev vlové dély fotoů < studuje se v oblasti UV-VIS vibačí excitačí eegie cca >. ev vlové dély fotoů > 5 studuje se v oblasti IR Rotace oleul otace oleul jsou vatováy, otačí vata oleul jsou alá ve sováí s vibačíi a eletoovýi odděleě se studují otace dvouatoovýc., lieáíc.,syeticýc setvačíů, sféicýc s. a asyeticýc s. Dvouatoové oleuly Rotace HB - přílad apoxiace tuéo otou (déla vazby se běe otace eěí) E = J ( J + ) J =,,, 3,... I otačí v. číslo E = cbj( J +) oet setvačosti I = μeff ~ ν ~ + ν = B, B = 8π Ic ozdíl dvou ot. ladi ΔJ = ± výběové pavidlo =.6 = p I = B = 8.73 c 7 g - g E - /J 6 T=. - J (5 C) eulový dipólový oet
5 HCl spetu Eletoové, vibačí, a otačí excitovaé stavy eletoová excitace vyžaduje e. ~ ev vlové dély fotoů < studuje se v oblasti UV-VIS vibačí excitačí eegie cca >. ev vlové dély fotoů > 5, ~ c - studuje se v oblasti IR otačí excitačí eegie cca >.3 ev vločty fotoů ~ c - studuje se v oblasti fa IR, iovlé Uázy IR spete gas pase codesed pase 3756 c 365 c 595 c 5
Kmity a rotace molekul
Kmity a rotace moleul Svět moleul je neustále v pohybu l eletrony se pohybují oolo jader l jádra mitají olem rovnovážných poloh l moleuly rotují a přesouvají se Ion H + podrobněji Kmity vibrace moleul
VícePojem prvku. alchymie Paracelsus (16.st)
Pojem pvku alchymie Paacelsus (6.st) alchymie. teoie flogistou chemie 7.-8.st při hořeí látky ztácí těkavou součást - flogisto. látky flogisto + popel (... esouhlasila hmotost) kvatitativí zázamy postupů
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VíceÝ ď Ú Ť ň Ť Ď Ť ú Ý Ď ň Ť Ť Ó Ť ň Ť Ť Ť Ť Ť ň Ť ň Ť Ť Č Ť Ě ň Č ň Ď Č Ý Č ř Ó Č Ú Ť Ť Ť Ó Ť Ť Ť Ť Ť Č Ť Ť Ť Ť Ť Ť Ú Ť Ť Ť É Ú Č Ť Č Ť Ý Ť Ť ř ň Ó Ť Ú Ť ú Ť Ť Ť Ť Ý Ě Č ň Č Ť Č ň ň ď ď Ť Ť ď Ť Ý Ó Ť Č ň
VíceSložení soustav. c k. Přehled užívaných koncentrací. hmotnostní konc. (podíl) objemová konc. (podíl) molová konc. (podíl) hmotnostně objemová konc.
U 8 - Ústav oesí a zaovatelsé tehy FS ČVU Složeí soustav Přehled užívaýh oetaí Symbol efe Rozmě Název m hmotost_ hmotost_ hmotostí o. (odíl) v objem_ objem_ objemová o. (odíl) lat. mozství_ lat. mozství_
Více3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
Více5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.
5 PŘEDNÁŠKA 5: Jedorozměrý a třírozměrý harmoický oscilátor. Půjde o spektrum harmoického oscilátoru emá to ic společého se spektrem atomu ebo se spektrálími čarami atomu. Liší se to právě poteciálem!
VíceTeorie Molekulových Orbitalů (MO)
Teorie Molekulových Orbitalů (MO) Kombinace atomových orbitalů na všech atomech v molekule Vhodná symetrie Vhodná (podobná) energie Z n AO vytvoříme n MO Pro začátek dvouatomové molekuly: H 2, F 2, CO,...
