Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
|
|
- Bohumír Marek
- před 9 lety
- Počet zobrazení:
Transkript
1 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Rudolf Blažek 2011 BI-PST, LS 2010/11 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnos@
2 2
3 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: 2
4 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. 2
5 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. Za měsíc opět chytí 100 kaprů a zjistí, že 10 jich má značku. 2
6 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. Za měsíc opět chytí 100 kaprů a zjistí, že 10 jich má značku. Odpovězte následující dotazy 2
7 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. Za měsíc opět chytí 100 kaprů a zjistí, že 10 jich má značku. Odpovězte následující dotazy Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) 2
8 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. Za měsíc opět chytí 100 kaprů a zjistí, že 10 jich má značku. Odpovězte následující dotazy Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) Nechť N je skutečný počet kaprů v rybníku. Najděte výraz pro pravděpodobnost, že 10 ze 100 chycených kaprů má značku. 2
9 Rybáři v Jižních Čechách potřebují před vánoci odhadnout počet kaprů v relativně velkém rybníku. Postupují takto: Chytí a označí 100 kaprů a vypustí je zpět do rybníka. Za měsíc opět chytí 100 kaprů a zjistí, že 10 jich má značku. Odpovězte následující dotazy Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) Nechť N je skutečný počet kaprů v rybníku. Najděte výraz pro pravděpodobnost, že 10 ze 100 chycených kaprů má značku. Najděte hodnotu N, která maximizuje předchozí výraz. Toto je odhad metodou maximální věrohodnosti. Rada: Uvažujte poměr výrazů pro N a N + 1 2
10 Cvičení 24 CHAPTER 5. IMPORTANT DI (b) P (T >3) = ( 5 6 )3 = (c) P (T >6 T>3) = ( 5 6 )3 = (a) 1000 (b) 100 N N 100 (c) N = 999 or N = ,.2222,
11 Odpovědi Cvičení 24 CHAPTER 5. IMPORTANT DI (b) P (T >3) = ( 5 6 )3 = (c) P (T >6 T>3) = ( 5 6 )3 = (a) 1000 (b) 100 N N 100 (c) N = 999 or N = ,.2222,
12 Odpovědi Cvičení 24 CHAPTER 5. IMPORTANT DI (b) P (T >3) = ( 5 6 )3 = Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) N = 1000 (c) P (T >6 T>3) = ( 5 6 )3 = (a) 1000 (b) 100 N N 100 (c) N = 999 or N = ,.2222,
13 Odpovědi Cvičení 24 CHAPTER 5. IMPORTANT DI (b) P (T >3) = ( 5 6 )3 = Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) N = 1000 (c) P (T >6 T>3) = ( 5 6 )3 = Nechť N je skutečný počet kaprů v rybníku. Najděte výraz pro pravděpodobnost, 9. (a) že ze 100 chycených kaprů má značku. (b) N N 100 (c) N = 999 or N = ,.2222,
14 Odpovědi Cvičení 24 CHAPTER 5. IMPORTANT DI (b) P (T >3) = ( 5 6 )3 = Najděte hrubý odhad počtu kaprů v rybníku (bez výpočtů) N = 1000 (c) P (T >6 T>3) = ( 5 6 )3 = Nechť N je skutečný počet kaprů v rybníku. Najděte výraz pro pravděpodobnost, 9. (a) že ze 100 chycených kaprů má značku. (b) N N 100 Najděte hodnotu N, která maximizuje předchozí výraz. Toto je (c) N = 999 or N = 1000 odhad metodou maximální věrohodnosti. N = 999 nebo N = ,.2222,
15 Znáhodného výběru 10 párů (x i, y i ) jsme spočetli P 10 i=1 x i = 10 P 10 i=1 y i =4 P 10 i=1 x 2 i = 15 P 10 i=1 y 2 i =7 P 10 i=1 x i y i =6 1. Spočtěte výběrové průměry x a y a rozptyly s 2 x a s2 y. 2. Najděte výběrovou covarianci S X,Y 3. Pro Z = X + Y 2 najděte bodový odhad střední hodnoty EZ pomocí momentové metody. Je tento odhad nevychýlený? 4
16 5
17 Uvažujme model, kde délka transakce databázového serveru je náhodná veličina s exponeciálním rozdělením s parametrem θ. Doby transakcí jsou nezávislé. 5
18 Uvažujme model, kde délka transakce databázového serveru je náhodná veličina s exponeciálním rozdělením s parametrem θ. Doby transakcí jsou nezávislé. Odvoďte odhad θ metodou maximální věrohodnosti a momentovou metodou. 5
19 Uvažujme model, kde délka transakce databázového serveru je náhodná veličina s exponeciálním rozdělením s parametrem θ. Doby transakcí jsou nezávislé. Odvoďte odhad θ metodou maximální věrohodnosti a momentovou metodou. Jsou tyto odhady nevychýlené a konzistentní? 5
20 Uvažujme model, kde délka transakce databázového serveru je náhodná veličina s exponeciálním rozdělením s parametrem θ. Doby transakcí jsou nezávislé. Odvoďte odhad θ metodou maximální věrohodnosti a momentovou metodou. Jsou tyto odhady nevychýlené a konzistentní? Z logu jsme zjistili, že délky posledních 10 transakcí byly + 5.4, 15.6, 15.4, 9.3, 0.5, 14.4, 2.6, 0.7, 40.4, 21.9 ms 5
21 Uvažujme model, kde délka transakce databázového serveru je náhodná veličina s exponeciálním rozdělením s parametrem θ. Doby transakcí jsou nezávislé. Odvoďte odhad θ metodou maximální věrohodnosti a momentovou metodou. Jsou tyto odhady nevychýlené a konzistentní? Z logu jsme zjistili, že délky posledních 10 transakcí byly + 5.4, 15.6, 15.4, 9.3, 0.5, 14.4, 2.6, 0.7, 40.4, 21.9 ms Odhadněte θ pomocí obou odhadů. 5
22 6
23 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají konečnou střední hodnotu µ a konečný rozptyl σ 2. 6
24 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají konečnou střední hodnotu µ a konečný rozptyl σ 2. Uvažujme odhady µ a σ 2 výběrovým průměrem a výběrovým rozptylem s 2. 6
25 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají konečnou střední hodnotu µ a konečný rozptyl σ 2. Uvažujme odhady µ a σ 2 výběrovým průměrem a výběrovým rozptylem s 2. Jsou tyto odhady nevychýlené a konzistentní? 6
26 7
27 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). 7
28 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). Předpokládejme, že σ je známé. Odvoďte odhad µ metodou maximální věrohodnosti. 7
29 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). Předpokládejme, že σ je známé. Odvoďte odhad µ metodou maximální věrohodnosti. Je tento odhad nevychýlený a konzistentní? 7
30 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). Předpokládejme, že σ je známé. Odvoďte odhad µ metodou maximální věrohodnosti. Je tento odhad nevychýlený a konzistentní? Předpokládejme, že σ je neznámé. Odvoďte odhad (µ, σ 2 ) metodou maximální věrohodnosti. 7
31 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). Předpokládejme, že σ je známé. Odvoďte odhad µ metodou maximální věrohodnosti. Je tento odhad nevychýlený a konzistentní? Předpokládejme, že σ je neznámé. Odvoďte odhad (µ, σ 2 ) metodou maximální věrohodnosti. Jsou tyto odhady nevychýlené a konzistentní? 7
32 Uvažujme i.i.d. náhodné veličiny X1, X2, X3,..., Xn, které mají normální rozdělení N(µ, σ 2 ). Předpokládejme, že σ je známé. Odvoďte odhad µ metodou maximální věrohodnosti. Je tento odhad nevychýlený a konzistentní? Předpokládejme, že σ je neznámé. Odvoďte odhad (µ, σ 2 ) metodou maximální věrohodnosti. Jsou tyto odhady nevychýlené a konzistentní? Porovnejte získaný odhad σ 2 s výběrovým rozptylem s 2. 7
Pravděpodobnost a statistika (BI-PST) Cvičení č. 9
Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
Intervalové Odhady Parametrů II Testování Hypotéz
Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení
Intervalové Odhady Parametrů
Parametrů Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze
Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v
Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
10 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.
Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman
Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Cvičení 1. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
1 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
Statistika pro informatiku (MI-SPI) Cvičení č. 6
Statistika pro informatiku (MI-SPI) Cvičení č. 6 Přednášející: Rudolf Blažek Cvičící: J. Hrabáková, K. Klouda, M. Kupsa, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Příklady - Bodový odhad
Příklady - odový odhad 5. října 03 Pražské metro Přijdu v pražském metru na nástupiště a tam zjistím, že metro v mém směru jelo před :30 a metro v opačném směru před 4:0. Udělejte bodový odhad, jak dlouho
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7
Pravděpodobnost a statistika (BI-PST) Cvičení č. 7 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
Testování a spolehlivost. 4. Laboratoř Spolehlivostní modely 1
Testování a spolehlivost ZS 2011/2012 4. Laboratoř Spolehlivostní modely 1 Martin Daňhel Katedra číslicového návrhu Fakulta informačních technologí ČVUT v Praze Příprava studijního programu Informatika
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!
Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Lineární Regrese Hašovací Funkce
Hašovací Funkce Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v
Pravděpodobnost a statistika (BI-PST) Cvičení č. 1
Pravděpodobnost a statistika (BI-PST) Cvičení č. 1 Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015 (FIT ČVUT) BI-PST, Cvičení č. 1 ZS 2014/2015
Přijímací zkouška na navazující magisterské studium 2017
Přijímací zkouška na navazující magisterské studium 27 Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady
PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
Cvičení z logiky II.
Cvičení z logiky II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-mlo/lectures/
3 Bodové odhady a jejich vlastnosti
3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe
Pravděpodobnost a statistika (BI-PST) Cvičení č. 4
Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2016/17 Cvičení 3: Lineární regresní model LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Seznámení s EViews Upřesnění
13. cvičení z PSI ledna 2017
cvičení z PSI - 7 ledna 07 Asymptotické pravděpodobnosti stavů Najděte asymptotické pravděpodobnosti stavů Markovova řetězce s maticí přechodu / / / 0 P / / 0 / 0 0 0 0 0 0 jestliže počáteční stav je Řešení:
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
PRAVDĚPODOBNOST A STATISTIKA. Odhady parametrů Postačující statistiky
PRAVDĚPODOBNOS A SAISIKA Odhady parametrů SP3 Připomenutí pojmů Připomenutí pojmů z S1P a SP2 odhady Nechť X,, je náhodný výběr z rozdělení s distribuční funkcí. 1 X,, X ) ( 1 n Statistika se nazývá bodovým
Kontingenční tabulky a testy shody
Kontingenční tabulky a testy shody 4.1.2018 Kontingenční tabulky 1. Tabulka 1 shrnuje osudy pasažérů lodě Titanic, která tragicky ztroskotala v roce 1912. Zajímá nás, zda existuje nějaká souvislost mezi
oddělení Inteligentní Datové Analýzy (IDA)
Vytěžování dat Filip Železný Katedra počítačů oddělení Inteligentní Datové Analýzy (IDA) 22. září 2014 Filip Železný (ČVUT) Vytěžování dat 22. září 2014 1 / 25 Odhad rozdělení Úloha: Vstup: data D = {
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni
BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X
Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Odhady - Sdružené rozdělení pravděpodobnosti
Odhady - Sdružené rozdělení pravděpodobnosti 4. listopadu 203 Kdybych chtěl znát maximum informací o náhodné veličině, musel bych znát všechny hodnoty, které mohou padnout, a jejich pravděpodobnosti. Tedy
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
Pojistná matematika 2 KMA/POM2E
Pojistná matematika 2 KMA/POM2E RNDr. Ondřej Pavlačka, Ph.D. pracovna 5.052 tel. 585 63 4027 e-mail: ondrej.pavlacka@upol.cz web: http://aix-slx.upol.cz/~pavlacka (informace + podkladové materiály) Konzultační
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Biostatistika Cvičení 7
TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,
Matematické modelování Náhled do ekonometrie. Lukáš Frýd
Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)
Statistika pro každého. Párový test Test shody dvou rozptylů Dvouvýběrový t-test Porovnání středních hodnot při nestejných rozptylech
Statistika pro každého Párový test Test shody dvou rozptylů Dvouvýběrový t-test Porovnání středních hodnot při stejných rozptylech Testovací kuchařka 1 2 Párový t-test 1 2 Párový t-test -test užijeme v
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š
ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě
ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů
ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Cvičení ze statistiky - 7. Filip Děchtěrenko
Cvičení ze statistiky - 7 Filip Děchtěrenko Minule bylo.. Probrali jsme spojité modely Tyhle termíny by měly být známé: Rovnoměrné rozdělení Střední hodnota Mccalova transformace Normální rozdělení Přehled
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
Matematická statistika Zimní semestr Testy o proporci
Testy o proporci 18.12.2018 Jednovýběrový problém pro binární data. V roce 2008 se v České republice živě narodilo 119 570 dětí, z toho 58 244 dívek a 61 326 chlapců (zdroj ČSÚ). Zajímá nás, zda je pravděpodobnost
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
PSY117/454 Statistická analýza dat v psychologii přednáška 8. Statistické usuzování, odhady
PSY117/454 Statistická analýza dat v psychologii přednáška 8 Statistické usuzování, odhady Výběr od deskripce k indukci Deskripce dat, odhad parametrů Usuzování = inference = indukce Počítá se s náhodným
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1
Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu
Matematická statistika Zimní semestr
Kontingenční tabulky, testy shody, jednoduché třídění 8.1.2018 Kontingenční tabulky 1. Tabulka 1 shrnuje osudy pasažérů lodě Titanic, která tragicky ztroskotala v roce 1912. Zajímá nás, zda existuje nějaká
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
Praktická úloha celostátního kola 48.ročníku FO
1 Praktická úloha celostátního kola 48.ročníku FO Pomůcky: dvě různé pružiny o neznámých tuhostech k 1 a k 2, k 1 < k 2,dvě závaží o hmotnostech m 1 = 0,050 kg a m 2 = 0,100 kg, kladka o známé hmotnosti
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium chemometrie na téma Statistické zpracování dat Semestrální práce ze 6. soustředění Předmět: 3.3 Tvorba nelineárních
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
Intervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.
1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Statistická analýza dat v psychologii. Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead
PSY117/454 Statistická analýza dat v psychologii Přednáška 8 Statistické usuzování, odhady Věci, které můžeme přímo pozorovat, jsou téměř vždy pouze vzorky. Alfred North Whitehead Barevná srdíčka kolegyně
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Testy o proporci a testy v multinomickém rozdělení
Testy o proporci a testy v multinomickém rozdělení 18.12.2017 Úvodní nastavení. Z internetové stránky www.karlin.mff.cuni.cz/~hudecova/education/ si můžete stáhnout zdrojový kód cviceni12.r. Otevřete si
populace soubor jednotek, o jejichž vlastnostech bychom chtěli vypovídat letní semestr Definice subjektech.
Populace a Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1 populace soubor jednotek, o jejichž vlastnostech bychom
Pravděpodobnost a statistika I KMA/K413
Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT. Patrícia Martinková Ústav informatiky AV ČR
STATISTIKA VĚDA O USUZOVÁNÍ NA ZÁKLADĚ DAT Patrícia Martinková Ústav informatiky AV ČR martinkova@cs.cas.cz www.cs.cas.cz/martinkova 1.LF UK, 22. a 30. března 2017 Motivace 1 Velké množství (medicínských
Archivace, legislativní dopady na IT - II.
Archivace, legislativní dopady na IT - II. Ing. Zdeněk Blažek, CSc. CISM. COMMERZBANK AG Jh. Katedra počítačových systémů Fakulta informačních technologiíí České vysoké učení technické v Praze Zdeněk Blažek,
AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A
AKM - 1-2 CVIČENÍ Opakování maticové algebry Mějme matice A, B regulární, potom : ( AB) = B A 1 1 ( A ) = ( A ) ( A ) = A ( A + B) = A + B 1 1 1 ( AB) = B A, kde A je řádu mxn a B nxk Čtvercová matice
, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv
42206, skupina (6:5-7:45) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papíry, které odevzdáváte Škrtejte zřetelně a stejně zřetelně pište i věci, které platí Co je škrtnuto, nebude bráno v
Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5.
Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5. Řešení: Výsledky pokusu jsou uspořádané dvojice. První člen dvojice odpovídá hodu 1. kostkou a
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Statistická analýza dat
Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte
Příklad 81b. Předpokládejme, že výška chlapců ve věku 9,5 až 10 roků má normální rozdělení N(mi;sig2)
Příklad 1. Za předpokladu, že výška dětí ve věku 10 let má normální rozdělení s rozptylem 38, určete pravostranný 99% interval spolehlivosti, ve kterém bude ležet neznámá střední hodnota výšky dětí, jestliže
a způsoby jejího popisu Ing. Michael Rost, Ph.D.
Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným