Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
|
|
- Ludvík Kovář
- před 5 lety
- Počet zobrazení:
Transkript
1 1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht jsou funkce p 0, p 1,..., p n 1, q spojité na intervalu I, úloha 6), 7) právě jedno řešení na I. 0 I, y 0, y 1,..., y n 1 ) R n. Pak má Cauchyova homogenní LDR: q) = 0 pro každé I nehomogenní LDR: q) 0 alespoň pro jedno I přidružená homogenní rovnice: v rovnici nahradíme q nulovou funkcí označíme-li D : y y n) + p n 1 y n 1) p 1 y + p 0 y, je D lineární zobrazení a rovnici 6) lze přepsat ve tvaru Dy) = q z linearity zobrazení D máme: pro homogenní LDR řádu n : množina řešení je lineární prostor; lze ukázat, že jeho dimenze je n viz Větu 1.10 dále) fundamentální systém řešení FSŘ) množina n lineárně nezávislých řešení homogenní LDR obecné řešení homogenní LDR řádu n : y = c 1 y 1 + c y c n y n, I, kde {y 1,..., y n } je FSŘ, c 1,..., c n R pro nehomogenní LDR řádu n : předpokládejme, že y 1, y řeší danou rovnici a y 0 řeší přidruženou homogenní rovnici, pak platí a) y 1 y řeší přidruženou homogenní rovnici b) y 1 + y 0 řeší danou rovnici a)+b) pro obecné řešení y LDR platí: y = ŷ + ỹ, kde ŷ je jedno pevné řešení dané rovnice tzv. partikulární řešení) a ỹ je obecné řešení přidružené homogenní rovnice Věta 1.4 princip superpozice) : Je-li y 1 řešení rovnice Dy) = q 1 a y řešení rovnice Dy) = q, pak y 1 + y je řešení rovnice Dy) = q 1 + q.
2 1..1 Metoda variace konstant [MA1-18:P1.8] {y 1,..., y n }... FSŘ homogenní rovnice přidružené k rovnici 6) partikulární řešení ŷ rovnice 6) hledáme ve tvaru y) = c 1 )y 1 ) + c )y ) c n )y n ) stačí nám najít jednu n tici funkcí c 1 ),..., c n ) ) princip metody ukážeme na následujícím příkladu: Příklad 1.4: Najděte obecné řešení rovnice y + y y =, { víte-li, že přidružená homogenní rovnice má FSŘ 1, 1 },. Řešení: Funkce p ) =, p 1) =, p 0) = 0, q) = jsou spojité na intervalech I 1 =, 0), I = 0, ), hledáme tedy řešení rovnice na těchto intervalech dále už to nebudu uvádět) 1. obecné řešení přidružené homogenní rovnice je ỹ) = c 1 + c + c 3 1 c 1, c, c 3 R). partikulární řešení nehomogenní rovnice tedy hledáme ve tvaru ŷ) = c 1 ) + c ) + c 3 ) 1 hledáme tři funkce můžeme na ně mít tři podmínky: jednu dostaneme dosazením do rovnice, zbylé dvě zvolíme tak, aby se nám zjednodušily derivace spočítáme 1. derivaci funkce ŷ: ŷ ) = c 1) + c ) + c ) + c 3) 1 + c 3) 1 ) aby se nám v další derivaci neobjevily druhé derivace funkcí c 1, c, c 3, budeme chtít, aby platilo c 1) + c ) + c 3) 1 = 0 8) pak ovšem ŷ ) = c ) + c 3 ) 1 ) ) spočítáme. derivaci funkce ŷ: ŷ ) = c ) + c ) + c 3) 1 ) + c 3 ) 3 ze stejných důvodů jako u 1. derivace budeme chtít, aby platilo c ) + c 3) 1 ) = 0 9) pak ovšem ŷ ) = c ) + c 3 ) 3 ) spočítáme 3. derivaci funkce ŷ: ŷ ) = c ) + c 3) 3 + c 3) 6 ) 4
