Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Rozměr: px
Začít zobrazení ze stránky:

Download "Obr. DI-1. K principu reverzibility (obrácení chodu paprsků)."

Transkript

1 Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí o dexu lomu dopdá rové rozhrí r mpltud vly prošlé do protředí Obr. DI-1. K prcpu reverzblty (obráceí chodu pprků). Můžeme deovt koecety (mpltudové) odrzvot r proputot t pro vlu dopdjící rozhrí z protředí jko r r t t logcky koecety r t pro vlu dopdjící rozhrí z protředí. Podle prcpu reverblty můžeme obrátt chod pprků, bychom vděl, jk e šíří v opčém měru (vz protředí čát obr. DI-1), ž e změí vzthy mez mpltudm. Obecě le víme, dvě vly dopdjící rozhrí v protředím dgrmu e rozdělí vždy održeou prošlou vlu (vz dgrm vprvo). Protože vzthy mez mpltudm v protředím prvém dgrmu muí být plté, je zřejmé, že = tt + r = rt + tr Odtud zíkáme tzv. Stokeovy vzthy mez koecety odrzvot proputot větelé vly rozhrí dvou delektrk tt = 1 r r = r č přeěj t( α) t ( ) = 1 r ( α) r ( ) r( α) =. Jým lovy, druhý ze Stokeových vzthů ám říká, že víme-l kolk větl e odráží rozhrí př průchodu v jedom měru, tejé možtví e odráží př průchodu ve měru opčém. Př kolmém dopdu bude r = t = + + 1

2 Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Zřejmě r < pokud < (vější odrz) r > pokud > (vtří odrz), což je ve hodě Freelovým vzthy. Ke změě áze o π dochází př vějším odrzu ( < ). Teto kt je třeb mít zřetel př tererec dvou ( více vzků) zíkých rozděleím mpltudy. Předpokládejme, že větelá vl dopdá rozhrí dvou protředí. Čát vly e rozhrí odráží čát prochází do druhého protředí. Obě vly (održeá o prošlá) budou mít meší mpltudu ež vl dopdjící. Můžeme říc, že mpltud dopdjící vly e rozděll. Jetlže dvě tkto odděleé vly můžeme ějkým způobem přvét do určtého mít protoru, budeme pozorovt tererec, pokud dráhový rozdíl mez m bude meší ež koherečí délk. 1r r 3r d α A D α C B α 1t t Obr. DI-. K tererec plprlelí vrtvě. Uvžujme plprlelí vrtvu tloušťky d o dexu lomu v protředí o dexu lomu. Pprky 1r r pocházejí ze tejé vly, jou tedy koheretí mohou tererovt. Výledek tererece záví ázovém rozdílu mez m. Rozdíl v optckých drhách mez 1r ( ) ( ) ( ) = AB + BC AD le ( AB) = ( BC) = co d AD AC AC ( ) = ( ) α = ( ) r (tejě jko mez 1t t ) bude

3 Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě ( AC) = d tg Tedy ( ) AD = d tg = d co pro dráhový rozdíl dotáváme d = ( 1 ) = d co co Fázový pouv = k x dráhový rozdíl, k ěmu le muíme vzít v úvhu změu áze vly o π př vějším odrzu. Př dvojvzkové tererec v održeém větle távjí vždy dv odrzy, jede vější druhý vtří, vždy tedy vzká ázový rozdíl ±π (zméko ázového rozdílu všk eí důležté), tedy π π δ = d co + π = d co + π V održeém větle budeme pozorovt tererečí mxm, bude-l plě podmík δ = mπ (ázový rozdíl je rove udému áobku půlvl) co = 1 tererečí mxm tedy d ( m ) ebo d ( m ) d co co = 1, kde = je vlová délk zářeí ve vrtvě = m tererečí mm V prošlém větle (tererece mez pprky 1t t ) pozorujeme jev doplňkový (eboť dráhový rozdíl je tejý, poěvdž le dochází ke dvěm odrzům tejého druhu (uvtř vrtvy), změ áze př odrzu e eupltí). Kotrt tererečího jevu je vyšší př pozorováí v održeém větle, eboť tererující vly 1r teztu, ztímco tezt vl 1t r mjí přblžě tejou t je velm rozdílá (5:1 pro vrtvu ze kl). Itererece více vzků e eupltí, protože př epřílš velkém úhlu dopdu tezt kždým dlším odrzem výrzě kleá. Vícevzková tererece e upltňuje ž př velkých úhlech dopdu, kdy vzrůtá odrzvot, ebo rozhrí optřeém lě odrážející vrtvou kovu. Pokud jde o podmíky pozorováí dvojvzkové tererece vrtvě, ke změě dráhového rozdílu může dojít buď díky etejé tloušťce vrtvy ( proužky tejé tloušťky (Fzeuovy)) ebo změou úhlu dopdu ( proužky tejého klou (Hdgerovy)). Pro klíovou vrtvu mlým úhlem φ lze tloušťku vrtvy ve vzdáleot x vyjádřt jko 3

4 Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě d = xφ pro mlé úhly dopdu ( co 1) lze podmíku pro tererečí mxm vyjádřt jko d m 1 = ( m ) d = ( m 1) = ( m 1) m Rozdíl v tloušťce vrtvy pro dvě ouedí tererečí mxm tedy bude rove. Protože větlo održeé od podího povrchu prochází vrtvou dvkrát, dvě ouedí mxm e lší v dráze právě o. Obr. DI-3. Proužky tejé tloušťky klíové vrtvě. Vzdáleot dvou ouedích mxm lze vyjádřt jko φ x = xm+ 1 xm = = φ Obr. DI-. Itererečí jevy olejových kvrách vodí hldě mýdlové bublě.

5 Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Protože x záví vlové délce, budeme v bílém větle pozorovt brevé eekty. Proužky tejé tloušťky jou loklzováy ve vrtvě. Příkldy: mýdlová bubl, olejové kvry vodí hldě (obr. DI-). Příkldem proužků tejé tloušťky jou tzv. Newtoovy kroužky (obr. DI-5). Obr. DI-5. Upořádáí pro pozorováí Newtoových kroužků v održeém větle. Ozčíme-l R poloměr křvot kovexí čočky, bude vzth mez poloměrem r tloušťkou vrtvy mez čočkou dekou d dá ( ) r = R R d = Rd d Protože R >> d, dotáváme r Rd Vzk m-tého mm je potom dá podmíkou (př téměř kolmém dopdu) d m = m odtud rm = m R = m R V održeém větle bude tředí kroužek tmvý. V prošlém větle pozorujeme doplňkový jev, všk žším kotrtem. Př výrobě érckých čoček mohou být Newtoovy kroužky využty pro tetováí odchylek od deálího érckého povrchu. Úhel repektve α je dá bodem pozorováí P proužky tejého klou (Hdgerovy) Obr. DI-6. Proužky tejého klou (Hdgerovy). 5

6 Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Ve měru d co = m pozorujeme tererečí mmum. Pprky tvoří kužel pozorujeme tmvý kroužek m bývá velm velké (pro tluté vrtvy) velm mlé změě úhlu dopdu odpovídá velká změ dráhového rozdílu tererečí obrzec je možé pozorovt je v téměř rovoběžých vzcích. Jté teztě odpovídá jtý klo rovoběžých pprků, proto proužky tejého klou. Itererečí obrzec je loklzová v ekoeču. Atrelexí vrtvy žují odrzvot povrchu tedy ztráty odrzem př průchodu větl rozhrím b př kolmém dopdu rozhrí r =, kde, b=,, ebo b vzduch vrtv ubtrát = 1 d + < < Odrz tává vždy optcky hutším protředí změ áze o π př obou odrzech z podmíky rovot mpltud 1 = + 1+ dotáváme = tedy = Bude-l ubtrátem klo ( = 1,5 ), potom = 1, 5 1, Př tloušťce vrtvy d = te detruktví tererece tedy ulová tezt v odrzu! Obvykle e využívá kryolt (N 3 AlF 6 ) dexem lomu 1,35 ebo luord hořečtý (MgF ) dexem lomu 1,38. V prx e zprvdl volí vlová délk ze žlutozeleé oblt pektr (třed vdtelé oblt). Jed vrtv redukce R z,,15, př použtí více vrtev ž,5. R vždy bude lbě závet. 6

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k přeášce UFY1 Dvojvzková teeece teké vtvě Dvojvzková teeece teké vtvě Přepokláejme, vl o mpltuě v potřeí o exu lomu opá ové ozhí vou elektk tk, že mpltu ožeé vly bue mpltu vly pošlé o potřeí

Více

Posloupnosti ( 1) ( ) 1. Různým způsobem (rekurentně i jinak) zadané posloupnosti. 2. Aritmetická posloupnost

Posloupnosti ( 1) ( ) 1. Různým způsobem (rekurentně i jinak) zadané posloupnosti. 2. Aritmetická posloupnost Poloupoti Růzým způobem (rekuretě i jik zdé poloupoti Urči prvích pět čleů poloupoti, ve které, + Urči prvích pět čleů poloupoti, je-li dáo:, + + Urči prvích pět čleů poloupoti, je-li dáo: 0,, Urči prvích

Více

Geometrická optika. Optická soustava

Geometrická optika. Optická soustava Optcká outv Geometcká optk oubo optckýc pvků (čoček, olů, zcdel, plplelíc deek, dělčů vzku, dkčíc jýc pvků), kteé jou vzájem upořádáy učtým způobem tk, by optcká outv plňovl dé yzkálí geometcké poždvky

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ Předmět: Ročík: Vytvořil: Dtum: MATEMATIKA TŘETÍ MGR JÜTTNEROVÁ Název zprcového celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ GEOMETRICKÁ POSLOUPNOST Defiice: Poloupot e zývá geometrická právě tehdy, když

Více

2.4. Rovnováhy v mezifází

2.4. Rovnováhy v mezifází 2.4. Rovováhy v mezfází Mezfázím se rozumí teká vrstv (tloušťk řádově odpovídá molekulárím dmezím) rozhrí dvou fází, která se svým složeím lší od složeí stýkjících se fází. Je-l styčá ploch fází mlá, lze

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ Příkld 0: Nvrhěte pouďte protě uložeou oelobetoovou tropii rozpětí 6 m včetě poouzeí trpézového plehu jko ztreého beděí. - rozteč tropi m - tloušťk betoové dek elkem 00 mm - oel S 5 - beto C 0/5 - užité

Více

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic. temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme

Více

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení. MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Uiverzita Tomáše Bati ve Zlíě LABORATORNÍ CVIČENÍ Z FYZIKY II Název úlohy: Iterferece a teké vrstvě Jméo: Petr Luzar Skupia: IT II/ Datum měřeí: 3.říja 007 Obor: Iformačí techologie Hooceí: Přílohy: 0

Více

Interference. 15. prosince 2014

Interference. 15. prosince 2014 Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude

Více

8.3.1 Pojem limita posloupnosti

8.3.1 Pojem limita posloupnosti .3. Pojem limit poslouposti Předpokldy: 30, 0 Pedgogická pozámk: Limit poslouposti eí pro studety sdo strvitelým pojmem. Hlvím problémem je podle mých zkušeostí edorozuměí s tím, zd mezi posloupostí její

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pegogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM 00/00 CIFRIK Záí: Vyšetřete všem probrým prostřeky polyom 0 0 Vyprcováí: Pole věty: Rcoálí kořey. Nechť p Q je koře polyomu

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

ARITMETICKÉ POSLOUPNOSTI s-tého STUPNĚ. Daniela Bittnerová

ARITMETICKÉ POSLOUPNOSTI s-tého STUPNĚ. Daniela Bittnerová The Mthemtc Educto to the t Cetury Project Proceedg of the Itertol Coferece The Decdble d the Udecdble Mthemtc Educto Bro, Czech Republc, September 00 ARITMETICKÉ POSLOUPNOSTI -TÉHO STUPNĚ Del Btterová

Více

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0) ..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 : 9. břez 08 D : 897 P P P : 0 M. M. M. :, % S : 0 : 0 : -7,5 M. P : -, : 0, Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

β. Potom dopadající výkon bude

β. Potom dopadající výkon bude Učebí ex k předášce UFY Feselovy vzoce a jevy a ozhaí dvou posředí II Odazvos a popusos Ve vakuu je plošá husoa oku zářeí dáa Poygovým vekoem S c ε E B a zářvos (W/m je defováa jako časová sředí hodoa

Více

FYZIKA I. Newtonovy pohybové zákony

FYZIKA I. Newtonovy pohybové zákony VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKULTA STROJNÍ YZIKA I Newtoovy pohybové zákoy Prof. RNDr. Vlé Mádr, CSc. Prof. Ig. Lbor Hlváč, Ph.D. Doc. Ig. Ire Hlváčová, Ph.D. Mgr. Art. Dgr Mádrová

Více

Interference na tenké vrstvě

Interference na tenké vrstvě Úloha č. 8 Interference na tenké vrstvě Úkoly měření: 1. Pomocí metody nterference na tenké klínové vrstvě stanovte tloušťku vybraného vlákna nebo vašeho vlasu. 2. Pomocí metody, vz bod 1, stanovte ndex

Více

2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí

2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí . Měřeí základích optických vlastostí materiálů idex lomu a disperze propustost, absorpce kvalita optických prostředí .1. Měřeí idexu lomu a disperze Sellmeierův vztah i ( ) = 1+ i B C i Coruův vzorec

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů Techologe skla 00/03 C V I Č E N Í 4. Představeí rmy pltex Czech. Vlastost skla a sklovy 3. Adtvta 4. Příklady výpočtů Hospodářská akulta. Představeí rmy pltex Czech a.s. [,] Frma pltex Czech je součástí

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T BŘEZNA 09 D : 30. břez 09 M. možé skóre: 30 Počet řešitelů testu: 85 M. dosžeé skóre: 30 Počet úloh: 30 Mi. možé skóre: -7,5 Průměrá vyechost: 9, % Mi. dosžeé skóre: -,8 Správé

Více

Skalární matice. Jednotková matice. Matice také mohou být různě symetrické. Nejčastěji se však uplatní symetrie podle diagonály:

Skalární matice. Jednotková matice. Matice také mohou být různě symetrické. Nejčastěji se však uplatní symetrie podle diagonály: Mte N mte jem už rzl v kptole zveeí otáčeí. Tm jem le leko víe ež mte upltl kompleí číl, mž yí už eue možé pomo, protože kompleí číl jou upořáé voje reálýh číel, ož e pro rovu hoí. Tto kptolk je prví,

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T ÚNORA 08 :. úor 08 D : 96 P P P : 0 M. M. : 0 : 0 M. :,4 % S : -7,5 M. P : -,8 : 4,5 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90 miut

Více

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků: ATA P Determity otivčí příkld: Řešte soustvu rovic o dvou ezámých: x + x = b x + x = b Permutce z prvků: Je dá moži = {,,, }, kde N Kždá uspořádá -tice [ k, k, k ] vytvořeá z všech prvků možiy se zývá

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

Odhady a testy hypotéz o regresních přímkách

Odhady a testy hypotéz o regresních přímkách Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží

Více

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

Testování statistických hypotéz

Testování statistických hypotéz Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T DUBNA 08 : 8. dub 08 D : 884 P P P S M. M. M. : 0 : 5,5 % : 0 : 7,8 : -7,5 M.. P : -6,0 : 9,7 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

ROVNOBĚŽNÉ PROMÍTÁNÍ, VOLNÉ ROVNOBĚŽNÉ PROMÍTÁNÍ

ROVNOBĚŽNÉ PROMÍTÁNÍ, VOLNÉ ROVNOBĚŽNÉ PROMÍTÁNÍ Technická univerzit v Liberci Fkult přírodovědně-humnitní pedgogická Ktedr mtemtiky didktiky mtemtiky ROVNOĚŽNÉ PROMÍTÁNÍ, VOLNÉ ROVNOĚŽNÉ PROMÍTÁNÍ Pomocný učební text Petr Pirklová Liberec, září 2013

Více

2.9.14 Věty o logaritmech I

2.9.14 Věty o logaritmech I .9.1 Věty o itmech I Předpokldy: 910 Pedgogická poznámk: Tto náledující hodin e djí tihnout njednou, pokud oželíte počítání v tbulce někteé příkldy n konci příští hodiny. Přijde mi to tochu škod, nžím

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují . Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n +. = = n+ 3, 3n + n je totožná s posloupností: n n n = Dvid hrje kždý všední den fotbl v sobotu i v neděli chodí do posilovny. Dnes se sportovně

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

ů Ť ě Á Ř ž ó ě Ž ž ž ž ě ě ž ě ž ž ě ě ž Č ůž ě ě ž ě ů ě ě ú ú ě ě ě ž ě ě ž ě ž Š Č ů ž ó ž ů ě ů ž ů ž ů ů ž ž ě ů ě ž ů ž ů ů ž ě ů Ž ž Ž ě ě ě Š ě ó ě ě ě ě ě ě ů ů Š ě Ó ú Ť ě ěž ž ě ú ěž úě ěž

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

Základy optického zobrazení

Základy optického zobrazení Základy optickéo zobazeí. Zákoy geometické optiky Záko odazu větla (ob. ) ři dopadu věteléo papku a ozaí dvou ůzýc potředí dojde k jejic čátečému ebo úplému odazu. dažeý papek zůtává v oviě dopadu (oviě

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie 9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu

Více

Základní elementární funkce.

Základní elementární funkce. 6. předášk Zákldí elemetárí fukce. Defiice: Elemetárími fukcemi zveme všech fukce, které jsou vtvoře koečým počtem zákldích opercí ze zákldích elemetárích fukcí. Zákldí operce s fukcemi jsou:. Sčítáí dvou

Více

Komentáře k domácímu kolu kategorie Z9

Komentáře k domácímu kolu kategorie Z9 5. ročník Mtemtické olympiády Komentáře k domácímu kolu ktegorie Z9. Čtyřúhelník, který nemá žádné dvě strny stejně dlouhé, nzveme nerovnostrnným. Prvidelný dvnáctiúhelník má obsh 8 cm. Nrýsujte všechny

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

Trigonometrie trojúhelníku

Trigonometrie trojúhelníku 1 Trojúhelníky Trigonometrie trojúhelníku Vypočítejte výšku v c v trojúhelníku, je-li úhel β = 59 strn = 14 cm. (Výsledek zokrouhlete n celé centimetry.) 9000121701 (level 1): Je dán trojúhelník, jehož

Více

9.6. Odchylky přímek a rovin

9.6. Odchylky přímek a rovin 9 Stereometrie 96 Odchylky přímek rovin Odchylku dvou přímek, dvou rovin přímky od roviny převádíme n určení velikosti úhlu dvou různoběžek Odchylk dvou přímek Odchylk dvou přímek splývjících nebo rovnoběžných

Více

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA

UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA UNIVERZIT PLCKÉHO V OLOMOUCI PŘÍROOVĚECKÁ FKULT KTER LGEBRY GEOMETRIE OSVĚTLENÍ VE STŘEOVÉM PROMÍTÁNÍ LINEÁRNÍ PERSPEKTIVĚ Bakalářká práce Vedoucí práce: RNr. Leka Juklová, Ph.. Rok odevdáí 202 Vypracovala:

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

Dynamická pevnost a životnost Kumulace poškození

Dynamická pevnost a životnost Kumulace poškození DPŽ Hrubý Dymcká pevost žvotost Kumulce poškozeí Ml Růžčk, Josef Jurek, Zbyěk Hrubý mechk.fs.cvut.cz zbyek.hruby@fs.cvut.cz DPŽ Hrubý Kumulce poškozeí (R-low, přepočet ekvvletí mpltudu, bezpečý žvot) DPŽ

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

Lomené výrazy (sčítání, odčítání, násobení, dělení, rozšiřování, krácení,.)

Lomené výrazy (sčítání, odčítání, násobení, dělení, rozšiřování, krácení,.) Lomené výrz (čítání, odčítání, náoení, dělení, rozšiřování, kráení, ) Lomené výrz jo výrz ve tvr zlomk, v jehož jmenovteli je proměnná, npříkld r ( ) ( ) 9 Počítání lomenými výrz má podoné vltnoti jko

Více

Stereometrie metrické vlastnosti

Stereometrie metrické vlastnosti Stereometrie metrické vlstnosti Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek

Více

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

8. Elementární funkce

8. Elementární funkce Moderí techologie ve studiu plikové fzik CZ.1.07/2.2.00/07.0018 8. Elemetárí fukce Historie přírodích věd potvrzuje, že většiu reálě eistujících dějů lze reprezetovt mtemtickými model, které jsou popsá

Více

8 Mongeovo promítání

8 Mongeovo promítání 8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou

Více

4. Opakované pokusy a Bernoulliho schema

4. Opakované pokusy a Bernoulliho schema 4 Opové pousy Beroulliho schem Pozám: V ěterých příldech v odstvcích 2 3 jsme počítli prvděpodobosti áhodých jevů, teré byly výsledem opoví áhodého pousu Npř házeí dvěm micemi je stejé jo dv hody jedou

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

II. kolo kategorie Z5

II. kolo kategorie Z5 II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem

Více

Martin Sloup, A04372. Ohyb světla optickou mřížkou

Martin Sloup, A04372. Ohyb světla optickou mřížkou Mart Sloup, A0437 Ohyb světla optckou mřížkou Mart Sloup, A0437 Obecá část Optcká mřížka a průcho světla je skleěá estčka, a íž je vyryta řaa jemých, rovoběžých, stejě o sebe vzáleých vrypů. Vrypy tvoří

Více

Korelační analýza. sdružené regresní přímky:

Korelační analýza. sdružené regresní přímky: Koelčí lýz - ooutá závlot dvou tttckých zků; - hodot jou zíká pozoováím, ez možot ovlvěí; - eí možo ozlšt závle ezávle poměou; - hlvím átojem je ze metod ejmeších čtveců; - kždou z oou možých závlotí vthuje

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

( 1). (, ) Sčítání. úplná binární sčítačka. Doba vytvoření součtu. s i. a i A B 3. c i+ a b. S i. c i. a b A B 2. a b c S 1. b i c i.

( 1). (, ) Sčítání. úplná binární sčítačka. Doba vytvoření součtu. s i. a i A B 3. c i+ a b. S i. c i. a b A B 2. a b c S 1. b i c i. čítáí úplá árí čítčk ( ) ( ) =...... ( ) ( ) =.. =.... Do vytvořeí oučtu ( ). (, ) t = N t Mx t t o mx mx mx mx U U U L U L UC U? L L =.. ( ) =... ( ). ( )(. ) =... ( ).. ( )(. ). ( )(. )(. )...( )..(

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Posloupnost v matematice je řada čísel. Je přesně určeno pořadí čísel, je tedy dáno, které číslo je první, druhé atd.

Posloupnost v matematice je řada čísel. Je přesně určeno pořadí čísel, je tedy dáno, které číslo je první, druhé atd. Poloupoti Poloupot v mtemtice je ř číel. Je přeě určeo poří číel, je tey áo, které čílo je prví, ruhé t. V řě číel může le emuí být ějký ytém. Poloupot můžeme určit ěkolik růzými způoby:. Výčet prvků:

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Stereometrie metrické vlastnosti 01

Stereometrie metrické vlastnosti 01 Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Posloupnosti. a a. 5) V aritmetické posloupnosti je dáno: a

Posloupnosti. a a. 5) V aritmetické posloupnosti je dáno: a Poslouposti ) Prví čle ritmetické poslouposti je diferece Určete prvích pět čleů této poslouposti ) Prví čle ritmetické poslouposti je 8 diferece Určete prvích pět čleů této poslouposti ) V ritmetické

Více

6. Optika. Konstrukce vlnoploch pro světlo:

6. Optika. Konstrukce vlnoploch pro světlo: 6. Opi 6. Záldní pojmy Těles, erá vysíljí svělo, jsou svěelné zdroje. Zářivá energie v nich vzniá přeměnou z energie elericé, chemicé, jderné. Zdrojem svěl mohou bý i osvělená ěles (vidíme je díy odrzu

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

3. cvičení 4ST201 - řešení

3. cvičení 4ST201 - řešení cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T BŘEZNA 9 D : 8. břez 9 Mx. možé skóre: Počet řešitelů testu: Mx. dosžeé skóre: Počet úloh: Mi. možé skóre: -7,5 Průměrá vyechost:, %Správé Mi. dosžeé skóre: -, odpovědi jsou

Více

VY_42_Inovace_13_MA_4.01_ Aritmetická posloupnost pracovní list. Jednotlivé snímky lze použít jako studijní materiál.

VY_42_Inovace_13_MA_4.01_ Aritmetická posloupnost pracovní list. Jednotlivé snímky lze použít jako studijní materiál. Čílo projektu Čílo mteriálu CZ..07/.5.00/34.0394 VY_4_Iovce_3_MA_4.0_ Aritmetická poloupot prcoví lit Název školy Střeí oborá škol Střeí oboré učiliště, Hutopeče, Mrykovo ám. Autor Temtický celek Mgr.

Více

FYZIKA 4. ROČNÍK. Optika. Základní vlastnosti světla. Optika - nauka o světle; Světlo je elmg. vlnění, které vyvolává vjem v našem oku.

FYZIKA 4. ROČNÍK. Optika. Základní vlastnosti světla. Optika - nauka o světle; Světlo je elmg. vlnění, které vyvolává vjem v našem oku. Základí vlastosti světla - auka o světle; Světlo je elmg. vlěí, které vyvolává vjem v ašem oku. Přehled elmg. vlěí: - dlouhé vly - středí rozhlasové - krátké - velmi krátké - ifračerveé zářeí - viditelé

Více