Vícek(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln
Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =
VíceIontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt
DALŠÍ TYPY VLN Iotozvukové vly (elektostatiké ízkofekvečí vly) jsou to podélé vly podobé klasikému zvuku v plyu ω γ kt k M B s = = plazma zvuk pomalý po elektoy, yhlý po ioty hustota elektoů je v každém
Vícerovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil
3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová
Více( NV, )} Řešením Schrödingerovy rovnice pro N částic
Partčí fuc { E ( V, )} Řším Schrödgrovy rovc pro částc Zdoduší (?) H = H E = E Ψ= Ψ BOSOY stavy sou obsazováy bz omzí FERMIOY frmoy mohou být v stém stavu Přílady: Ply (ízý tla) => mzmolulové trac zadbáy
VíceATOMOVÁ SPEKTRA DVOUELEKTRONOVÝCH SYSTÉMŮ: He, Hg
Úloa č. 0 ATOMOVÁ SPEKTRA DVOUELEKTRONOVÝCH SYSTÉMŮ: H, Hg ÚKOL MĚŘENÍ:. Staovt vlovou délku jitzivějšíc spktálíc liií lia.. Staovt vlovou délku jitzivějšíc spktálíc liií tuti.. TEORETICKÝ ÚVOD. Itfc světla
VíceBorn-Oppenheimerova aproximace
Born-Oppenheimerova aproximace Oddělení elektronického a jaderného pohybu Jádra 2000 x těžší než elektrony elektrony kvantová chemie, popis systému (do 100 atomů) na základě vlastností elektronů (jádra
VíceTELMG Modul 09: Nestacionární pole III - Záření. Z modulu 3 víme, že tok elektromagnetické energie orientovanou ploškou ds je dán součinem
TELMG Modul 9: Nestaioáí pole III - Zářeí Eletomagetié zářeí Z modulu 3 víme že to eletomagetié eegie oietovaou plošou ds je dá součiem dφ = P ds = PdS de P E H je Poytigův veto Plohu ds lze vyjádřit pomoí
VíceÍč č č Ě Ť š č č š ť č ň š ň č č č Í Ť š š Í č ň Ž č č č Ť š ň ň Ť č Í Ť ň Í Ť š Ž Ť Ž Í Ž Š Ž š č šť č š š ň š Ž š š š Ž č Ď Ď č Í ň Í ň č š Íš š ň ň š č č č Ď č č Ž š Ž Ý Ť š š ň ď š ň ň š ň č ň š Í
VíceElektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou
Víceq q q ... Nw De p kt Partiční funkce monoatomického ideálního plynu
Patičí fukc mooatomického idálího plyu QNVT (,, ) tas lc ucl N! N 3/ pmkt tas ( VT, ) V h w w lct w ucl 1 1 1 bd... V L Pouz multiplikativí kostata v Q Ovliví pouz S a A kostata V řadě případů musím uvažovat
VíceKATEDRA VOZIDEL A MOTOR. Palivová sm s PSM #4/14. Karel Páv
KAEDA VZIDEL A alivová ss #4/14 Kael áv Eegie volá oeí / 8 1. záko teoyaiky: Q U W V = kost. U U U eakí eegie [J] (zaéko ) U p = kost. (žíváo v ceické teoyaice) eakí etalpie [J] (zaéko ) eakí etalpie bývá
VíceKvantování elektromagnetického pole Šárka Gregorová, 2013
Kvtováí eletrogeticého pole Šár Gregorová, 3 Vycházíe z Mxwellových rovic Ze čtvrté rovice plye existece vetorového poteciálu A () () Doszeí do druhé rovice zistíe, že eletricé pole E se ůže od čsové derivce
VíceŠ Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů
Více1. Čím se zabývá 4PP? zabývá se určováním deformace a porušováním celistvých těles v závislosti na vnějším zatížení
. Čím se zabývá 4PP? zabývá se určováím deformace a porušováím celstvých těles v závslost a vějším zatížeí. Defce obecého apětí + apjatost v bodě tělesa -apětí - je to apětí v určtém bodě určtého tělesa.
VíceDOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO
DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná
VíceSymetrie Platonovská tělesa
Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značk a
VícePřijímací zkoušky do navazujícího magisterského studia Učitelství fyziky pro 2. stupeň ZŠ a Učitelství fyziky pro SŠ pro akademický rok 2010/2011
Přijíací zkoušky do avazujícího agiseského sudia čiesví fyziky po supeň ZŠ a čiesví fyziky po SŠ po akadeický ok / ) Při akceeačích závodech sauje závodí auoobi z kidu a ěří se čas, za keý uazí dáhu 4
VíceŽ č éří š é š ří í č ó Ž ří š é š ó Ě Ě É Ě Ě ě š čů čů ó ý ů í č ó š ý ó ě ó í Ž ě ó í ř čí Ú á č é ó č éš é č ě ž ó í íš ó ó ý ó ý č ó ě Ť ý ě íř í ě č č ó ý é ů ó é ó á í ě Ť ó ó í ě ý ý ó í íč ó ó
Více6. Lineární diferenciální rovnice s kvazipolynomiální pravou stranou
6 37 3: Jsef Herdla lieárí difereciálí rvice se speciálí pravu strau 6 Lieárí difereciálí rvice s vaziplyiálí pravu strau Kvaziplye azýváe fuci tvaru sučiu plyu a epeciály tj P e α Keficiety plyu P() a
Vícež ú Á Í úč ů ú Í ů ů ú Í č č ů ú ů Í č ó Í ž Ž Íč č ó ž Ž č úč ů ů Í ž Í úč ů Í ž Ž Š Č Á Ř ŘÍ ž Ú ž Í š ž Í č ňň Ú Í Ě Ž č Ž č č ó ÓČ ú č Í čšě ž ňč Ťž Í ů ž ž č č š Ž ž č Í č Í Č Ý Ť ó ú ó ň Ž ň Č ů
VíceII. Soustavy s konečným počtem stupňů volnosti
Jiří Máca - atedra echaiy - B35 - tel. 435 4500 aca@fsv.cvut.cz. Pohybové rovice. Vlastí etlueé itáí 3. Vyuceé etlueé itáí 4. Volé etlueé itáí 5. Metoda ostat poddajosti 6. Přílady 7. Staticá odezace 8.
Více❷ s é 2s é í t é Pr 3 t str í. á rá. t r t í str t r 3. 2 r á rs ý í rá á 2 í P
❷ s é 2s é í t é Pr 3 t str í Úst 2 t t t r 2 2 á rá t r t í str t r 3 tí t 2 2 r á rs ý í rá á 2 í P ZADÁNÍ DIPLOMOVÉ PRÁCE I. OSOBNÍ A STUDIJNÍ ÚDAJE Příjmení: Hurský Jméno: Tomáš Fakulta/ústav: Fakulta
Víceý č í č é ů ě ě é í č Č í í í í í í í í í ů č é ů ě í ý í č ů č ů í í ý í í í í č č í í čí í č í ů ě í í č í í č é ů ě ě é í í é í í í ý ěí ě č é ů í č ů í č ň ě í ů é č í ů í í í í é í ů é č č í í č í
VícePřednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
Víceá í ř í č é á é Č é ó š ř č Ť ř ů ž í čů Č á č á á č á ů Č žá í žá í ú Š í é ř Č ř č á í žá ě é ří ř Ř á žá á í ě žá é á ě ů š ěží žá í ří á á áž ě žá í žá í á ě á í ř ť Č ř č ří ří č í žá í á ďě ř ž á
VíceÚvod. Stavba atomů a molekul. Proč? Přehled témat. Paradoxy mikrosvěta. Stavba mikrosvěta v historii. cíle. prostředky
Stavba atomů a molekul Úvod cíle sezámit studety s moderími představami a fakty o struktuře a vlastostech mikrosvěta prostředky ezbyté miimum matematiky a základí představy kvatové teorie, která umožňuje
Více( ) { }{} ( ) { }{} ( ) n (
Mtody optické spktoskopi v biofyzic Toi absopčníc přcodů / TEORIE ABSORPČNÍCH PŘECHODŮ. Obcné vztay Jdná s nám o ční lktickéo dipólovéo momnt přcod { } ( ) ( ) { } ( ) d = Ψ R d R Ψ R ˆ,,, n n momnt lz
VíceSymetrie Platonovská tělesa
Symetrie Platonovská tělesa 1 Symetrie Virus rýmy Virus obrny Virus slintavky a kulhavky 2 Symetrie molekul Jak jsou atomy v molekule uspořádány = ekvivalentní atomy 3 Prvky a operace symetrie Značka Prvek
Více13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Více5. Lineární diferenciální rovnice n-tého řádu
5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá
VíceDISKRÉTNÍ MATEMATIKA II
Faulta pedagogcá Techcá uverzta v Lberc DISKRÉTNÍ MATEMATIKA II Doc. RNDr. Mroslav Koucý CSc. Lberec 4 Úvod Dsrétí ateata resp. její zálady patří jž tradčě ez stadardí téata předášeá a Techcé uverztě v
VíceATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
VíceK a rb id ic k é fá z e v R O. J i í H á je k ř V á c la v K ra u s
K a rb id ic k é fá z e v R O J i í H á je k ř V á c la v K ra u s Ú vod E xp. materiál Identifikace karbidů Metalografie E DX vs. E BS D Vyhodnocení Závěr V liv o c h la z o v a c í ry c h lo s ti n a
VícePříklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka
Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní
Vícee²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016
e²ení testu Mechania a ontinuu NAFY00 8. listopadu 06 P ílad Zadání: Eletron o ineticé energii E se srazí s valen ní eletrone argonu a ionizuje jej. P i ionizaci se ást energie nalétávajícího eletronu
VíceLineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
VíceÚLOHA VÍCE TĚLES V NEBESKÉ MECHANICE
ÚLOHA VÍCE TĚLES V NEBESKÉ ECHANICE SPECIFIKACE PROBLÉU Řeš úlohu ěles zaeá aléz pohyby ( foulova pohybové ovce a aléz ech řešeí) hoých bodů (esp ěles př zaedbáí duhoé oace) a eé působí pouze vzáeé gavačí
VíceIDEÁLNÍ PLYN I. Prof. RNDr. Emanuel Svoboda, CSc.
IDEÁLÍ PLY I Prof. RDr. Eanuel Soboda, CSc. DEFIICE IDEÁLÍHO PLYU (MODEL IP) O oleulách ideálního plynu ysloujee 3 předpolady: 1. Rozěry oleul jsou zanedbatelně alé e sronání se střední zdáleností oleul
VíceÚŘ Á Í Š Í ĚŘ Á Í ĚŘ ě ň ě ý ů ý š ý ů ý š ý ů ý š Č ě ě ý ě ý ý ě ů ý ě ě ýš ť š Ó ě š ý ě ě ě š ů ý ý ý ě ý ě š ý ě ě ě ů ě ý ě ý ý Č ě ě ě ě ě ě ů ý ě ě ů ď ů ě ů ý Č ě Ú š Ú š ě ý ý ě ů ě ě š ě ů š
Více12. Regrese Teoretické základy
Regese Jedím z hlavích úolů matematicé statistiy je hledáí a studium závislostí mezi dvěma či více oměými Závisle oměá se zavidla ozačuje Y a ezávisle oměé X,, X i,i Závislosti mezi Y a suiou oměých X
Více1. Přirozená topologie v R n
MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu
VícePRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
Víceú ú ň Ž Ž Ť ú Č ň ť ď ú Č ň Č Ť Ž Ť Ť ť Ť Ž ď Č Š Ž ň ť ú ď ú ň Ť Ž ú ď ú ť Ť Ť Ž ú Č ň Ž Č ú Ž ť Ž ť Ž ť ť Š ó ť É ť ť ť ť ó ť ú Ž ó Ž ú ú Ť ň Ť Č Ý Ť Ť Ž Ž ť Ž Ž Ž ú ň ň ó ť Ž Ž Ú Č Ť Ž ň ó ú Ž ď ň Á
Víceá Í š ů á š Ď í á Š č á š á íš ř á Íí ě á č í í á á á ť ř ň ě č íč í í ť ě ť ě á á í é á í š ť á Ťí ě í í í á č íšť á í í í ě ť ě á á í Ťí š š í ďě á í ť šť á í í ě í š í ďé á í á í Ť á ďě á í í š é á
Více1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.
Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.
Více(. ) NAVIER-STOKESOVY ROVNICE. Symetrie. Obecně Navier-Stokesovy rovnice: = + u. Posuv v prostoru. Galileova transformace g U : t, r,
NAVIER-STOKESOVY ROVNICE Symetrie Obecně Navier-Stokesovy rovnice: D = +. = g Ω p + ν + Dt t D +. = 0 Dt (. ) Posv v prostor space g : t, r, v t, r +, v IR time Posv v čase g τ : t, r, v t + τ, r, v τ
VíceViz též stavová rovnice ideálního plynu, stavová rovnice reálného plynu a van der Waalsova stavová rovnice.
5.1 Stavová rovnice 5.1.1 Stavová rovnice ideálního plynu Stavová rovnice pro sěs ideálních plynů 5.1.2 Stavová rovnice reálného plynu Stavové rovnice se dvěa onstantai Viriální rovnice Stavové rovnice
Vícea q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)
..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí
Více7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
VíceĚ Ý Í Č í ří í Ř ř ř ří é í í í Ž ř é ř é č ů í é é ž č é č é ž í ů é č í é é ž í í Ž Ž é ú í ř é é Íí ř ů é ž č ů ú í ů ů ú é í í č í í é ř é ů ů í é ř é í ů ž í Í é Í Ř ř ů ř ů ž í é í č í č í í ří í
Více!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.
Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím
VíceKvantová mechanika IF Co se do přednášky nevešlo
Kvatová mecaika IF Vzik a základy kvatové mecaiky Kvatová mecaika je část kvatové fyziky, která se zabývá mecaickým poybem částic v mikrosvětě pod vlivem působícíc sil. Na rozdíl od klasické, Newtoovy
Víceprocesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze
limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí
Více8.1.2 Vzorec pro n-tý člen
8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají
VíceOPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
VíceL A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
VíceGeometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:
Geometrická optika Je auka o optickém zobrazováí. Byla vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým ejsou potřeba zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost
VíceS k l á d á n í s i l
S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících
VíceFYZIKA 1. UČEBNÍ TEXT KATEDRY FYZIKY PrF OU
FYZIKA UČEBNÍ TEXT KATEDRY FYZIKY PF OU LSKLENÁK, 00 Fyzia PřF OU, Sleá, 00 MECHANIKA HMOTNÉHO BODU (HB) KINEMATIKA HB Hotý bod (dále je HB) je ejjedodušší z odelů eálých objetů (těles) oužívaých v echaice
VíceSpolehlivost nosné konstrukce
Spolehlivost nosné onstruce Zatížení: -stálé G součinitel zatížení γ G - proměnné Q.součinitel zatíženíγ Q Zatížení: -charateristicé F F,V, M -návrhové F d F d F γ + F γ G G Q Q,V, M Pevnost - charateristicá
VíceFyzika IV Dynamika jader v molekulách
Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment
Víceě á ž š ž ž š úž úž ě ě Ž ř ř á á ž é ž ř á ě ž č Ž í íš ú š í ěř ě ě š á ž ť á ě ě ž č í íš Ž č Ž é éž č Ž č ž ř ú ě š ř Ž í é ě úž í ž á á ě ž Ž ň ó Í č á ř á š á ž ř š Ž ř š á í ďá ř í Ó š ě č Ž ě í
VíceFAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ OPTOELEKTRONIKA. Kapitola 2.
FAKULTA ELEKTROTECHIKY A KOMUIKAČÍCH TECHOLOGIÍ VYSOKÉ UČEÍ TECHICKÉ V BRĚ OPTOELEKTROIKA Kapitola. Obsah Obsah... Základí picipy...4. Optické zářeí...4.. Elektoagetická a kvatová teoie světla...4.. Polaizace
VíceIntervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
Více2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = i(f )
1 Pracovní úkoly 1. Zěřte tuost k pěti pružin etodou statickou. 2. Sestrojte raf závislosti prodloužení pružiny na působící síle y = i(f ) 3. Zěřte tuost k pěti pružin etodou dynaickou. 4. Z doby kitu
VíceAlternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení
Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi
Více1.1. Primitivní funkce a neurčitý integrál
Mateatia II. NEURČITÝ INTEGRÁL.. Priitiví fuce a eurčitý itegrál Defiice... Říáe, že fuce F( ) je v itervalu ( ab, ) priitiví fucí fuci f ( ), platí-li pro všecha ( ab, ) vztah F = f. Defiice... Možia
VíceTeorie her pro FJFI ČVUT řešené úlohy
Tyto úlohy volně doplňují přednášky z kursu teorie her. Rozsah látky a použité značení odpovídá slajdům dostupným na stránce věnované výuce. Γ S S Γ 3 o = o = o 3 = vítězná o o Γ u u(o ) = u(o ) = u(o
VíceStatistická rozdělení
Úvod Statstcá rozděleí Václav Adamec vadamec@medelu.cz Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí
VíceSPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
VíceŤ ň ň ř Ť Ť ň Í ň Ť ň ú Í č ř č č ň č ď ř Ť ň č č č Ť č ň ť č Ť č ň ť ť ň č Ď Ť ň č Ť Ť ť č Ť ň č Í č Ř č Í Ť č Ť Ž Í č č ť Ť Č č č Ť Ž Ť Ť Ť ň ň č ň č Ť ň Š Ť Ť Ž Í Ť ň č Ť č č č č Č č č č ň ř č č Ť ŽÍ
VíceÍ é š é ř é Šč č Í š š é ř ý é ý ý ů č é ď č š é ř ř Ž é ů č ď č š é ř č é Í č č š é ř é č é ď ď é ř é é č é é Š é č č Í č š č é ř ý č é ů š ř ý ý ú ř é ř é é é ř č Í š ř ď č ř é é ř é é é ď ů é ů Č ď
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VíceRovnice 1.řádu. (taková řešení nazýváme singulární řešení). řeší rovnici (*) na intervalu ( a, b)
Rovce řáu Rovce se separovaým proměým Derecálí rovc tvaru g h * azýváme rovcí se separovaým proměým latí: Nechť g je spojtá uce a tervalu a b h je spojtá a eulová uce a tervalu c Ozačme postupě G a H prmtví
VíceDefinice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
VíceFOURIEROVA A LAPLACEOVA TRANSFORMACE,
FOUIEOVA A LAPLACEOVA ANSFOMACE, OPEÁOOVÉ CHAAKEISIKY DVOJPÓLŮ Fourierovy řady prodlužováí periody Prodloužeí periody při zachováí šířy ipulsu π sižováí záladí frevece ω = frevece, eré jsou u raší periody
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VícePETR KULHÁNEK. Praha 2001 FEL ČVUT
ASTOFYZIKA -- S PET KULHÁNEK Paha 00 FEL ČVUT OBSAH I ZÁKLADNÍ VZTAHY 3 Pasek 3 Poxima Cetaui 4 3 Magituda 4 4 Pogsoova ovice 5 5 Absolutí magituda Sluce 5 6 Hodiový úhel Aldebaau 6 7 Jety kvasau - fiktiví
VíceMA1: Cvičné příklady posloupnosti, řady, mocninné řady Stručná řešení
MA: Cvičé přílady poslouposti, řady, mocié řady Stručá řešeí Prvíčley: a 0, a, a, a 5, a 5 Podezřeí: {a }jerostoucípodívámeseato: a + > a + ++ > + + > + + > + 0 > Dostalijsmeerovostplatouprovšecha,ámstačípro,protopro
Více11. cvičení z Matematiky 2
11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv
Víceá ó ší ř ě á ě ě á í í í é ří ž Í á ě Í š í í í ó í ě é í í é ř Í é í ť í ří š ě á éž ž á ž á áá á í í č ě ř č é ď Ú á é ě ě É á š ě í Ž á í íč Í É ř
ě í Íč í é íž ě Č é á ť ž ší ť ř č í á í ž ř ě é ř ž á í ů é ř ě á č é é ě ř Íž á š ěí Í ší Í š Ě ří é é ž í č ý ů á í ě é ř í č ě š Ž ží á í í é í ě š č í í í í á í é é á Í ó í ž ě á íš é é č éé ť á ó
VíceŮ ů ň ů ň Ý ž ů ů ě ů ů Ý ě ů ů Ý ž ž ě ůú ů ů ů ů Ů Á ě ě ů ž ě ě ů ů ň ž ě ě ě ů ě ů ě ě ů ě ě ě Ý ě ě ě ě ě ě ě ů Ú ě ě Ů ž ů ů ě Ý ů Í ě ě ů ě Ý ě Š Š ě ě Í Í Í Š Í Í ů ě ž ů ě ů Ý ě ů ů ů Í ů ů ú
VíceÚvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Více3. cvičení 4ST201 - řešení
cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry
Více8.1.2 Vzorec pro n-tý člen
8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým
VíceVyužití komplementarity (duality) štěrbiny a páskového dipólu M
Přechodné typy antén a) štěrbinové antény - buzení el. polem napříč štěrbinou (vlnovod) z - galvanicky generátor mezi hranami - zdrojem záření - pole ve štěrbině (plošná a.) nebo magnetický proud (lineární
Více3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D.
3. část: Teorie hromadé obsluhy Ig. Michal Dorda, h.d. Zálady teorie pravděpodobosti Náhodý pous je děj, jehož výslede eí ai při dodržeí všech předepsaých podmíe předem zám. Náhodý jev je výsledem áhodého
Víceje amplituda indukovaného dipólového momentu s frekvencí ω
Induované oscilující eletricé dipóly jao zdroje rozptýleného záření Ja v lasicém, ta i v vantově-mechanicém přístupu jsou za původce rozptýleného záření považovány oscilující eletricé a magneticé multipólové
VícePohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot
Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný
Víceln ln (c Na + c OH ) L = (c Na + c OH ) P (c H + c Cl ) L = (c H + c Cl ) P
1. MEMRÁNOÉ RONOÁY Ilustračí příklad 1 Doaova rovováha, Doaův poteciál...1 01 Doaova rovováha...3 0 Doaova rovováha...3 0 Doaova rovováha, Doaův poteciál...3 05 Doaova rovováha, Doaův poteciál...3 06 Doaova
VíceÝ é š á ě í í čá í ří í á ň ě ě á ř ář í ý ý á ů Č ě ý í šíč é ů é é á í ě ý í ě é ý ě é áž ý řá í č ě é ř á š ří é š í í ě é ě ž ý ří ě ůž á ř ž č íší í á í ř š é í ž á ý é í á š ě ž í č é á í í í áš
Více