3 [MA1-18:P1.9] poslední podmínku pro funkce c 1, c, c 3 nyní dostaneme dosazením do zadané rovnice pro její levou stranu máme Dŷ) = ŷ + ŷ ŷ = = c ) + c 3) 3 + c 3) 6 ) ) 4 + c ) + c 3 ) 1 )) = = c ) + c 3) 3 + c ) 0 + ) + }{{} Dy )=0 +c 3 ) = c ) + c 3) ) 3 1 ) ) }{{ = } Dy 3 )=0 3 c ) + c 3 ) ) 3 kdyby funkce y 1 neměla všechny derivace nulové, objevil by se tu také člen c 1 ) Dy 1 ) = 0 ) dosazením do rovnice tedy dostáváme c ) + c 3) 3 = 10) pro každé tak podmínky 8) 10) představují soustavu tří lineárních rovnic s neznámými c 1), c ), c 3) a maticí soustavy y 1 y y 3 0 ) obecně: y 1 y y y 1 y y 3 q tuto soustavu lineárních rovnic vyřešíme například pomocí Cramerova pravidla a dostaneme tedy např. odtud již máme 3. obecné řešení nehomogenní rovnice nyní je c 1) = 1, c ) = 1 3, c 1 ) =, c ) = 1 3, c 3) = 3 c 3) = ) ŷ) = ) 1 = y) = + c 1 + c + c 3 1,, 0) nebo 0, ) c 1, c, c 3 R) 1.. Rovnice s konstantními koeficienty Homogenní rovnice y n) + A n 1 y n 1) A 1 y + A 0 y = 0, A n 1,..., A 0 R 11) charakteristická rovnice rovnice 11): λ n + A n 1 λ n A 1 λ + A 0 }{{} = 0 charakteristický polynom rovnice 11)
4 Věta 1.5 : [MA1-18:P1.10] Jsou-li λ 1,..., λ r všechny) kořeny charakteristického polynomu rovnice 11) a k 1,..., k r jejich násobnosti, pak systém funkcí e λ1, e λ1,..., k1 1 e λ1, tvoří fundamentální systém řešení rovnice 11) na R.. e λr, e λr,..., kr 1 e λr Věta 1.6 : Jsou-li s e λ, s e λ, λ = α + βj, β 0, dvě funkce z FSŘ z Věty 1.5, lze tyto dvě funkce v systému nahradit dvojicí funkcí s e α cos β, s e α sin β. reálný FSŘ: ve FSŘ z Věty 1.5 nahradíme všechny dvojice řešení s e λ, s e λ, kde λ R, podle Věty 1.6 díky vlastnostem kořenů polynomů s reálnými koeficienty nezbude v systému žádná funkce, která není reálná) Nehomogenní rovnice y n) + A n 1 y n 1) A 1 y + A 0 y = q), q spojitá na I 1) partikulární řešení ŷ najdeme: - pro obecné q metodou variace konstant - pro q ve speciálním tvaru metodou odhadu Metoda odhadu Věta 1.7 : Jestliže pravou stranu rovnice 1) lze zapsat ve tvaru kvazipolynomu q) = P ) e α cos β + Q) e α sin β, kde α, β R a P, Q jsou polynomy stupně nejvýše r, pak lze nalézt řešení rovnice 1) ve tvaru ŷ) = k P ) e α cos β + k Q) e α sin β, kde P, Q jsou polynomy stupně nejvýše r a k je násobnost λ = α + βj jako kořene charakteristického polynomu rovnice. Poznámka : Při ověřování, zda je pravá strana rovnice ve tvaru z Věty 1.7, je často potřeba si uvědomit, že 1 = cos 0 = e 0 a že polynomy P, Q mohou být i nulové. Příklad 1.5: Najděte řešení rovnice y 4y = cos + 4 e. vyhovující počátečním podmínkám y0) = 1, y 0) = 1, y 0) = 0. Řešení: Protože je pravá stran spojitá pro každé R, dostaneme řešení na celém R. A) B) Přidružená homogenní rovnice y 4y = 0 má charakteristickou rovnici λ 3 4λ = 0, jejímiž kořeny jsou čísla λ 1 = 0, λ = a λ 3 =. Obecné řešení přidružené homogenní rovnice je tedy tvaru ỹ) = c c e + c 3 e. Partikulární řešení nehomogenní rovnice hledáme na základě principu superpozice Věta 1.4) ve tvaru ŷ = ŷ 1 +ŷ +ŷ 3, kde část řešení ŷ 1 odpovídá části pravé strany q 1 ) = 8, část ŷ pravé straně q ) = 10 cos a část ŷ 3 pak funkci q 3 ) = 4 e.
5 [MA1-18:P1.11] 1. Můžeme psát q 1 ) = 8 = 8 e 0 cos0). Odtud při použití značení z Věty 1.7 je P ) = 8, Q) = 0, r = 1, λ = j = 0, k = 1 0 je jednoduchý kořen charakteristické rovnice). Řešení ŷ 1 proto hledáme ve tvaru ŷ 1 ) = A + B) e 0 = A + B. Funkci ŷ 1 třikrát zderivujeme ŷ 1 = A+B, ŷ 1 = A, ŷ 1 = 0) a pak funkci s jejími derivacemi dosadíme do rovnice s pravou stranou q 1. Dostaneme tak rovnost dvou polynomů 0 4A+B) = 8. Tyto polynomy se rovnají, pokud mají u stejných funkcí stejné koeficienty. Potřebujeme tedy porovnat koeficienty u funkcí 1 = a 0 = 1 na obou stranách rovnosti. Rovnosti koeficintů u a 1 nám postupně dávají, že musí platit 8A = 8 a 4B = 0. Dostali jsme tak soustavu dvou lineárních rovnic o dvou neznámých A a B. Jejím řešením jsou A = 1 a B = 0. Odtud ŷ 1 ) =.. Druhou část pravé strany přepíšeme ve tvaru q ) = 10 cos = 10 e 0 cos1). Protože λ = j není kořenem charakteristické rovnice, máme tentokrát k = 0. Konstantní funkce P ) = 10 je polynom stupně nula, tedy r = 0, polynom Q je opět nulový. Část řešení ŷ proto hledáme ve tvaru ŷ ) = C cos + D sin. Všiměte si, že i když se v pravé straně q vyskytoval jen kosinus, musím v řešení očekávat i sinus. A jak dále uvidíme, může ale nemusí se v řešení objevit jen sinus a ne už kosinus.) Dosazením funkce C cos +D sin do rovnice s pravou stranou q dostaneme rovnost C sin D cos + 4C sin 4D cos = 10 cos. Opět porovnáme koeficienty u stejných funkcí na obou stranách. Pro sin dostáváme 5C = 0 a pro cos pak 5D = 10, což je soustava dvou lineárních rovnic pro neznámé C a D. Jejími řešeními jsou C = 0 a D =. Máme tak ŷ ) = sin. 3. Konečně q 3 ) = 4 e = 4 e cos 0. Tedy tentokrát P ) = 4, Q) = 0, r = 0, λ = + 0 j =, k = 1 je jednoduchý kořen charakteristické rovnice). Funkci ŷ 3 proto hledáme ve tvaru ŷ 3 ) = E e. Po dosazení do rovnice s pravou stranou q 3 dostanem rovnost E e 8+1) 4E e +1) = 4 e a po úpravě 8E e = 4 e. Odtud 8E = 4, tj. E = 1. Tedy ŷ 3 ) = 1 e. Celkem tak dostáváme partikulární řešení nehomogenní rovnice ŷ = sin + 1 e. C) Kombinací výsledků z bodů A) a B) dostáváme, že obecné řešení y = ŷ+ỹ rovnice y 4y je tvaru = +3 cos + e y) = sin + 1 e + c 1 + c e + c 3 e R c 1, c, c 3 R). D) Abychom vybrali řešení vyhovující počátečním podmínkám, spočítáme první dvě derivace obecného řešení y ) = cos + 1 e + 1) + c e c 3 e, y ) = + sin + 1 e 4 4) + 4c e + 4c 3 e a následně hodnoty y0), y 0), y 0). Jejich porovnáním s počátečními podmínkami pak dostaneme pro koeficienty c 1, c, c 3 soustavu lineárních rovnic y0) = 1 : c 1 + c + c 3 = 1 y 0) = 1 : 3 + c c 3 = 1 y 0) = 0 : 4 + 4c + 4c 3 = 0 která má řešení c 1 = 0, c = 1, c 3 = 0. Hledaným řešením Cauchyovy úlohy tak je funkce y) = sin + 1 e + e R.
6 1..3 Homogenní LDR řádu n [MA1-18:P1.1] y n) + p n 1 )y n 1) p 1 )y + p 0 )y = 0 13) Množina řešení : jádro zobrazení D je to tedy lineární prostor tj. součet dvou řešení je řešením, násobek řešení je řešením) Pro f 1, f,..., f n C n 1) I) kde C k I) je prostor všech funkcí s k spojitými derivacemi na I a speciálně pro k = 0 je CI) = C 0 I) prostor všech spojitých funkcí na I ) definujeme Wronského determinant: W f1,...,f n ) = f 1 ) f )... f n ) f 1) f )... f n) f n 1) 1 ) f n 1) )... f n n 1) ) Věta 1.8 : Jsou-li funkce f 1, f,..., f n C n 1) I) lineárně závislé, pak W f1,...,f n ) = 0 I. Poznámka : Obrácené tvrzení neplatí např. funkce f 1 ) = 3, f ) = 3 jsou na R lineárně nezávislé, ale W f1,f ) = 0 pro každé R. Věta 1.9 : Jsou-li funkce y 1, y,..., y n lineárně nezávislá řešení rovnice 13), pak W y1,...,y n ) 0 I. Věta 1.10 : Množina všech řešení homogenní lineární diferenciální rovnice řádu n je lineární prostor dimenze n.
Diferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
Soustavy lineárních rovnic
Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a
Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR
DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
Obyčejné diferenciální rovnice
Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH
9.5. Soustavy diferenciálních rovnic
Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 Robert Mařík 5. října 2009 c Robert Mařík, 2009 Obsah 1 LDR druhého řádu 4 2 Homogenní LDR, lineární nezávislost a wronskián 9 3 Homogenní LDR s konstantními
DMA Přednáška Rekurentní rovnice. takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna n n 0 + m pravdivý výrok.
DMA Přednáška Rekurentní rovnice Rekurentní rovnice či rekurzivní rovnice pro posloupnost {a n } je vztah a n+1 = G(a n, a n 1,..., a n m ), n n 0 + m, kde G je nějaká funkce m + 1 proměnných. Jejím řešením
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
9.3. Úplná lineární rovnice s konstantními koeficienty
Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme
9.4. Rovnice se speciální pravou stranou
Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta
Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
pouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel
6. Lineární ODR n-tého řádu
6. Lineární ODR n-tého řádu A. Obecná homogenní LODRn V předcházející kapitole jsme diferenciální rovnici (libovolného řádu) nazvali lineární, je-li tato rovnice lineární vzhledem ke hledané funkci y a
Lineární diferenciální rovnice n tého řádu
Kapitola 2 Lineární diferenciální rovnice n tého řádu 2.1 Cauchyova úloha pro lineární rovnici n tého řádu Klíčová slova: obyčejná lineární diferenciální rovnice n tého řádu, rovnice s konstantními koeficienty,
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a
. Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými
Řešené úlohy z Úvodu do algebry 1
Řešené úlohy z Úvodu do algebry Veronika Sobotíková katedra matematiky FEL ČVUT Vzhledem k tomu, že se ze strany studentů často setkávám s nepochopením požadavku zdůvodnit jednotlivé kroky postupu řešení,
4.1 Řešení základních typů diferenciálních rovnic 1.řádu
4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po
9.2. Zkrácená lineární rovnice s konstantními koeficienty
9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,
Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program
Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí
Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje
7.3. Diferenciální rovnice II. řádu
Diferenciální rovnice 7 Diferenciální rovnice II řádu Ve stručném přehledu se budeme zabývat výhradně řešením lineárních diferenciálních rovnic II řádu s konstantními koeficienty Obecný tvar: ay + ay +
4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
1. Jordanův kanonický tvar
. Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními
Obyčejné diferenciální rovnice
1 Obyčejné diferenciální rovnice Příklad 0.1 (Motivační). Rychlost chladnutí hmotného bodu je přímo úměrná rozdílu jeho teploty minus teploty okolí. Předpokládejme teplotu bodu 30 o C v čase t = 0 a čase
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.
Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n
Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.
Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Diferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
Matematika 3. Úloha 1. Úloha 2. Úloha 3
Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.
Řešení rekurentních rovnic 3. Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce 12
Řešení rekurentních rovnic 3 doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2011 Základy diskrétní matematiky, BI-ZDM ZS 2011/12, Lekce
3 Lineární kombinace vektorů. Lineární závislost a nezávislost
3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární
y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
7. Soustavy ODR1 Studijní text. 7. Soustavy ODR1. A. Základní poznatky o soustavách ODR1
7 Soustavy ODR1 A Základní poznatky o soustavách ODR1 V inženýrské praxi se se soustavami diferenciálních rovnic setkáváme především v úlohách souvisejících s mechanikou Příkladem může být úloha popsat
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz www.mendelu.cz/user/marik c Robert Mařík, 2009 Obsah 1 Diferenciální rovnice úvod
Principy indukce a rekurentní rovnice
Principy indukce a rekurentní rovnice Jiří Velebil: X01DML 22. října 2010: Indukce 1/15 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.
Kapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
1 L Hospitalovo pravidlo
L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Leden 2015 Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
Obsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a
Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb
Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme
Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)
4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost
Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
4. Lineární diferenciální rovnice rovnice 1. ádu
4. Lineární diferenciální rovnice rovnice. ádu y + p( ) y = (4.) L[ y] = y + p( ) y p q jsou spojité na I = (ab) a < b. Z obecné teorie vyplývá že množina všech ešení rovnice (4.) na intervalu I (tzv.
Derivace funkcí více proměnných
Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Matematika 4 FSV UK, LS Miroslav Zelený
Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).
Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem
1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.
Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
21ˆx 0 mod 112, 21x p 35 mod 112. x p mod 16. x 3 mod 17. α 1 mod 13 α 0 mod 17. β 0 mod 13 β 1 mod 17.
1. 2. test - varianta A Příklad 1.1. Kompletně vyřešte rovnici 21x 35 mod 112. Řešení. Protože gcd(112, 21) 21 má dle Frobeniovy věty rovnice řešení. Řešení nalezneme ve dvou krocích. Nejprve kompletně
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
Lineární algebra : Vlastní čísla, vektory a diagonalizace
Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je
Pomocný text. Polynomy
Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné
12 Obyčejné diferenciální rovnice a jejich soustavy
12 Obyčejné diferenciální rovnice a jejich soustavy 121 Úvod - opakování Opakování z 1 ročníku (z kapitoly 5) Definice 121 Rovnice se separovanými proměnnými je rovnice tvaru Návod k řešení: Pokud g(c)
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
7. Důležité pojmy ve vektorových prostorech
7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v
SPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.
Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)
Lineární algebra : Polynomy
Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
1 Diference a diferenční rovnice
1 Diference a diferenční rovnice Nechť je dána ekvidistantní síť uzlů x 0, x 1,..., x n tj. h R, h > 0 takové, že x i = x 0 + ih, i = 0, 1,..., n. Číslo h se nazývá krok. Někdy můžeme uvažovat i nekonečnou
Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
Úlohy klauzurní části školního kola kategorie A
62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,
Limita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
18 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30
Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou